MATH 321 - HOMEWORK #4

Due Friday, Feb 5.

PROBLEM 1. You may assume that the following sequences and series converge on the given domain. Show that they do not converge uniformly.
 (a) \(f_n(x) = x^n \rightarrow 0 \) on \([0, 1)\)
 (b) \(f_n(x) = nx(1 - x)^n \rightarrow 0 \) on \([0, 1] \).
 (c) \(\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \) on \(\mathbb{R} \).
 (Hint: for the last part you can use properties of exponential function. A simple proof can also be given using the uniform Cauchy’s criterion, Theorem 7.8.)

PROBLEM 2. Recall that a function \(f(x) \) defined on \(E \) is bounded if there exists an \(M \geq 0 \), such that \(|f(x)| \leq M \) for all \(x \in E \). A sequence of functions \(\{f_n\} \) on \(E \) is uniformly bounded if there exists one bound \(M \) that works for all \(f_n \). Prove that if the functions \(f_n \) are bounded and the sequence \(f_n \) converges to some function \(f \) uniformly, then the sequence is uniformly bounded.

PROBLEM 3. This problem is about variation, and more generally, the length of curves.
 (a) Prove that \(f : [0, 1] \rightarrow \mathbb{R} \),

 \[
 f(x) = \begin{cases}
 x \cos \frac{\pi}{x} & \text{if } 0 < x \leq 1, \\
 0 & \text{if } x = 0,
 \end{cases}
 \]

 does not have bounded variation. (Hint: consider partitions with subdivision points \(1/n \).)
 (b) Consider the parametrized curve \(\gamma : [0, 1] \rightarrow \mathbb{R}^2 \),

 \[
 \gamma(x) = \begin{cases}
 (x \cos \frac{\pi}{x}, x \sin \frac{\pi}{x}) & \text{if } 0 < x \leq 1, \\
 (0, 0) & \text{if } x = 0.
 \end{cases}
 \]

 Show that the curve is not rectifiable, \(\Lambda \gamma = \infty \).

PROBLEM 4. The Riesz representation theorem we discussed in class describes all bounded functionals on the space \(C[a, b] \). This problem studies the simplest infinite dimensional vector space \(V \), its dual \(V^* \) and the bounded dual \(V^b \).
Let \(V \) be the vector space of sequences of real numbers \((a_n) \), such that only a finite number of \(a_n \) are nonzero,

\[
V = \{ (a_0, a_1, a_2, \ldots) | a_n = 0 \text{ for } n \text{ large enough} \}.
\]
The vector space V has a countable basis
\[e_0 = (1,0,0,...), \quad e_1 = (0,1,0,0,...), \quad e_2 = (0,0,1,0,...), \quad \]
To define a linear function $L : V \to \mathbb{R}$, we need to specify the values of L on the basis:
\[L(e_0) = b_0, \quad L(e_1) = b_1, \quad L(e_2) = b_2, \quad \]
This way we can identify the dual space V^* with the space of all sequences (b_n), with no restriction on vanishing. A linear function (b_n) acts on V by dot product.
Let V have the norm
\[\|(a_n)\| = \max_n |a_n|. \]
Recall that a linear function $L \in V^*$ is bounded if there exists an $M \geq 0$, such that for every $v = (a_n) \in V$,
\[|L(v)| \leq M\|v\|. \]
The smallest such bound is defined to be the norm of L:
\[\|L\| = \sup_{v \neq 0} \frac{|L(v)|}{\|v\|} = \sup_{\|v\|=1} |L(v)|. \]
(a) Show that the linear function
\[(1,1,...) \in V^* \]
is not bounded.
(b) For any $b = (b_n) \in V^*$, show that
\[\|b\| = \sum_n |b_n|. \]
In particular, the subspace of bounded linear functions $V^b \subset V^*$ is the set of sequences (b_n) such that $\sum_n |b_n| < \infty$.
(c) Show that every element of V defines (by dot product) a bounded linear function $V^b \to \mathbb{R}$, giving a linear map:
\[V \to (V^b)^b, \]
but this map is not surjective. For example, the sequence $(1,1,...)$ defines element of $(V^b)^b$ that does not come from V.