Math 341 Homework 6 Solutions

1. a. Give an example of a family of sets $\mathcal{F} = \{A_1, A_2, A_3, A_4\}$ that satisfies Hall's criterion, for which there exists a unique SDR.

Solution. A (boring) solution would be $A_1 = \{1\}, A_2 = \{2\}, A_3 = \{3\}, A_4 = \{4\}$. A slightly less boring solution would be $\{A_1\} = \{1, 3\}, A_2 = \{1, 2, 3\}, A_3 = \{1, 2, 3, 4\}, A_4 = \{1\}$

b. Give an example of a family of sets $\mathcal{F} = \{A_1, A_2, A_3, A_4, A_5\}$ that satisfies Hall's criterion, for which there exists more than one SDR.

Solution. $A_1 = A_2 = A_3 = A_4 = \{1, 2, 3, 4, 5\}$; every 5-tuple $(x_1, x_2, x_3, x_4, x_5)$ of distinct elements with $x_1, \ldots, x_5 \in [5]$ is a SDR. Thus there are 5! = 120 SDRs for this family of sets.

2. Let A_1, \ldots, A_n be sets, with $n \ge 3$. Suppose that for every set of indices $I \subset [n]$, we have

$$|A(I)| \ge |I| + 2.$$

Let $x_1 \in A_1$ and $x_2 \in A_2$ with $x_1 \neq x_2$. Prove that there exists x_3, \ldots, x_n so that $(x_1, x_2, x_3, \ldots, x_n)$ is a SDR for A_1, \ldots, A_n .

Solution. For each i = 3, ..., n, define $A'_i = A_i \setminus \{x_1, x_2\}$. Then for each set of indices $I \subset \{3, ..., n\}$, we have

$$|A'(I)| \ge |A(I) \setminus \{x_1, x_2\}| \ge |A(I)| - 2 \ge |I|.$$

Thus A'_3, \ldots, A'_n satisfies Hall's criterion, so there exists an SDR (x_3, x_4, \ldots, x_n) for A'_3, \ldots, A'_n . Since for each $i = 3, \ldots, n$ we have $x_i \neq x_1$ and $x_i \neq x_2$, we conclude that $(x_1, x_2, x_3, \ldots, x_n)$ is a SDR for A_1, \ldots, A_n .

3. Let $n = 7 = 2^2 + 2 + 1$. Write down 7 sets A_1, \ldots, A_n so that $\mathcal{F} = \{A_1, \ldots, A_7\}$ is a family of subsets of [7]; each set A_i has cardinality 3; each number $x \in [7]$ is contained in 3 sets, and each pair of sets intersect in exactly one element.

Solution.

The 7 sets are $\{2, 4, 6\}$, $\{1, 4, 5\}$, $\{3, 4, 7\}$, $\{2, 1, 3\}$, $\{2, 5, 7\}$, $\{1, 6, 7\}$, $\{3, 5, 6\}$

4. Define $\mathbb{Z}_2 = \{0, 1\}$; if $a, b \in \mathbb{Z}_2$, we define a + b = 0 if a = 0, b = 0 or a = 1, b = 1. We define a + b = 1 if a = 0, b = 1 or a = 1, b = 0 (this is called addition mod 2, or XOR). If $a, b \in \mathbb{Z}_2$, define ab = 0 if a = 0 or b = 0 (or both), and define ab = 1 if a = 1, b = 1. With these definitions, \mathbb{Z}_2 is called a *ring*.

Let $\mathcal{P} = \mathbb{Z}_2^3 \setminus \{(0, 0, 0)\}$, i.e.

 $\mathcal{P} = \{(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}.$

For each $(a, b, c) \in \mathbb{Z}_2 \setminus \{(0, 0, 0)\}$, define

$$L_{(a,b,c)} = \{ (x, y, z) \in \mathcal{P} \colon ax + by + cz = 0 \},\$$

where addition and multiplication is performed according to the rules described above. For example, if (a, b, c) = (1, 0, 1), then

$$L_{(1,0,1)} = \{(x, y, z) \in \mathcal{P} \colon x + z = 0\} = \{(1, 0, 1), (1, 1, 1), (0, 1, 0)\}$$

Let \mathcal{F} be the family of 7 sets

$$\mathcal{F} = \{ L_{(a,b,c)} \colon (a,b,c) \in \mathbb{Z}_2 \setminus \{0,0,0\} \}.$$

Write down the 7 sets in \mathcal{F} (we wrote down $L_{(1,0,1)}$ above; you need to write down the rest).

Remark: Observe that each pair of sets intersect in exactly one element; each set contains 3 elements, and each element of \mathcal{P} is contained in exactly 3 of the sets from \mathcal{F} .

Solution. We have that

$$\mathcal{F} = \{ L_{(0,0,1)}, L_{(0,1,0)}, L_{(0,1,1)}, L_{(1,0,0)}, L_{(1,0,1)}, L_{(1,1,0)}, L_{(1,1,1)} \},\$$

where

$$L_{(0,0,1)} = \{(0,1,0), (1,0,0), (1,1,0)\},\tag{1}$$

$$L_{(0,1,0)} = \{(0,0,1), (1,0,0), (1,0,1)\},\tag{2}$$

$$L_{(0,1,1)} = \{(0,1,1), (1,0,0), (1,1,1)\},\tag{3}$$

$$L_{(1,0,0)} = \{(0,1,0), (0,0,1), (0,1,1)\},\tag{4}$$

$$L_{(1,0,1)} = \{(0,1,0), (1,0,1), (1,1,1)\},\tag{5}$$

$$L_{(1,1,0)} = \{(0,0,1), (1,1,0), (1,1,1)\},$$
(6)

$$L_{(1,1,1)} = \{(0,1,1), (1,0,1), (1,1,0)\}.$$
(7)

Observe that these are the "same" sets as in problem 3, if we interpret the element (x, y, z) as the binary number $2^2a + 2^1b + 2^0c$, i.e. $L_{(0,0,1)} = \{(0,1,0), (1,0,0), (1,1,0)\}$ corresponds to the set $\{2,4,6\}$, which is the first of the 7 sets from problem 3.

5. Let \mathcal{F} be a family of subsets of [n]. Suppose that each set in \mathcal{F} has cardinality k, and that for every collection of k+1 sets $A_1, \ldots, A_{k+1} \in \mathcal{F}$, we have that their intersection $A_1 \cap A_2 \cap \ldots \cap A_{k+1}$ is non-empty. Prove that the intersection of all the sets in \mathcal{F} is non-empty, i.e. all of the sets in \mathcal{F} contain a common element.

Solution. We will do a proof by contradiction. Let $A = \{x_1, \ldots, x_k\}$ be a set from \mathcal{F} . If the intersection of all the sets in \mathcal{F} is empty, then there exists a set $A_1 \in \mathcal{F}$ with $x_1 \notin A_1$. Similarly, for each $i = 2, \ldots, k$, there exists a set $A_i \in \mathcal{F}$ with $x_i \notin A_i$. But then $A \cap A_1 \cap A_2 \cap \ldots \cap A_k = \emptyset$, which contradicts the assumption that every collection of k + 1 sets from \mathcal{F} has non-empty intersection.

6. An intersecting family \mathcal{F} of subsets of [n] is called *maximal* if every larger family $\mathcal{F}' \supseteq \mathcal{F}$ is *not* intersecting. I.e. it is impossible to add an additional set to \mathcal{F} so that the resulting family is still intersecting.

Prove that every maximal intersecting family of subsets of [n] has cardinality 2^{n-1} .

Solution. Let \mathcal{F} be an intersecting family, and suppose that $|\mathcal{F}| < 2^{n-1}$. We will show that there exists a set $B \subset [n]$ that intersects every set in \mathcal{F} . This means that $\mathcal{F} \cup \{B\}$ is intersecting, and thus \mathcal{F} is not maximal.

Group the 2^n subsets of [n] into 2^{n-1} complimentary pairs of the form $(A, [n] \setminus A)$. Since $|\mathcal{F}| < 2^{n-1}$, there must exist a set A so that neither A nor $[n] \setminus A$ is contained in \mathcal{F} . If A intersects every set in \mathcal{F} , then let B = A and we are done. If not, then there is a set $C \in \mathcal{F}$ with $C \cap A = \emptyset$. But this means that $C \subset ([n] \setminus A)$. Let $B = [n] \setminus A$. Since $C \subset B$ and C intersects every set in \mathcal{F} , we have that B also intersects every set in \mathcal{F} , and we're done.