
Math 341 Homework 6 Solutions

1. a. Give an example of a family of sets F = {A1, A2, A3, A4} that satisfies Hall’s criterion, for
which there exists a unique SDR.

Solution. A (boring) solution would be A1 = {1}, A2 = {2}, A3 = {3}, A4 = {4}. A slightly less
boring solution would be {A1} = {1, 3}, A2 = {1, 2, 3}, A3 = {1, 2, 3, 4}, A4 = {1}

b. Give an example of a family of sets F = {A1, A2, A3, A4, A5} that satisfies Hall’s criterion, for
which there exists more than one SDR.

Solution. A1 = A2 = A3 = A4 = {1, 2, 3, 4, 5}; every 5-tuple (x1, x2, x3, x4, x5) of distinct elements
with x1, . . . , x5 ∈ [5] is a SDR. Thus there are 5! = 120 SDRs for this family of sets.

2. Let A1, . . . , An be sets, with n ≥ 3. Suppose that for every set of indices I ⊂ [n], we have

|A(I)| ≥ |I|+ 2.

Let x1 ∈ A1 and x2 ∈ A2 with x1 6= x2. Prove that there exists x3, . . . , xn so that (x1, x2, x3, . . . , xn)
is a SDR for A1, . . . , An.

Solution. For each i = 3, . . . , n, define A′i = Ai\{x1, x2}. Then for each set of indices I ⊂ {3, . . . , n},
we have

|A′(I)| ≥ |A(I)\{x1, x2}| ≥ |A(I)| − 2 ≥ |I|.

Thus A′3, . . . , A
′
n satisfies Hall’s criterion, so there exists an SDR (x3, x4, . . . , xn) for A′3, . . . A

′
n.

Since for each i = 3, . . . , n we have xi 6= x1 and xi 6= x2, we conclude that (x1, x2, x3, . . . , xn) is a
SDR for A1, . . . , An.

3. Let n = 7 = 22 + 2 + 1. Write down 7 sets A1, . . . , An so that F = {A1, . . . , A7} is a family of
subsets of [7]; each set Ai has cardinality 3; each number x ∈ [7] is contained in 3 sets, and each
pair of sets intersect in exactly one element.

Solution.
The 7 sets are {2, 4, 6}, {1, 4, 5}, {3, 4, 7}, {2, 1, 3}, {2, 5, 7}, {1, 6, 7}, {3, 5, 6}

4. Define Z2 = {0, 1}; if a, b ∈ Z2, we define a + b = 0 if a = 0, b = 0 or a = 1, b = 1. We define
a + b = 1 if a = 0, b = 1 or a = 1, b = 0 (this is called addition mod 2, or XOR). If a, b ∈ Z2, define
ab = 0 if a = 0 or b = 0 (or both), and define ab = 1 if a = 1, b = 1. With these definitions, Z2 is
called a ring.

Let P = Z3
2\{(0, 0, 0)}, i.e.

P = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

For each (a, b, c) ∈ Z2\{(0, 0, 0)}, define

L(a,b,c) = {(x, y, z) ∈ P : ax + by + cz = 0},
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where addition and multiplication is performed according to the rules described above. For example,
if (a, b, c) = (1, 0, 1), then

L(1,0,1) = {(x, y, z) ∈ P : x + z = 0} = {(1, 0, 1), (1, 1, 1), (0, 1, 0)}.

Let F be the family of 7 sets

F = {L(a,b,c) : (a, b, c) ∈ Z2\{0, 0, 0}}.

Write down the 7 sets in F (we wrote down L(1,0,1) above; you need to write down the rest).

Remark: Observe that each pair of sets intersect in exactly one element; each set contains 3
elements, and each element of P is contained in exactly 3 of the sets from F .

Solution. We have that

F = {L(0,0,1), L(0,1,0), L(0,1,1), L(1,0,0), L(1,0,1), L(1,1,0), L(1,1,1)},

where

L(0,0,1) = {(0, 1, 0), (1, 0, 0), (1, 1, 0)}, (1)

L(0,1,0) = {(0, 0, 1), (1, 0, 0), (1, 0, 1)}, (2)

L(0,1,1) = {(0, 1, 1), (1, 0, 0), (1, 1, 1)}, (3)

L(1,0,0) = {(0, 1, 0), (0, 0, 1), (0, 1, 1)}, (4)

L(1,0,1) = {(0, 1, 0), (1, 0, 1), (1, 1, 1)}, (5)

L(1,1,0) = {(0, 0, 1), (1, 1, 0), (1, 1, 1)}, (6)

L(1,1,1) = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}. (7)

Observe that these are the “same” sets as in problem 3, if we interpret the element (x, y, z) as the
binary number 22a + 21b + 20c, i.e. L(0,0,1) = {(0, 1, 0), (1, 0, 0), (1, 1, 0)} corresponds to the set
{2, 4, 6}, which is the first of the 7 sets from problem 3.

5. Let F be a family of subsets of [n]. Suppose that each set in F has cardinality k, and that for
every collection of k+ 1 sets A1, . . . , Ak+1 ∈ F , we have that their intersection A1∩A2∩ . . .∩Ak+1

is non-empty. Prove that the intersection of all the sets in F is non-empty, i.e. all of the sets in F
contain a common element.

Solution. We will do a proof by contradiction. Let A = {x1, . . . , xk} be a set from F . If the
intersection of all the sets in F is empty, then there exists a set A1 ∈ F with x1 6∈ A1. Similarly, for
each i = 2, . . . , k, there exists a set Ai ∈ F with xi 6∈ Ai. But then A∩A1∩A2∩ . . .∩Ak = ∅, which
contradicts the assumption that every collection of k + 1 sets from F has non-empty intersection.

6. An intersecting family F of subsets of [n] is called maximal if every larger family F ′ ) F is not
intersecting. I.e. it is impossible to add an additional set to F so that the resulting family is still
intersecting.

Prove that every maximal intersecting family of subsets of [n] has cardinality 2n−1.

Solution. Let F be an intersecting family, and suppose that |F| < 2n−1. We will show that there
exists a set B ⊂ [n] that intersects every set in F . This means that F ∪ {B} is intersecting, and
thus F is not maximal.

Group the 2n subsets of [n] into 2n−1 complimentary pairs of the form (A, [n]\A). Since |F| <
2n−1, there must exist a set A so that neither A nor [n]\A is contained in F . If A intersects every
set in F , then let B = A and we are done. If not, then there is a set C ∈ F with C ∩ A = ∅. But
this means that C ⊂ ([n]\A). Let B = [n]\A. Since C ⊂ B and C intersects every set in F , we
have that B also intersects every set in F , and we’re done.
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