Math 341 Homework 3 Solutions

Fibonacci numbers

1. Prove that if n is divisible by three, then F}, is even; i.e. Fj, Fg, Fy, etc. are even.

Solution. We will prove the result by induction. First, observe that F3 = 2 is even. Now suppose
that k is a positive integer and that Fjj is even. We have F3,1 1) = g2+ Fapr1 = 2F341 + Fap.
Since 2F35;11 is even and F3j is even, and the sum of two even numbers is even, we conclude that
F3(.41) is even. Thus F3; is even for every positive integer k. (Note that Fy = F3. is also even).

2. Prove that if n > 6 and n is even, then F}, is composite (i.e. it is not prime). Hint: try expanding
out the formula F,, = F,,_1 + F,,_s multiple times.

Solution. Fix a positive integer n > 3. First, we will prove by induction that for every positive
integer kK < n—1,, Iy, = Fyp1Fn—r + FpFh_kx—1. When k = 1, we have F,, = F,_1 + F,_2 =
FyF, 1 + F1F,_5, so the base case holds. Now suppose the result has been proved for some
k <n—2. Then
Fn, = Fk—HFn—k + FpFp g1

= Fep1(Fok—1+ Fog—2) + FiFhg1

= (Frp1 + Fi) g1+ Frp1 Fog—2

= FypoFp g1+ Fp1 g2

= Fornyr1Fogrn) + Fory Faoer)—15
which completes the induction step. Now suppose n > 6 is even, i.e. n = 2m for some positive
integer m. Applying the above result with k¥ = m = n/2, we have

Fn: m+lFm+FmFm—1:Fm(Fm+1+Fm—1)-

Since n > 6, m > 3 and thus F,,, > 2 and (Fj41 + Fin—1) > 2, i.e. F,, can be written as the
product of two integers, each of which is > 2. Thus F}, is composite.

Generating functions

3. Expand I—SEﬁ as a power series (i.e. write it in the form ) -;ant", and compute the
numbers ay,).

Solution. We have 1—8t+15t% = (1—5t)(1—3t). Thus we can compute a partial fraction expansion:

2t A N B
1—8t+15t2 1—5¢t 1-—3t

Solving A(1 — 3t) + B(1 — 5t) = 2t, we see that A =1 and B = —1, i.e.

2t 1 1

1—8t+15t2 1-—5t 1—3t




Thus the power series expansion for ;— 15 18
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4. Consider the sequence a, defined by ag = 0 and a,+1 = 3a, + 2 for n > 0. Using the method
of generating functions, write down a formula for a,.

Solution. Define ¢(t) = > 7 jant"™. We have
G(t) =) ant”
n=1
n=1

oo o0
SO MR
n=0 n=0

2
= 3to(t — =2
B6() + 1 — 2,

so ¢(t)(1 —3t) = % —2,1e. ¢(t) = (1_t)%1_3t) - 1—2315' Taking a partial fraction expansion of

2 -1 N 3
(1-t)(1—-3t) 1—t 1-3¢t
we obtain
-1 3 2
t) = —
o(t) 1—t+1—3t 1—3t
-1 N 1
C1—t 1-3t

S
n=0

Thus a,, = 3" — 1 for each integer n > 0.

5. Consider the sequence a,, defined by ag =0, a; = 1, and ap1o = 2a,4+1 — ay, for n > 0. Using
the method of generating functions, write down a formula for a,,.

Solution. Define ¢(t) = > "7 ;ant™. We have
G(t) =D ant”
n=1
=t+ > ant”
n=2

(o)
=t+ Z(2an_1 — ap_o)t"

n=2

o0 oo
= t+2t2antn —tQZant”
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=t +2to(t) — 20(t),



so ¢(t)(1 — 2t +t2) =t, or
t t

=T (1-1)?2

Since the denominator has a repeated root, we can’t use the method of partial fractions to write

t Lets take

e = %t + %. However, we can compute directly the series expansion of ﬁ
a few derivatives: ¢'(t) = 11+tt3, d'(t) = 21(24?4’ " (t) = (fgt)t). We’ll prove by induction that

o) (t) = (TK’:;,;?Q We've already established the base case K = 1 (and also k = 2 and k = 3 for
that matter). Now for the induction step:

SH () = ((k!(k: + ) )/

1— t)k+2
(k+t)(=(k+2)(1 = )**1) — (1 - )"+
(1 ¢)2k+a
(k+1) (1= 6" ((k+1) +1)
(1 _ t)2k+4
(k+1)+1¢
(1= ¢)(1)+2°

— k!

= k!

= (k+1)!

which completes the induction. Thus the function ¢(t) has the expansion ¢(t) = > 7, byt", where

by, = %QS(”) (0) = %% = n. We conclude that a,, = n for each n > 0.

We can also verify this directly, since n + 2 = 2(n + 1) — n. (perhaps the moral of the story is
that sometimes having a lucky guess is easier than using generating functions).
Permutations
6. Let m € S,,. Prove the formula sgn(w) = (—1)"~¢(M=F() from lecture.

Solution. Recall that if (a1 ag ... ag) is a cycle, then we can write

(a1 as ... ak) = (a1 ag)(al a;:,)(al a4) e (a1 ak).

The right hand side of the above equation is a product of k — 1 transpositions, and thus its sign
is (—1)*=1. Now suppose m € S, and suppose 7 can be written as a product of disjoint cycles of
lengths ki, ka,..., ke t = C(w). We have n =k; + ko + ...+ kt + F(m), and

sgn(m) = (1) =1k (-
( 1)l€1+k1+ +kt( 1)—t
= (-1 r ( 1)—t
( 1)n C(m )
7. a. Let m € S,, be of the form 7 = (a1 a2 ... ai). Prove that 7 is even if and only if & is odd.

For part b, we will call k the “length” of the cycle.

Solution. As noted in problem 6, we can write 7 = (a1 a2 ... ai) = (a1 a2)(a1 az)(a1 aq) - - - (a1 ag).
This is a product of k — 1 transpositions. Thus 7 is even if and only if k is odd.



b. Let m € S,,, and consider a representation of 7 as a product of disjoint cycles. Prove that « is
even if and only if there are an even number of even length cycles (and any number of odd length
cycles).

Solution. Write m as a product of disjoint cycles of lengths ki, ks, ..., ki, t = C'(7). Then sgn(w) =
(=)= t(=1)k2=1. .. (=1)*~L If k; is odd then k; — 1 is even, so (—1)%~! = 1. Conversely, if k;
is even, then k; — 1 is odd, so (—1)%~! = —1. Thus sgn(r) = —1 if and only if there are an odd
number of cycles of even length.



