Math 341 Homework 6 Solutions

1. a. Give an example of a family of sets $\mathcal{F}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ that satisfies Hall's criterion, for which there exists a unique SDR.
Solution. A (boring) solution would be $A_{1}=\{1\}, A_{2}=\{2\}, A_{3}=\{3\}, A_{4}=\{4\}$. A slightly less boring solution would be $\left\{A_{1}\right\}=\{1,3\}, A_{2}=\{1,2,3\}, A_{3}=\{1,2,3,4\}, A_{4}=\{1\}$
b. Give an example of a family of sets $\mathcal{F}=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ that satisfies Hall's criterion, for which there exists more than one SDR.

Solution. $A_{1}=A_{2}=A_{3}=A_{4}=\{1,2,3,4,5\}$; every 5-tuple ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$) of distinct elements with $x_{1}, \ldots, x_{5} \in[5]$ is a SDR. Thus there are $5!=120$ SDRs for this family of sets.
2. Let A_{1}, \ldots, A_{n} be sets, with $n \geq 3$. Suppose that for every set of indices $I \subset[n]$, we have

$$
|A(I)| \geq|I|+2 .
$$

Let $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$ with $x_{1} \neq x_{2}$. Prove that there exists x_{3}, \ldots, x_{n} so that $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ is a SDR for A_{1}, \ldots, A_{n}.
Solution. For each $i=3, \ldots, n$, define $A_{i}^{\prime}=A_{i} \backslash\left\{x_{1}, x_{2}\right\}$. Then for each set of indices $I \subset\{3, \ldots, n\}$, we have

$$
\left|A^{\prime}(I)\right| \geq\left|A(I) \backslash\left\{x_{1}, x_{2}\right\}\right| \geq|A(I)|-2 \geq|I| .
$$

Thus $A_{3}^{\prime}, \ldots, A_{n}^{\prime}$ satisfies Hall's criterion, so there exists an $\operatorname{SDR}\left(x_{3}, x_{4}, \ldots, x_{n}\right)$ for $A_{3}^{\prime}, \ldots A_{n}^{\prime}$. Since for each $i=3, \ldots, n$ we have $x_{i} \neq x_{1}$ and $x_{i} \neq x_{2}$, we conclude that $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ is a SDR for A_{1}, \ldots, A_{n}.
3. Let $n=7=2^{2}+2+1$. Write down 7 sets A_{1}, \ldots, A_{n} so that $\mathcal{F}=\left\{A_{1}, \ldots, A_{7}\right\}$ is a family of subsets of [7]; each set A_{i} has cardinality 3 ; each number $x \in[7]$ is contained in 3 sets, and each pair of sets intersect in exactly one element.

Solution.

The 7 sets are $\{2,4,6\},\{1,4,5\},\{3,4,7\},\{2,1,3\},\{2,5,7\},\{1,6,7\},\{3,5,6\}$
4. Define $\mathbb{Z}_{2}=\{0,1\}$; if $a, b \in \mathbb{Z}_{2}$, we define $a+b=0$ if $a=0, b=0$ or $a=1, b=1$. We define $a+b=1$ if $a=0, b=1$ or $a=1, b=0$ (this is called addition $\bmod 2$, or XOR). If $a, b \in \mathbb{Z}_{2}$, define $a b=0$ if $a=0$ or $b=0$ (or both), and define $a b=1$ if $a=1, b=1$. With these definitions, \mathbb{Z}_{2} is called a ring.

Let $\mathcal{P}=\mathbb{Z}_{2}^{3} \backslash\{(0,0,0)\}$, i.e.

$$
\mathcal{P}=\{(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\} .
$$

For each $(a, b, c) \in \mathbb{Z}_{2} \backslash\{(0,0,0)\}$, define

$$
L_{(a, b, c)}=\{(x, y, z) \in \mathcal{P}: a x+b y+c z=0\},
$$

where addition and multiplication is performed according to the rules described above. For example, if $(a, b, c)=(1,0,1)$, then

$$
L_{(1,0,1)}=\{(x, y, z) \in \mathcal{P}: x+z=0\}=\{(1,0,1),(1,1,1),(0,1,0)\} .
$$

Let \mathcal{F} be the family of 7 sets

$$
\mathcal{F}=\left\{L_{(a, b, c)}:(a, b, c) \in \mathbb{Z}_{2} \backslash\{0,0,0\}\right\} .
$$

Write down the 7 sets in \mathcal{F} (we wrote down $L_{(1,0,1)}$ above; you need to write down the rest).
Remark: Observe that each pair of sets intersect in exactly one element; each set contains 3 elements, and each element of \mathcal{P} is contained in exactly 3 of the sets from \mathcal{F}.
Solution. We have that

$$
\mathcal{F}=\left\{L_{(0,0,1)}, L_{(0,1,0)}, L_{(0,1,1)}, L_{(1,0,0)}, L_{(1,0,1)}, L_{(1,1,0)}, L_{(1,1,1)}\right\},
$$

where

$$
\begin{align*}
& L_{(0,0,1)}=\{(0,1,0),(1,0,0),(1,1,0)\}, \tag{1}\\
& L_{(0,1,0)}=\{(0,0,1),(1,0,0),(1,0,1)\}, \tag{2}\\
& L_{(0,1,1)}=\{(0,1,1),(1,0,0),(1,1,1)\}, \tag{3}\\
& L_{(1,0,0)}=\{(0,1,0),(0,0,1),(0,1,1)\}, \tag{4}\\
& L_{(1,0,1)}=\{(0,1,0),(1,0,1),(1,1,1)\}, \tag{5}\\
& L_{(1,1,0)}=\{(0,0,1),(1,1,0),(1,1,1)\}, \tag{6}\\
& L_{(1,1,1)}=\{(0,1,1),(1,0,1),(1,1,0)\} . \tag{7}
\end{align*}
$$

Observe that these are the "same" sets as in problem 3, if we interpret the element (x, y, z) as the binary number $2^{2} a+2^{1} b+2^{0} c$, i.e. $L_{(0,0,1)}=\{(0,1,0),(1,0,0),(1,1,0)\}$ corresponds to the set $\{2,4,6\}$, which is the first of the 7 sets from problem 3.
5. Let \mathcal{F} be a family of subsets of $[n]$. Suppose that each set in \mathcal{F} has cardinality k, and that for every collection of $k+1$ sets $A_{1}, \ldots, A_{k+1} \in \mathcal{F}$, we have that their intersection $A_{1} \cap A_{2} \cap \ldots \cap A_{k+1}$ is non-empty. Prove that the intersection of all the sets in \mathcal{F} is non-empty, i.e. all of the sets in \mathcal{F} contain a common element.
Solution. We will do a proof by contradiction. Let $A=\left\{x_{1}, \ldots, x_{k}\right\}$ be a set from \mathcal{F}. If the intersection of all the sets in \mathcal{F} is empty, then there exists a set $A_{1} \in \mathcal{F}$ with $x_{1} \notin A_{1}$. Similarly, for each $i=2, \ldots, k$, there exists a set $A_{i} \in \mathcal{F}$ with $x_{i} \notin A_{i}$. But then $A \cap A_{1} \cap A_{2} \cap \ldots \cap A_{k}=\emptyset$, which contradicts the assumption that every collection of $k+1$ sets from \mathcal{F} has non-empty intersection.
6. An intersecting family \mathcal{F} of subsets of $[n]$ is called maximal if every larger family $\mathcal{F}^{\prime} \supsetneq \mathcal{F}$ is not intersecting. I.e. it is impossible to add an additional set to \mathcal{F} so that the resulting family is still intersecting.

Prove that every maximal intersecting family of subsets of $[n]$ has cardinality 2^{n-1}.
Solution. Let \mathcal{F} be an intersecting family, and suppose that $|\mathcal{F}|<2^{n-1}$. We will show that there exists a set $B \subset[n]$ that intersects every set in \mathcal{F}. This means that $\mathcal{F} \cup\{B\}$ is intersecting, and thus \mathcal{F} is not maximal.

Group the 2^{n} subsets of $[n]$ into 2^{n-1} complimentary pairs of the form $(A,[n] \backslash A)$. Since $|\mathcal{F}|<$ 2^{n-1}, there must exist a set A so that neither A nor $[n] \backslash A$ is contained in \mathcal{F}. If A intersects every set in \mathcal{F}, then let $B=A$ and we are done. If not, then there is a set $C \in \mathcal{F}$ with $C \cap A=\emptyset$. But this means that $C \subset([n] \backslash A)$. Let $B=[n] \backslash A$. Since $C \subset B$ and C intersects every set in \mathcal{F}, we have that B also intersects every set in \mathcal{F}, and we're done.

