
Math 341 Homework 5 Solutions

1. Prove that for each positive integer n, there are about
√

8n/3 pentagonal numbers less than n.
More precisely, prove that for every ε > 0, there is a number N so that for all n ≥ N , the number
of pentagonal numbers less than n is at most (1 + ε)

√
8n/3 and is at least (1− ε)

√
8n/3.

Solution. Recall that a number is pentagonal if it can be written in the form k(3k − 1)/2 or
k(3k+1)/2, where k ≥ 0. The pentagonal number 0 can be represented in two ways (as 0(3·0−1)/2
or 0(·0 + 1)/2 ), but every other pentagonal number has a unique representation.

If n = s(3s − 1)/2 for some positive integer s, then there are exactly s = (1 +
√

1 + 24n)/6
numbers of the form k(3k − 1)/2 that are less than n. If n is an arbitrary positive integer, then
there are d(1 +

√
1 + 24n)/6e numbers of the form k(3k − 1)/2 that are less than n. Similarly, if n

is a positive integer, then there are d(−1 +
√

1 + 24n)/6e numbers of the form k(3k+ 1)/2 that are
less than n

Thus, if n is a positive integer, the number of pentagonal numbers less than n is d(1 +√
1 + 24n)/6e+ d(−1 +

√
1 + 24n)/6e − 1.

Now, let ε > 0, and let N = max
(

1
12ε ,

3
2ε2

)
. With this choice of N , we have that if n ≥ N ,

then 1 + 24n ≤ (1 + ε/2)24n (since n ≥ 1
12ε), and 1 ≤ (ε/2)

√
8n/3 (since n ≥ 27

2ε2
).

In the computations below, we will use the estimate that if x > 0, then 1 ≤
√

1 + x ≤ 1 + x.
We have the following estimates:

d(1 +
√

1 + 24n)/6e ≤ (1 +
√

1 + 24n)/6 + 1 ≤ 7/6 +
√

2/3(1 + ε/2)
√
n.

Similarly,
d(−1 +

√
1 + 24n)/6e ≤ 5/6 +

√
2/3(1 + ε/2)

√
n.

Thus

d(1 +
√

1 + 24n)/6e+ d(−1 +
√

1 + 24n)/6e − 1 ≤ (1 + ε/2)
√

8n/3 + 1 ≤ (1 + ε)
√

8n/3.

On the other hand, we have

d(1 +
√

1 + 24n)/6e ≥ 1 +
√

1 + 24n)/6 ≥ 1 +
√

23
√
n,

and
d(−1 +

√
1 + 24n)/6e ≥ −1 +

√
1 + 24n)/6 ≥ −1

√
23
√
n,

so
d(1 +

√
1 + 24n)/6e+ d(−1 +

√
1 + 24n)/6e − 1 ≥

√
8n/3− 1 ≥ (1− ε)

√
8n/3.

2 a. Let a1, a2, ..., an be a sequence of real numbers, with a1 ≥ a2 ≥ . . . ≥ an ≥ 0. Prove that

n∑
k=1

(−1)k−1ak ≤ a1.

Solution. If n is odd, write

n∑
k=1

(−1)k−1ak = a1 − (a2 − a3)− (a4 − a5)− . . .− (an−1 − an).
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Since ai+1 ≤ ai for each index i, every term in brackets is non-negative, so the entire sum is bounded
by a1.

Similarly, if n is even, write

n∑
k=1

(−1)k−1ak = a1 − (a2 − a3)− (a4 − a5)− . . .− (an−2 − an−1)− (an).

Again, every term in brackets is non-negative, so the entire sum is bounded by a1.

b. Prove that for n ≥ 5, p(n) ≤ Fn+1, where p(n) is the partition function of n and Fn is the n–th
Fibonacci number (recall that F1 = 1, F2 = 1, and F3 = 2). Hint: part a and induction might be
helpful.

Solution. If n = 5, then p(5) = 7, while F6 = 8. If n = 6 then p(6) = 11, while F7 = 13. Now
suppose that n ≥ 7 and that we have established the inequality p(k) ≤ Fk+1 for all 5 ≤ k ≤ n− 1.
For each ` = 1, . . . , n, define

a` =
(
p(n− 1

2
`(3`− 1)) + p(n− 1

2
`(3`+ 1))

)
Next, note that the partition function p(s) is non-decreasing, since there is an injection from

the set of partitions of s to the set of partitions of s + 1: for every partition λ = 1a12a2 · · · sas of
s, we associate the partition 1a1+12a2 · · · sas of s + 1. This means that a1 ≥ a2 ≥ a3 ≥ . . .. Thus
using part a, we have

p(n) =
n∑
`=1

(−1)`−1a` ≥ a1 = p(n− 1) + p(n− 2) ≥ Fn + Fn−1 = Fn+1.

3. To state this problem, we need to introduce some notation. Let n be a positive integer and let
λ be a partition of n. Write λ = 1a1,λ2a2,λ · · ·nan,λ .

With this notation, prove that for each positive integer n,

∑
λ a partition of n

( n∏
i=1

iai,λai,λ!
)−1

= 1.

Solution. Recall that for each partition λ = 1a1,λ2a2,λ · · ·nan,λ of n, the number of permutations
in Sn with cycle structure λ is n!∏

k=1

n
kak,λak,λ!. Since each permutation in Sn has a unique cycle

structure (which corresponds to some partition of n), we conclude that∑
λ a partition of n

n!∏n
i=1 i

ai,λai,λ!
= |Sn| = n!

Dividing both sides by n! yields the desired inequality.

4. Prove that for k > n/2, the number of permutations in Sn that have a cycle of length k is n!/k.

Solution. Observe that if π ∈ Sn has a cycle of length k, then it has exactly one cycle of length k,
and all other cycles have length less than k (this is where we use the fact that k > n/2). Thus we can
construct all permutations containing a cycle of length k as follows: Choose k elements a1, . . . , ak
of [n]; there are

(
n
k

)
ways to do this. We know from the midterm that there are (k − 1)! cycles

containing a1, . . . , ak (indeed, there are (k−1)! cyclic orderings of a1, . . . , ak). Next, there are (n−k)!
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permutations of the remaining numbers [n]\{a1, . . . , ak}. Thus there are
(
n
k

)
(k− 1)!(n− k)! = n!/k

permutations in Sn. that contain a cycle of length k.

5. Three candidates, A, B, and C, are running in an election. Suppose that 3n voters secretly cast
their votes by writing one candidate’s name on a ballot, and then putting it into a ballot box. The
ballot only contains the candidate’s name; no other information. The result is a three-way tie: each
candidate receives exactly n votes.

The votes are counted as follows: an election official takes ballots out of the box one by one, and
keeps a running tally of how many votes each candidate has received at that point. We know before
any votes are counted, each candidate has received 0 votes, and after all 3n votes are counted, each
candidate has received n votes.

How many different ways can the ballots be removed from the box so that at every point, the
number of votes for candidate A is at least as large as the number of votes for candidate B, and
the number of votes for candidate B is at least as large as the number of votes for candidate C?
Hint: politicians and clowns aren’t so different.

Solution. If the ballots are removed from the box so that at every point, the number of votes for
candidate A is at least as large as the number of votes for candidate B, and the number of votes
for candidate B is at least as large as the number of votes for candidate C, then we will call this
an “admissible” way of counting the ballots.

Consider the Young diagram D(λ) corresponding to the partition λ = n3 (this is a partition
of 3n). This diagram has three rows, each of which contains n columns. We will show that every
Young tableau with diagram D(λ) corresponds to an admissible way of counting the ballots.

Suppose that for each i = 1, . . . , 3n, the i–th ballot removed from the box is for candidate f(i)
(so f(i) ∈ {1, 2, 3}). If this ballot counting is admissible, then we will create a Young tableau as
follows: row j contains the numbers {i : f(i) = j}, in increasing order. Clearly we have written the
numbers 1, . . . , 3n into the 3n boxes of the Young diagram D(λ), and the numbers are increasing as
we move from left to right. The numbers are also increasing as we move from top to bottom, since
at every stage of the process, the number of votes candidate A is at least as large as the number of
votes for candidate B, and the number of votes for candidate B is at least as large as the number
of votes for candidate C. We have just described an injective function from the set of admissible
ways of counting ballots to the set of Young tableau. The function is also bijective, since if Y is a
Young tableau with diagram D(λ), then Y corresponds to the admissible ballot count where f(i)
is the row of Y in which the number i appears.

We will use the hook-length formula to count how many Young tableau have diagram D(λ).
The cells in row 1 have hook length h(1, j) = 3 + n − j; the cells in row 2 have hook length
h(2, j) = 2 + n − j, and the cells in row 3 how hook length h(3, j) = 1 + n − j. Thus by the
hook-length formula, the number of Young tableau with diagram D(λ) is

(3n)!∏
h(i, j)

=
(3n)!(∏n

j=1(3 + n− j)
)(∏n

j=1(2 + n− j)
)(∏n

j=1(1 + n− j)
) =

2(3n)!

(n+ 2)!(n+ 1)!n!
.

6. How many Young tableau are associated to each of the following partitions?

a. λ = 132241.

Solution. We will draw the Young diagram D(λ) and the hook-length of each cell.
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9 5 2 1
6 2
5 1
3
2
1

Since n = 11, the number of Young tableau with diagram D(λ) is

11!

9 · 5 · 2 · 1 · 6 · 2 · 5 · 1 · 3 · 2 · 1
= 1232.

b. λ = 324251.

Solution. We will draw the Young diagram D(λ) and the hook-length of each cell.

9 8 7 4 1
7 6 5 2
6 5 4 1
4 3 2
3 2 1

Since n = 19, the number of Young tableau with diagram D(λ) is

19!

9 · 8 · 7 · 4 · 1 · 7 · 6 · 5 · 2 · 6 · 5 · 4 · 1 · 4 · 3 · 2 · 3 · 2 · 1
= 8 314 020.

c. λ = 213341.

Solution. We will draw the Young diagram D(λ) and the hook-length of each cell.

8 7 5 1
6 5 3
5 4 2
4 3 1
2 1

Since n = 15, the number of Young tableau with diagram D(λ) is

15!

8 · 7 · 5 · 1 · 6 · 5 · 3 · 5 · 4 · 2 · 4 · 3 · 1 · 2 · 1
= 54054.

7. For each of n = 1, 2, 3, 4, write down all of the partitions of n, all of the Young Tableau associated
to each partition, and compute the quantity ∑

λ

f2λ ,

where the sum is taken over all partitions λ of n (recall that fλ is an integer; f2λ means the square
of this integer).

Remark: there appears to be a pattern here. Do you have a conjecture for what happens for larger
values of n?

Solution. n = 1:
Partition Young Tableau fλ

11 1 1
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∑
λ

f2λ = 11 = 1.

n = 2:
Partition Young Tableau fλ

12
1
2 1

21 1 2 1 ∑
λ

f2λ = 11 + 12 = 2.

n = 3:
Partition Young Tableau fλ

13

1
2
3 1

1121
1 2
3

1 3
2 2

31 1 2 3 1 ∑
λ

f2λ = 11 + 22 + 12 = 6.

n = 4:

Partition Young Tableau fλ

14

1
2
3
4 1

1221

1 2
3
4

1 3
2
4

1 4
2
3 3

22
1 2
3 4

1 3
2 4 2

1131
1 2 3
4

1 2 4
3

1 3 4
2 3

41 1 2 3 4 1
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∑
λ

f2λ = 11 + 32 + 22 + 32 + 11 = 24.

In general,
∑

λ f
2
λ = n!. While this follows from certain results in representation theory, I’m

not aware of an elementary proof.
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