
Math 341 Homework 4 Solutions

Catalan numbers

1. Prove that for n ≥ 4, the (n− 1)–st Catalan number Cn−1 is equal to the number of ways that
a regular n-gon can be cut into triangles by connecting non-adjacent vertices by non-crossing line
segments. (see picture below for C4).

Solution. We will actually prove a slightly more general statement, which is easier to prove by
induction: we will show that for each n ≥ 3, there are Cn−1 ways of cutting a convex n-gon into
triangles by connecting non-adjacent vertices by non-crossing line segments (Recall that a subset
of R2 is called convex if for every pair of points p, q in the set, the line segment joining p to q is
contained in the set. In particular, every regular n-gon is convex).

We will prove the result by induction on n. If n = 3, then a triangle can be cut into triangles in
C2 = 1 one way (do nothing). Similarly, if n = 4 then a quadrilateral can be cut in C3 = 2 ways into
triangles by connecting non-adjacent vertices by non-crossing line segments. Now suppose n ≥ 4,
and the result has been proved for all values of m ≤ n, and let P be a convex (n + 1)-gon. Label
the vertices of P by v1, v2, . . . , vn+1, where vn+1 is adjacent to vn and v1, and for i = 2, . . . , n, vi is
adjacent to vi−1 and vi+1.

Observe that if P is cut into triangles by connecting non-adjacent vertices by non-crossing line
segments, then either (A): there is a line segment connecting v2 and vn+1, or (B): there is at least
one line segment connecting v1 to some vertex vt, with 3 ≤ t ≤ n.

If (A) occurs, then consider the convex n-gon determined by the vertices v2, v3, . . . , vn+1; by
the induction hypothesis, there are Cn−1 ways of cutting this n-gon into triangles by connecting
non-adjacent vertices by non-crossing line segments. Thus there are Cn−1 ways of cutting P into
triangles by connecting non-adjacent vertices by non-crossing line segments so that option (A)
occurs.

If (B) occurs, then let 2 ≤ k ≤ n − 1 be the largest integer so that there is a line segment
connecting v1 and vk+1. Then the line joining v1 and vk+1 cuts P into the convex (k + 1)-gon
determined by the vertices v1, . . . , vk+1 and the convex (n − k)-gon determined by the vertices
vk+1, vk+2, . . . , vn+1, v1. By the induction hypothesis, there are Ck ways of cutting the (k + 1)-gon
into triangles, and Cn−k ways of cutting the (n − k + 1)-gon into triangles. Summing over all
possible k, we conclude that there are

∑n−1
k=2 CkCn−k ways of cutting P into triangles by connecting

non-adjacent vertices by non-crossing line segments so that option (B) occurs.
Thus all together, there are

Cn−1 +
n−1∑
k=2

CkCn−k =
n−1∑
k=1

CkCn−k = Cn
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ways of cutting P into triangles by connecting non-adjacent vertices by non-crossing line segments.
This completes the induction.

2. Prove that Cn is equal to the number of non-crossing complete matchings on 2n − 2 vertices,
i.e. the number of ways to connect 2n− 2 points in the plane, all lying on a horizontal line, using
n − 1 non-intersecting arcs, such that each arc connects two of the points, the arcs lie above the
points, and no two arcs cross (see picture below for C4).

Solution. First, observe that if n = 2, there is one non-crossing complete matching on 2n − 2 = 2
vertices. Now let n > 2 and suppose that for each m = 2, . . . , n − 1, we have proved that there
are Cm non-crossing complete matchings on 2m − 2 vertices. We will now count the number of
complete matchings on 2n−2 vertices; label these vertices from left to right as v1, . . . , v2n−2. Then
for every complete matching on v1, . . . , v2n−2, there is a unique number p ≥ 2 so that v1 is matched
with vp. If p = 2n − 2, then there is a complete matching on the 2(n − 1) − 2 = 2((n − 1) − 1)
vertices v2, v3, . . . , v2n−3. Thus there are Cn−1 non-crossing complete matchings on 2n− 2 vertices
so that v1 is matched with v2n−2.

If p < 2n − 2, then we have a complete matching on the p vertices v1, . . . , vp and on the
2n− 2− p vertices vp+1, . . . , v2n−2. Observe that p must be even, i.e. p = 2k − 2 for some integer
2 ≤ k ≤ n − 1. There are Ck complete matchings on the vertices v1, . . . , v2k−2, and there are
Cn−k complete matchings on the 2(n− k)− 2 vertices v2k−1, . . . v2n−2. Thus all together, there are∑n−1

k=2 CkCn−k non-crossing complete matchings on 2n − 2 vertices so that v1 is matched with a
vertex other than v2n−2.

Thus all together, there are

Cn−1 +

n−1∑
k=2

CkCn−k =

n−1∑
k=1

CkCn−k = Cn

complete matchings on 2n− 2 vertices. This completes the induction.

3. A clown stands on the edge of a swimming pool, holding a bag containing n red and n blue
balls. He draws the balls out one at a time (at random) and discards them. If he draws a blue ball,
he takes one step back. If he draws a red ball, he takes one step forward (all steps have the same
size). Prove that the probability that the clown remains dry is 1/(n + 1).

Solution. There are
(
2n
n

)
strings of letters R and B (red and blue) that contain exactly n R’s and

n B’s. Each such string corresponds to a possible sequence or red and blue balls that the clown
could draw from the bag. If any initial segment contains more R’s than B’s, it corresponds to the
clown getting wet. Thus the probability that the clown gets wet is x/

(
2n
n

)
, where x is the number

of strings containing n R’s and n B’s, where every initial segment contains at least as many B’s
as R’s. We know that x = Cn+1, the (n + 1)–st Catalan number (just replace B’s with opening
brackets and R’s with closing brackets), and thus n = 1

n+1

(
2n
n

)
. We conclude that the probability

that the clown get wet is x/
(
2n
n

)
= 1

n+1 .

2



Equivalence relations

4. Let S = R\{0} and define the relation a ∼ b if a/b ∈ Q. Prove that this is an equivalence
relation.

Solution. Let a ∈ R\{0}. Then a/a = 1 ∈ Q, so a ∼ a, i.e. the relation is reflexive. Next, suppose
a, b ∈ R\{0} with a ∼ b. Then a/b ∈ Q, i.e. we can write a/b = p/q, where p and q are non-zero
integers (we know that p 6= 0 since a 6= 0). Thus b/a = q/p ∈ Q, so b ∼ a, i.e. the relation is
symmetric. Finally, suppose a ∼ b and b ∼ c. Then we can write a/b = p/q and b/c = r/s, where
p, q, r, s are non-zero integers. But then a/c = (a/b)(b/c) = (p/q)(r/s) = (pr)/(rs) ∈ Q, so a ∼ c,
i.e. the relation is transitive. We conclude that ∼ is an equivalence relation.

5. A number a ∈ R is called algebraic if there is a nonzero polynomial P (x) with integer coefficients
(i.e. P (x) = anx

n + an−1x
n−1 + . . . + a0, with an, an−1, . . . , a0 ∈ Z and an 6= 0) so that P (a) = 0.

If a ∈ R is not algebraic, it is called transcendental.
Let S = R\{0} and let ∼ be the equivalence relation from Problem 4. Let a ∈ R be a

transcendental number. Prove that the equivalence classes [[1]], [[a]], [[a2]], [[a3]], . . . , are all
distinct.

Solution. Suppose that [[am]] = [[an]] for some integers 0 ≤ m < n. This means that am ∼ an, so
there is a rational number p

q (with q 6= 0) so that am = p
qa

n, i.e. qam − pan = 0. Thus a is a root
of the polynomial P (x) = qxm − pxn, which is non-zero and has integer coefficients. This implies
that a is algebraic. Since a is not algebraic, we must have [[am]] 6= [[an]] whenever 0 ≤ m < n.

6. Let S = {1, 2, 3, 4}. Define R = {(1, 2), (2, 1), (1, 3), (3, 1), (3, 4), (4, 3)}. Is R an equivalence
relation? Prove that your answer is correct.

Solution. No. We have 2 ∼ 1 and 1 ∼ 3, but 2 6∼ 3. Thus R fails to be transitive and thus is not
an equivalence relation.

7. Let S be the set of all English words. Define an equivalence relation a ∼ b if the words a and b
begin with the same letter. Is this an equivalence relation? Prove that your answer is correct.

Solution. Yes. First, if a ∈ S is a word, then a begins with the same letter as a. Thus a ∼ a, so
the relation is reflexive. Next, if a and b are words so that b begins with the same letter as a, then
a begins with the same letter as b. Thus a ∼ b implies b ∈ a, so the relation is symmetric. Finally,
if a, b, and c are words so that b begins with the same letter as a and c begins with the same letter
as b, then c begins with the same letter as a. Thus a ∼ b and b ∼ c implies a ∼ c, so the relation
is transitive. Thus ∼ is an equivalence relation.

Generating functions and permutations

8. Define the numbers a0, a1, . . . by

∞∏
m=1

(1 + tm) =
∞∑
n=0

ant
n.

Prove that an is the number of ways of writing n as a sum of distinct positive integers. E.g. a6 = 4,
since we can write 6 = 6, 6 = 5 + 1, 6 = 4 + 2, 6 = 3 + 2 + 1.

Solution. One way to interpret the product
∏∞

m=1(1 + tm) is that for each term in the product
(1 + t)(1 + t2)(1 + t3) · · · , we must either choose the “1” term or the “tm” term. Here’s a way to
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make that statement precise. Let F be the set of all functions f : N→ {0, 1}. Then

∞∏
m=1

(1 + tm) =
∑
f∈F

t
∑∞

k=1 kf(k).

Thus

an =
∣∣∣{f ∈ F :

∞∑
k=1

kf(k) = n
}∣∣.

But the set of functions f ∈ F that satisfies
∑∞

k=1 kf(k) = n is in one-to-one correspondence with
the set of ways of writing n as a sum of distinct integers.

9. Solve the non-linear recurrence relation f(n) = f(n−1)2, f(0) = 2. Hint: sometimes generating
functions aren’t the answer.

Solution. Lets compute the first few values of f(n). We have f(0) = 0, f(1) = f(0)2 = 22 = 4,
f(2) = f(1)2 = 42 = 16. This suggests that f(n) = 22

n
is a good guess. Lets check: 22

0
= 21 = 2.

In general, 22
n

= (22
n−1

)2. Thus the function f(n) = 22
n

satisfies f(0) = 0 and f(n) = f(n− 1)2.
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