
Math 341 Homework 2 Solutions

1. Let m and n be integers and let a be a positive integer. We say m ≡ n (mod a) if there is an
integer t so that m−n = ta (i.e. m−n is divisible by a). If the statement “m ≡ n (mod a)” is false,
we write m 6≡ n (mod a). HW1 problem 4 implies that if p is prime, then (1 +n)p ≡ 1 +np (mod p)
for every positive integer n. You may use this fact to solve the problem below.
a) Using induction, prove that if p is a prime, then np ≡ n (mod p) for every positive integer n.

Solution. For each prime p, we will prove the result by induction on n. Let p be a prime. if n = 1
then np = 1 = n. Now suppose the result has been proved for some positive integer n. From HW1
problem 4, we have (1 +n)p ≡ 1 +np (mod p), i.e. (1 +n)p− (1 +np) = tp for some integer t. Using
the induction hypothesis, we have np ≡ n (mod p), i.e. np − n = sp for some integer s. Thus

(1 + n)p = 1 + np + tp = 1 + n+ sp+ tp = 1 + n(s+ t)p,

which is exactly the statement (1 + n)p ≡ 1 + n (mod p). This completes the induction step and
finishes the proof.

b) Give an example of positive integers n and a so that na 6≡ n (mod a).

Solution. Let n = 3, a = 4. Then na − n = 78, which is not divisible by 4. Thus 34 6≡ 3 (mod 4).

2. Prove that (
2n

n

)
=

22n√
πn

(
1 +O

( 1

n

))
.

(Here π = 3.141... is a real number, not a permutation!)

Solution. First, we should understand what we are being asked to prove. From lecture, the above
statement is equivalent to the following: Prove that there exists a constant C and a number N so
that ∣∣∣(2n

n

)
− 22n√

πn

∣∣∣ ≤ C

n

22n√
πn

for all n ≥ N. (1)

For each positive integer n, define f(n) = n! −
√

2πn(n/e)n. By Stirling’s approximation, we
know that ∣∣∣ f(n)√

2πn(n/e)n

∣∣∣ ≤ C0/n

for some absolute constant C0 (we are calling the constant C0 rather than C since we don’t want
to confuse it with the constant C from Equation (1)). Thus if n ≥ 2C0, we have that

1/2 ≤
∣∣∣1− f(n)√

2πn(n/e)n

∣∣∣ ≤ 2. (2)

We will set N = 2C0, so that Equation (2) holds for all n ≥ N . Now lets analyze the expression in
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(1). We have that whenever n ≥ 2C0,∣∣∣(2n

n

)
− 22n√

πn

∣∣∣ =
∣∣∣(2n)!

(n!)2
− 22n√

πn

∣∣∣
=
∣∣∣√4πn(2n/e)2n + f(2n)(√

2πn(n/e)n + f(n)
)2 − 22n√

πn

∣∣∣
=
∣∣∣
√

4πn(2n/e)2n
(
1 + f(2n)√

4πn(2n/e)2n

)
(√

2πn(n/e)n
)2(

1 + f(n)√
2πn(n/e)n

)2 − 22n√
πn

∣∣∣
=
∣∣∣ 22n√
πn

1 + f(2n)√
4πn(2n/e)2n(

1 + f(n)√
2πn(n/e)n

)2 − 22n√
πn

∣∣∣
≤ 22n√

πn

∣∣∣1 + C0/(2n)

1− C0/n
− 1
∣∣∣

=
22n√
πn

3C0/(2n)

1− C0/n

≤ 3C0

n

22n√
πn

(3)

Thus (1) holds with N = 2C0 and C = 3C0.

3. Let n be a positive integer. Prove that for every π ∈ Sn, there is a positive integer t so that
πt = e, where e is the identity permutation.

(Here π is a permutation, not the real number 3.141...!)

Food for thought: If n is fixed, what is the largest t can be? Can you come up with an interesting
bound on the size of t?

Solution. Let π ∈ Sn. Consider the list of n! + 1 permutations π, π2, π3, . . . , πn!+1. We proved in
class that |Sn| = n!. Thus by the pigeonhole principle, two of the permutations from the above list
must be the same, i.e. there exist integers u and v, with 1 ≤ u < v ≤ n! + 1 with πu = πv. Thus
e = πuπ−u = πvπ−u = πv−u. Define t = v − u. u < v, t ≥ 1.

Vectors and the symmetric group

For the next set of questions, we will have the following setup.
Let n be a positive integer and let v1, . . . , vn be vectors in Rn. We’ll use the notation

v1 = (v1,1, v1,2, . . . , v1,n),

v2 = (v2,1, v2,2, . . . , v2,n),

...

vn = (vn,1, vn,2, . . . , vn,n).

Consider the following function, whose input is n vectors and whose output is a real number:

f(v1, . . . , vn) =
∑
π∈Sn

sgn(π)

n∏
j=1

vjπ,j . (4)
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(Recall our notation from class that if π ∈ Sn and j ∈ [n], then jπ is the integer obtained by
applying the permutation π to the integer j. We will define sgn(π) in class on Jan 30.)

For example, if n = 2 then S2 is the set containing the permutations π1 = e and π2 = (1, 2).
We have sgn(π1) = 1 and sgn(π2) = −1. Thus, if v1 = (v1,1, v1,2) and v2 = (v2,1, v2,2), then

f(v1, v2) = v1,1v2,2 − v2,1v1,2. (5)

4. Let n = 3 and let v1 = (v1,1, v1,2, v1,3) and similarly for v2 and v3. Write down f(v1, v2, v3)
explicitly as a sum of products of the numbers vi,j , in the same style as Equation (5) above.
Compare this with the formula for the determinant∣∣∣∣∣∣

v1,1 v1,2 v1,3
v2,1 v2,2 v2,3
v3,1 v3,2 v3,3

∣∣∣∣∣∣
Are the two expressions the same?

Solution. S3 contains 6 elements. The elements e, (1 2 3), and (1 3 2) have sign +1, while the
elements (1 2), (1 3) and (2 3) have sign −1. Thus

f(v1, v2, v3) = v1,1v2,2v3,3 + v2,1v3,2v1,3 + v3,1v1,2v2,3 − v2,1v1,2v3,3 − v3,1v2,2v1,3 − v1,1v3,2v2,3.

Using the co-factor expansion for the determinant, we have∣∣∣∣∣∣
v1,1 v1,2 v1,3
v2,1 v2,2 v2,3
v3,1 v3,2 v3,3

∣∣∣∣∣∣ = v1,1

∣∣∣∣ v2,2 v2,3
v3,2 v3,3

∣∣∣∣− v1,2 ∣∣∣∣ v2,1 v2,3
v3,1 v3,3

∣∣∣∣+ v1,3

∣∣∣∣ v2,1 v2,2
v3,1 v3,2

∣∣∣∣
= v1,1(v2,2v3,3 − v2,3v3,2)− v1,2(v2,1v3,3 − v2,3v3,1) + v1,3(v2,1v3,2 − v2,2v3,1)
= v1,1v2,2v3,3 − v1,1v2,3v3,2 − v1,2v2,1v3,3 + v1,2v2,3v3,1 + v1,3v2,1v3,2 − v1,3v2,2v3,1

These two expressions are the same.

5. Let v1 = (1, . . . , 0), v2 = (0, 1, 0, . . . , 0), v3 = (0, 0, 1, . . . , 0), and in general let vj be the vector
that has a one in the j–th position and zeroes elsewhere. Prove that

f(v1, . . . , vn) = 1.

Let v1, . . . , vn be as above. Observe that if π = e, then
∏n
j=1 vjπ,j = 1 =

∏n
j=1 vj,j =

∏n
j=1 1 = 1.

If π 6= e, then there exists at least one index k with k 6= kπ, and thus vkπ,k = 0, so
∏n
j=1 vjπ,j = 0.

This means that

f(v1, . . . , vn) =
∑
π∈Sn

sgn(π)

n∏
j=1

vjπ,j = 1 +
∑
π 6=e

sgn(π)

n∏
j=1

vjπ,j = 1 + 0 = 1.

6. Prove that if two of the vectors are interchanged, then the sign of f flips. More formally, prove
that if v1, . . . , vn are vectors in Rn, then

f(v1, . . . , vi, . . . , vj , . . . , vn) = −f(v1, . . . , vj , . . . , vi, . . . , vn).

(in the above expression, each of the vectors v1, . . . , vn are in the same place, except the vectors vi
and vj have switched places on the right hand side).
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Hint: it might be helpful to recall the definition of sgn(π).
Let π̃ ∈ Sn be the transposition π̃ = (i j). Note that for each π ∈ Sn, sgn(π) = − sgn(π̃π).
Next we will make a crucial observation: if π1, π2 ∈ Sn, then π1 = π2 if and only if π̃π1 = π̃π2.

This means that if we enumerate the elements of Sn as Sn = {π1, . . . , πn!}. Then we also have
Sn = {π̃π1, . . . , π̃πn!}. In particular, this means that

∑
π∈Sn

sgn(π)
n∏
k=1

vkπ,k =
∑
π∈Sn

sgn(π̃π)
n∏
k=1

vkπ̃π,k

But this is great! We have sgn(π̃π) = − sgn(π), and we have vkπ̃π,k = vkπ,k, unless k = i (in which
case kπ̃π = jπ), or k = j (in which case kπ̃π = iπ), i.e.

∑
π∈Sn

sgn(π̃π)
n∏
k=1

vkπ̃π,k = −
∑
π∈Sn

sgn(π)
n∏
k=1

vkπ̃π,k = −f(v1, . . . , vj . . . , vi, . . . , vn),

i.e.
f(v1, . . . , vi, . . . , vj , . . . , vn) = −f(v1, . . . , vj . . . , vi, . . . , vn),

as desired.

7. Let v1, . . . , vn be vectors in Rn. Suppose that two of the vectors are the same, i.e. vi = vj for
some i 6= j. Prove that

f(v1, . . . , vn) = 0.

Solution. This follows quickly from problem 6: we have

f(v1, . . . , vi, . . . , vj , . . . , vn) = −f(v1, . . . , vj , . . . , vi, . . . , vn).

But since vi = vj , we also have

f(v1, . . . , vi, . . . , vj , . . . , vn) = f(v1, . . . , vj , . . . , vi, . . . , vn),

i.e.
f(v1, . . . , vi, . . . , vj , . . . , vn) = −f(v1, . . . , vi, . . . , vj , . . . , vn),

from which it follows that f(v1, . . . , vn) = 0.

8. Let v1, . . . , vn be vectors in Rn, let 1 ≤ j ≤ n and let v′j be a vector in Rn. Prove that

f(v1, . . . , vj + v′j , . . . , vn) = f(v1, . . . , vj , . . . , vn) + f(v1, . . . , v
′
j , . . . , vn).

Solution. The main issue with this problem is that the notation is a bit tricky. In the formula (4),
we need to figure out which terms of the form vπi,i are entries of vj , i.e. for which value of i is it the
case that iπ = j. But we can apply π−1 to both sides to see that i = jπ−1, i.e. one of the terms in
the product vπ1,1vπ2,2 · · · vπn,n will be of the form vj,π−1j , and this is the only term containing an
entry from the vector vj .

One other note on notation: We’ll write the vector vj+v
′
j as (vj,1+v′j,1, vj,2+v′j,2, . . . , vj,n+v′j,n).

We’re now ready to solve the problem. We have
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f(v1, . . . , vj + v′j , . . . , vn)

=
∑
π∈Sn

sgn(π)v1π,1v2π,2 · · · (vj,π−1j + v′j,π−1j) · · · vnπ,n

=
∑
π∈Sn

sgn(π)v1π,1v2π,2 · · · vj,π−1j · · · vnπ,n +
∑
π∈Sn

sgn(π)v1π,1v2π,2 · · · v′j,π−1j · · · vnπ,n

= f(v1, . . . , vj , . . . , vn) + f(v1, . . . , v
′
j , . . . , vn).
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