Math 341 Homework 3 Solutions

Fibonacci numbers

1. Prove that if n is divisible by three, then F_{n} is even; i.e. F_{3}, F_{6}, F_{9}, etc. are even.

Solution. We will prove the result by induction. First, observe that $F_{3}=2$ is even. Now suppose that k is a positive integer and that $F_{3 k}$ is even. We have $F_{3(k+1)}=F_{3 k+2}+F_{3 k+1}=2 F_{3 k+1}+F_{3 k}$. Since $2 F_{3 k+1}$ is even and $F_{3 k}$ is even, and the sum of two even numbers is even, we conclude that $F_{3(k+1)}$ is even. Thus $F_{3 k}$ is even for every positive integer k. (Note that $F_{0}=F_{3.0}$ is also even).
2. Prove that if $n \geq 6$ and n is even, then F_{n} is composite (i.e. it is not prime). Hint: try expanding out the formula $F_{n}=F_{n-1}+F_{n-2}$ multiple times.

Solution. Fix a positive integer $n \geq 3$. First, we will prove by induction that for every positive integer $k \leq n-1,, F_{n}=F_{k+1} F_{n-k}+F_{k} F_{n-k-1}$. When $k=1$, we have $F_{n}=F_{n-1}+F_{n-2}=$ $F_{2} F_{n-1}+F_{1} F_{n-2}$, so the base case holds. Now suppose the result has been proved for some $k \leq n-2$. Then

$$
\begin{aligned}
F_{n} & =F_{k+1} F_{n-k}+F_{k} F_{n-k-1} \\
& =F_{k+1}\left(F_{n-k-1}+F_{n-k-2}\right)+F_{k} F_{n-k-1} \\
& =\left(F_{k+1}+F_{k}\right) F_{n-k-1}+F_{k+1} F_{n-k-2} \\
& =F_{k+2} F_{n-k-1}+F_{k+1} F_{n-k-2} \\
& =F_{(k+1)+1} F_{n-(k+1)}+F_{(k+1)} F_{n-(k+1)-1}
\end{aligned}
$$

which completes the induction step. Now suppose $n \geq 6$ is even, i.e. $n=2 m$ for some positive integer m. Applying the above result with $k=m=n / 2$, we have

$$
F_{n}=F_{m+1} F_{m}+F_{m} F_{m-1}=F_{m}\left(F_{m+1}+F_{m-1}\right)
$$

Since $n \geq 6, m \geq 3$ and thus $F_{m} \geq 2$ and $\left(F_{m+1}+F_{m-1}\right) \geq 2$, i.e. F_{m} can be written as the product of two integers, each of which is ≥ 2. Thus F_{n} is composite.

Generating functions

3. Expand $\frac{2 t}{1-8 t+15 t^{2}}$ as a power series (i.e. write it in the form $\sum_{n \geq 0} a_{n} t^{n}$, and compute the numbers a_{n}).

Solution. We have $1-8 t+15 t^{2}=(1-5 t)(1-3 t)$. Thus we can compute a partial fraction expansion:

$$
\frac{2 t}{1-8 t+15 t^{2}}=\frac{A}{1-5 t}+\frac{B}{1-3 t}
$$

Solving $A(1-3 t)+B(1-5 t)=2 t$, we see that $A=1$ and $B=-1$, i.e.

$$
\frac{2 t}{1-8 t+15 t^{2}}=\frac{1}{1-5 t}-\frac{1}{1-3 t}
$$

Thus the power series expansion for $\frac{2 t}{1-8 t+15 t^{2}}$ is

$$
\sum_{n=0}^{\infty} 5^{n} t^{n}-\sum_{n=0}^{\infty} 3^{n} t^{n}=\sum_{n=0}^{\infty}\left(5^{n}-3^{n}\right) t^{n}
$$

4. Consider the sequence a_{n} defined by $a_{0}=0$ and $a_{n+1}=3 a_{n}+2$ for $n \geq 0$. Using the method of generating functions, write down a formula for a_{n}.
Solution. Define $\phi(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$. We have

$$
\begin{aligned}
\phi(t) & =\sum_{n=1}^{\infty} a_{n} t^{n} \\
& =\sum_{n=1}^{\infty}\left(3 a_{n-1}+2\right) t^{n} \\
& =3 t \sum_{n=0}^{\infty} a_{n} t^{n}+2 \sum_{n=0}^{\infty} t^{n}-2 \\
& =3 t \phi(t)+\frac{2}{1-t}-2,
\end{aligned}
$$

so $\phi(t)(1-3 t)=\frac{2}{1-t}-2$, i.e. $\phi(t)=\frac{2}{(1-t)(1-3 t)}-\frac{2}{1-3 t}$. Taking a partial fraction expansion of

$$
\frac{2}{(1-t)(1-3 t)}=\frac{-1}{1-t}+\frac{3}{1-3 t},
$$

we obtain

$$
\begin{aligned}
\phi(t) & =\frac{-1}{1-t}+\frac{3}{1-3 t}-\frac{2}{1-3 t} \\
& =\frac{-1}{1-t}+\frac{1}{1-3 t} \\
=\sum_{n=0}^{\infty}\left(3^{n}-1\right) t^{n} &
\end{aligned}
$$

Thus $a_{n}=3^{n}-1$ for each integer $n \geq 0$.
5. Consider the sequence a_{n} defined by $a_{0}=0, a_{1}=1$, and $a_{n+2}=2 a_{n+1}-a_{n}$ for $n \geq 0$. Using the method of generating functions, write down a formula for a_{n}.
Solution. Define $\phi(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$. We have

$$
\begin{aligned}
\phi(t) & =\sum_{n=1}^{\infty} a_{n} t^{n} \\
& =t+\sum_{n=2}^{\infty} a_{n} t^{n} \\
& =t+\sum_{n=2}^{\infty}\left(2 a_{n-1}-a_{n-2}\right) t^{n} \\
& =t+2 t \sum_{n=0}^{\infty} a_{n} t^{n}-t^{2} \sum_{n=0}^{\infty} a_{n} t^{n} \\
& =t+2 t \phi(t)-t^{2} \phi(t),
\end{aligned}
$$

so $\phi(t)\left(1-2 t+t^{2}\right)=t$, or

$$
\phi(t)=\frac{t}{1-2 t+t^{2}}=\frac{t}{(1-t)^{2}}
$$

Since the denominator has a repeated root, we can't use the method of partial fractions to write $\frac{t}{(1-t)^{2}}=\frac{A}{1-t}+\frac{B}{1-t}$. However, we can compute directly the series expansion of $\frac{t}{(1-t)^{2}}$. Lets take a few derivatives: $\phi^{\prime}(t)=\frac{1+t}{(1-t)^{3}}, \phi^{\prime \prime}(t)=\frac{2(2+t)}{(1-t)^{4}}, \phi^{\prime \prime \prime}(t)=\frac{6(3+t)}{(1-t)^{5}}$. We'll prove by induction that $\phi^{(k)}(t)=\frac{k!(k+t)}{(1-t)^{k+2}}$. We've already established the base case $k=1$ (and also $k=2$ and $k=3$ for that matter). Now for the induction step:

$$
\begin{aligned}
\phi^{(k+1)}(t) & =\left(\frac{k!(k+t)}{(1-t)^{k+2}}\right)^{\prime} \\
& =k!\frac{(k+t)\left(-(k+2)(1-t)^{k+1}\right)-(1-t)^{k+2}}{(1-t)^{2 k+4}} \\
& =k!\frac{(k+1)(1-t)^{k+2}((k+1)+t)}{(1-t)^{2 k+4}} \\
& =(k+1)!\frac{(k+1)+t}{(1-t)^{(k+1)+2}},
\end{aligned}
$$

which completes the induction. Thus the function $\phi(t)$ has the expansion $\phi(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$, where $b_{n}=\frac{1}{n!} \phi^{(n)}(0)=\frac{1}{n!n!(n+0)}(1-0)^{n+2}=n$. We conclude that $a_{n}=n$ for each $n \geq 0$.

We can also verify this directly, since $n+2=2(n+1)-n$. (perhaps the moral of the story is that sometimes having a lucky guess is easier than using generating functions).

Permutations

6. Let $\pi \in S_{n}$. Prove the formula $\operatorname{sgn}(\pi)=(-1)^{n-C(\pi)-F(\pi)}$ from lecture.

Solution. Recall that if ($a_{1} a_{2} \ldots a_{k}$) is a cycle, then we can write

$$
\left(a_{1} a_{2} \ldots a_{k}\right)=\left(a_{1} a_{2}\right)\left(a_{1} a_{3}\right)\left(a_{1} a_{4}\right) \cdots\left(a_{1} a_{k}\right)
$$

The right hand side of the above equation is a product of $k-1$ transpositions, and thus its sign is $(-1)^{k-1}$. Now suppose $\pi \in S_{n}$, and suppose π can be written as a product of disjoint cycles of lengths $k_{1}, k_{2}, \ldots, k_{t} t=C(\pi)$. We have $n=k_{1}+k_{2}+\ldots+k_{t}+F(\pi)$, and

$$
\begin{aligned}
\operatorname{sgn}(\pi) & =(-1)^{k_{1}-1}(-1)^{k_{2}-1} \cdots(-1)^{k_{t}-1} \\
& =(-1)^{k_{1}+k_{1}+\ldots+k_{t}}(-1)^{-t} \\
& =(-1)^{n-F(\pi)}(-1)-t \\
& =(-1)^{n-C(\pi)-F(\pi)} .
\end{aligned}
$$

7. a. Let $\pi \in S_{n}$ be of the form $\pi=\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{k}\end{array}\right)$. Prove that π is even if and only if k is odd. For part b , we will call k the "length" of the cycle.

Solution. As noted in problem 6, we can write $\pi=\left(a_{1} a_{2} \ldots a_{k}\right)=\left(a_{1} a_{2}\right)\left(a_{1} a_{3}\right)\left(a_{1} a_{4}\right) \cdots\left(a_{1} a_{k}\right)$. This is a product of $k-1$ transpositions. Thus π is even if and only if k is odd.
b. Let $\pi \in S_{n}$, and consider a representation of π as a product of disjoint cycles. Prove that π is even if and only if there are an even number of even length cycles (and any number of odd length cycles).
Solution. Write π as a product of disjoint cycles of lengths $k_{1}, k_{2}, \ldots, k_{t}, t=C(\pi)$. Then $\operatorname{sgn}(\pi)=$ $(-1)^{k_{1}-1}(-1)^{k_{2}-1} \cdots(-1)^{k_{t}-1}$. If k_{j} is odd then $k_{j}-1$ is even, so $(-1)^{k_{j}-1}=1$. Conversely, if k_{j} is even, then $k_{j}-1$ is odd, so $(-1)^{k_{j}-1}=-1$. Thus $\operatorname{sgn}(\pi)=-1$ if and only if there are an odd number of cycles of even length.

