Math 300: Assignment #5:
Due: Friday, Oct. 23. in class.

2. Section 3.3: 16.

3. Recall that $\arg_{\tau}(z)$ is the branch of the argument that lies in $(\tau, \tau + 2\pi]$.
 Let L_{τ} be the branch of the logarithm defined using $\arg_{\tau}(z)$.
 a. Find $L_0(-i), L_{\pi/2}(i)$.
 b. Where is $L_{\pi/2}(z^2 + 1)$ analytic?

4. Find the principal values of
 a. $(-i)^{i-1}$.
 b. $i^{2/3}$.

5. Let the square root be computed using the branch $L_{\pi/2}$ of the logarithm.
 a. Where is $(z^2 - i)^{1/2}$ analytic?
 b. Where is $z(1 - i/z^2)^{1/2}$ analytic? (Hint: show that if z is in the non-
 analytic locus then z^2 lies on the half-circle with center $i/2$ and radius
 1/2. Sketch the set of such z.)

6. Where is the principal branch of $\tan^{-1}(z)$ analytic?

7. Consider the principal branch of $\sin^{-1}(z)$. (That means, both the logarithm
 and the square root are computed using the principal branches.)
 a. Show that if z is purely imaginary, $z = ib$, then so is $\sin^{-1}(z)$?
 b. If z is real, is $\sin^{-1}(z)$ also real?