
Math 341 Homework 3 Solutions

Fibonacci numbers

1. Prove that if n is divisible by three, then Fn is even; i.e. F3, F6, F9, etc. are even.

Solution. We will prove the result by induction. First, observe that F3 = 2 is even. Now suppose
that k is a positive integer and that F3k is even. We have F3(k+1) = F3k+2 +F3k+1 = 2F3k+1 +F3k.
Since 2F3k+1 is even and F3k is even, and the sum of two even numbers is even, we conclude that
F3(k+1) is even. Thus F3k is even for every positive integer k. (Note that F0 = F3·0 is also even).

2. Prove that if n ≥ 6 and n is even, then Fn is composite (i.e. it is not prime). Hint: try expanding
out the formula Fn = Fn−1 + Fn−2 multiple times.

Solution. Fix a positive integer n ≥ 3. First, we will prove by induction that for every positive
integer k ≤ n − 1,, Fn = Fk+1Fn−k + FkFn−k−1. When k = 1, we have Fn = Fn−1 + Fn−2 =
F2Fn−1 + F1Fn−2, so the base case holds. Now suppose the result has been proved for some
k ≤ n− 2. Then

Fn = Fk+1Fn−k + FkFn−k−1

= Fk+1(Fn−k−1 + Fn−k−2) + FkFn−k−1

= (Fk+1 + Fk)Fn−k−1 + Fk+1Fn−k−2

= Fk+2Fn−k−1 + Fk+1Fn−k−2

= F(k+1)+1Fn−(k+1) + F(k+1)Fn−(k+1)−1,

which completes the induction step. Now suppose n ≥ 6 is even, i.e. n = 2m for some positive
integer m. Applying the above result with k = m = n/2, we have

Fn = Fm+1Fm + FmFm−1 = Fm(Fm+1 + Fm−1).

Since n ≥ 6, m ≥ 3 and thus Fm ≥ 2 and (Fm+1 + Fm−1) ≥ 2, i.e. Fm can be written as the
product of two integers, each of which is ≥ 2. Thus Fn is composite.

Generating functions

3. Expand 2t
1−8t+15t2

as a power series (i.e. write it in the form
∑

n≥0 ant
n, and compute the

numbers an).

Solution. We have 1−8t+15t2 = (1−5t)(1−3t). Thus we can compute a partial fraction expansion:

2t

1− 8t+ 15t2
=

A

1− 5t
+

B

1− 3t
.

Solving A(1− 3t) +B(1− 5t) = 2t, we see that A = 1 and B = −1, i.e.

2t

1− 8t+ 15t2
=

1

1− 5t
− 1

1− 3t
.
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Thus the power series expansion for 2t
1−8t+15t2

is

∞∑
n=0

5ntn −
∞∑
n=0

3ntn =

∞∑
n=0

(5n − 3n)tn.

4. Consider the sequence an defined by a0 = 0 and an+1 = 3an + 2 for n ≥ 0. Using the method
of generating functions, write down a formula for an.

Solution. Define φ(t) =
∑∞

n=0 ant
n. We have

φ(t) =
∞∑
n=1

ant
n

=
∞∑
n=1

(3an−1 + 2)tn

= 3t

∞∑
n=0

ant
n + 2

∞∑
n=0

tn − 2

= 3tφ(t) +
2

1− t
− 2,

so φ(t)(1− 3t) = 2
1−t − 2, i.e. φ(t) = 2

(1−t)(1−3t) −
2

1−3t . Taking a partial fraction expansion of

2

(1− t)(1− 3t)
=
−1

1− t
+

3

1− 3t
,

we obtain

φ(t) =
−1

1− t
+

3

1− 3t
− 2

1− 3t

=
−1

1− t
+

1

1− 3t

=

∞∑
n=0

(3n − 1)tn

Thus an = 3n − 1 for each integer n ≥ 0.

5. Consider the sequence an defined by a0 = 0, a1 = 1, and an+2 = 2an+1 − an for n ≥ 0. Using
the method of generating functions, write down a formula for an.

Solution. Define φ(t) =
∑∞

n=0 ant
n. We have

φ(t) =
∞∑
n=1

ant
n

= t+

∞∑
n=2

ant
n

= t+
∞∑
n=2

(2an−1 − an−2)tn

= t+ 2t

∞∑
n=0

ant
n − t2

∞∑
n=0

ant
n

= t+ 2tφ(t)− t2φ(t),
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so φ(t)(1− 2t+ t2) = t, or

φ(t) =
t

1− 2t+ t2
=

t

(1− t)2
.

Since the denominator has a repeated root, we can’t use the method of partial fractions to write
t

(1−t)2 = A
1−t + B

1−t . However, we can compute directly the series expansion of t
(1−t)2 . Lets take

a few derivatives: φ′(t) = 1+t
(1−t)3 , φ

′′(t) = 2(2+t)
(1−t)4 , φ′′′(t) = 6(3+t)

(1−t)5 . We’ll prove by induction that

φ(k)(t) = k!(k+t)
(1−t)k+2 . We’ve already established the base case k = 1 (and also k = 2 and k = 3 for

that matter). Now for the induction step:

φ(k+1)(t) =
( k!(k + t)

(1− t)k+2

)′
= k!

(k + t)(−(k + 2)(1− t)k+1)− (1− t)k+2

(1− t)2k+4

= k!

(
k + 1

)(
1− t

)k+2(
(k + 1) + t

)
(1− t)2k+4

= (k + 1)!
(k + 1) + t

(1− t)(k+1)+2
,

which completes the induction. Thus the function φ(t) has the expansion φ(t) =
∑∞

n=0 bnt
n, where

bn = 1
n!φ

(n)(0) = 1
n!

n!(n+0)
(1−0)n+2 = n. We conclude that an = n for each n ≥ 0.

We can also verify this directly, since n+ 2 = 2(n+ 1)− n. (perhaps the moral of the story is
that sometimes having a lucky guess is easier than using generating functions).

Permutations

6. Let π ∈ Sn. Prove the formula sgn(π) = (−1)n−C(π)−F (π) from lecture.

Solution. Recall that if (a1 a2 . . . ak) is a cycle, then we can write

(a1 a2 . . . ak) = (a1 a2)(a1 a3)(a1 a4) · · · (a1 ak).

The right hand side of the above equation is a product of k − 1 transpositions, and thus its sign
is (−1)k−1. Now suppose π ∈ Sn, and suppose π can be written as a product of disjoint cycles of
lengths k1, k2, . . . , kt t = C(π). We have n = k1 + k2 + . . .+ kt + F (π), and

sgn(π) = (−1)k1−1(−1)k2−1 · · · (−1)kt−1

= (−1)k1+k1+...+kt(−1)−t

= (−1)n−F (π)(−1)−t
= (−1)n−C(π)−F (π).

7. a. Let π ∈ Sn be of the form π = (a1 a2 . . . ak). Prove that π is even if and only if k is odd.
For part b, we will call k the “length” of the cycle.

Solution. As noted in problem 6, we can write π = (a1 a2 . . . ak) = (a1 a2)(a1 a3)(a1 a4) · · · (a1 ak).
This is a product of k − 1 transpositions. Thus π is even if and only if k is odd.
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b. Let π ∈ Sn, and consider a representation of π as a product of disjoint cycles. Prove that π is
even if and only if there are an even number of even length cycles (and any number of odd length
cycles).

Solution. Write π as a product of disjoint cycles of lengths k1, k2, . . . , kt, t = C(π). Then sgn(π) =
(−1)k1−1(−1)k2−1 · · · (−1)kt−1. If kj is odd then kj − 1 is even, so (−1)kj−1 = 1. Conversely, if kj
is even, then kj − 1 is odd, so (−1)kj−1 = −1. Thus sgn(π) = −1 if and only if there are an odd
number of cycles of even length.

4


