## Math 341 Homework 2 Solutions

1. Let $m$ and $n$ be integers and let $a$ be a positive integer. We say $m \equiv n(\bmod a)$ if there is an integer $t$ so that $m-n=t a$ (i.e. $m-n$ is divisible by $a$ ). If the statement " $m \equiv n(\bmod a)$ " is false, we write $m \not \equiv n(\bmod a)$. HW1 problem 4 implies that if $p$ is prime, then $(1+n)^{p} \equiv 1+n^{p}(\bmod p)$ for every positive integer $n$. You may use this fact to solve the problem below.
a) Using induction, prove that if $p$ is a prime, then $n^{p} \equiv n(\bmod p)$ for every positive integer $n$.

Solution. For each prime $p$, we will prove the result by induction on $n$. Let $p$ be a prime. if $n=1$ then $n^{p}=1=n$. Now suppose the result has been proved for some positive integer $n$. From HW1 problem 4, we have $(1+n)^{p} \equiv 1+n^{p}(\bmod p)$, i.e. $(1+n)^{p}-\left(1+n^{p}\right)=t p$ for some integer $t$. Using the induction hypothesis, we have $n^{p} \equiv n(\bmod p)$, i.e. $n^{p}-n=s p$ for some integer $s$. Thus

$$
(1+n)^{p}=1+n^{p}+t p=1+n+s p+t p=1+n(s+t) p
$$

which is exactly the statement $(1+n)^{p} \equiv 1+n(\bmod p)$. This completes the induction step and finishes the proof.
b) Give an example of positive integers $n$ and $a$ so that $n^{a} \not \equiv n(\bmod a)$.

Solution. Let $n=3, a=4$. Then $n^{a}-n=78$, which is not divisible by 4 . Thus $3^{4} \neq 3(\bmod 4)$.
2. Prove that

$$
\binom{2 n}{n}=\frac{2^{2 n}}{\sqrt{\pi n}}\left(1+O\left(\frac{1}{n}\right)\right)
$$

(Here $\pi=3.141 \ldots$ is a real number, not a permutation!)
Solution. First, we should understand what we are being asked to prove. From lecture, the above statement is equivalent to the following: Prove that there exists a constant $C$ and a number $N$ so that

$$
\begin{equation*}
\left|\binom{2 n}{n}-\frac{2^{2 n}}{\sqrt{\pi n}}\right| \leq \frac{C}{n} \frac{2^{2 n}}{\sqrt{\pi n}} \quad \text { for all } n \geq N \tag{1}
\end{equation*}
$$

For each positive integer $n$, define $f(n)=n!-\sqrt{2 \pi n}(n / e)^{n}$. By Stirling's approximation, we know that

$$
\left|\frac{f(n)}{\sqrt{2 \pi n}(n / e)^{n}}\right| \leq C_{0} / n
$$

for some absolute constant $C_{0}$ (we are calling the constant $C_{0}$ rather than $C$ since we don't want to confuse it with the constant $C$ from Equation (1)). Thus if $n \geq 2 C_{0}$, we have that

$$
\begin{equation*}
1 / 2 \leq\left|1-\frac{f(n)}{\sqrt{2 \pi n}(n / e)^{n}}\right| \leq 2 . \tag{2}
\end{equation*}
$$

We will set $N=2 C_{0}$, so that Equation (2) holds for all $n \geq N$. Now lets analyze the expression in
(1). We have that whenever $n \geq 2 C_{0}$,

$$
\begin{align*}
\left|\binom{2 n}{n}-\frac{2^{2 n}}{\sqrt{\pi n}}\right| & =\left|\frac{(2 n)!}{(n!)^{2}}-\frac{2^{2 n}}{\sqrt{\pi n}}\right| \\
& =\left|\frac{\sqrt{4 \pi n}(2 n / e)^{2 n}+f(2 n)}{\left(\sqrt{2 \pi n}(n / e)^{n}+f(n)\right)^{2}}-\frac{2^{2 n}}{\sqrt{\pi n}}\right| \\
& =\left|\frac{\sqrt{4 \pi n}(2 n / e)^{2 n}\left(1+\frac{f(2 n)}{\sqrt{4 \pi n}(2 n / e)^{2 n}}\right)}{\left(\sqrt{2 \pi n}(n / e)^{n}\right)^{2}\left(1+\frac{f(n)}{\sqrt{2 \pi n}(n / e)^{n}}\right)^{2}}-\frac{2^{2 n}}{\sqrt{\pi n}}\right| \\
& =\left|\frac{2^{2 n}}{\sqrt{\pi n}} \frac{1+\frac{f(2 n)}{\sqrt{4 \pi n}(2 n / e)^{2 n}}}{\left(1+\frac{f(n)}{\sqrt{2 \pi n}(n / e)^{n}}\right)^{2}}-\frac{2^{2 n}}{\sqrt{\pi n}}\right|  \tag{3}\\
& \leq \frac{2^{2 n}}{\sqrt{\pi n}}\left|\frac{1+C_{0} /(2 n)}{1-C_{0} / n}-1\right| \\
& =\frac{2^{2 n}}{\sqrt{\pi n}} \frac{3 C_{0} /(2 n)}{1-C_{0} / n} \\
& \leq \frac{3 C_{0}}{n} \frac{2^{2 n}}{\sqrt{\pi n}}
\end{align*}
$$

Thus (1) holds with $N=2 C_{0}$ and $C=3 C_{0}$.
3. Let $n$ be a positive integer. Prove that for every $\pi \in S_{n}$, there is a positive integer $t$ so that $\pi^{t}=e$, where $e$ is the identity permutation.
(Here $\pi$ is a permutation, not the real number 3.141...!)
Food for thought: If $n$ is fixed, what is the largest $t$ can be? Can you come up with an interesting bound on the size of $t$ ?

Solution. Let $\pi \in S_{n}$. Consider the list of $n!+1$ permutations $\pi, \pi^{2}, \pi^{3}, \ldots, \pi^{n!+1}$. We proved in class that $\left|S_{n}\right|=n$ !. Thus by the pigeonhole principle, two of the permutations from the above list must be the same, i.e. there exist integers $u$ and $v$, with $1 \leq u<v \leq n!+1$ with $\pi^{u}=\pi^{v}$. Thus $e=\pi^{u} \pi^{-u}=\pi^{v} \pi^{-u}=\pi^{v-u}$. Define $t=v-u . u<v, t \geq 1$.

## Vectors and the symmetric group

For the next set of questions, we will have the following setup.
Let $n$ be a positive integer and let $v_{1}, \ldots, v_{n}$ be vectors in $\mathbb{R}^{n}$. We'll use the notation

$$
\begin{aligned}
v_{1} & =\left(v_{1,1}, v_{1,2}, \ldots, v_{1, n}\right) \\
v_{2} & =\left(v_{2,1}, v_{2,2}, \ldots, v_{2, n}\right) \\
& \vdots \\
v_{n} & =\left(v_{n, 1}, v_{n, 2}, \ldots, v_{n, n}\right) .
\end{aligned}
$$

Consider the following function, whose input is $n$ vectors and whose output is a real number:

$$
\begin{equation*}
f\left(v_{1}, \ldots, v_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{j=1}^{n} v_{j \pi, j} \tag{4}
\end{equation*}
$$

(Recall our notation from class that if $\pi \in S_{n}$ and $j \in[n]$, then $j \pi$ is the integer obtained by applying the permutation $\pi$ to the integer $j$. We will define $\operatorname{sgn}(\pi)$ in class on Jan 30.)

For example, if $n=2$ then $S_{2}$ is the set containing the permutations $\pi_{1}=e$ and $\pi_{2}=(1,2)$. We have $\operatorname{sgn}\left(\pi_{1}\right)=1$ and $\operatorname{sgn}\left(\pi_{2}\right)=-1$. Thus, if $v_{1}=\left(v_{1,1}, v_{1,2}\right)$ and $v_{2}=\left(v_{2,1}, v_{2,2}\right)$, then

$$
\begin{equation*}
f\left(v_{1}, v_{2}\right)=v_{1,1} v_{2,2}-v_{2,1} v_{1,2} . \tag{5}
\end{equation*}
$$

4. Let $n=3$ and let $v_{1}=\left(v_{1,1}, v_{1,2}, v_{1,3}\right)$ and similarly for $v_{2}$ and $v_{3}$. Write down $f\left(v_{1}, v_{2}, v_{3}\right)$ explicitly as a sum of products of the numbers $v_{i, j}$, in the same style as Equation (5) above. Compare this with the formula for the determinant

$$
\left|\begin{array}{lll}
v_{1,1} & v_{1,2} & v_{1,3} \\
v_{2,1} & v_{2,2} & v_{2,3} \\
v_{3,1} & v_{3,2} & v_{3,3}
\end{array}\right|
$$

Are the two expressions the same?
Solution. $S_{3}$ contains 6 elements. The elements $e,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, and (1 3$)_{2}$ ) have sign +1 , while the elements (1 2), (13) and (2 3) have sign -1 . Thus

$$
f\left(v_{1}, v_{2}, v_{3}\right)=v_{1,1} v_{2,2} v_{3,3}+v_{2,1} v_{3,2} v_{1,3}+v_{3,1} v_{1,2} v_{2,3}-v_{2,1} v_{1,2} v_{3,3}-v_{3,1} v_{2,2} v_{1,3}-v_{1,1} v_{3,2} v_{2,3} .
$$

Using the co-factor expansion for the determinant, we have

$$
\begin{aligned}
\left|\begin{array}{lll}
v_{1,1} & v_{1,2} & v_{1,3} \\
v_{2,1} & v_{2,2} & v_{2,3} \\
v_{3,1} & v_{3,2} & v_{3,3}
\end{array}\right| & =v_{1,1}\left|\begin{array}{cc}
v_{2,2} & v_{2,3} \\
v_{3,2} & v_{3,3}
\end{array}\right|-v_{1,2}\left|\begin{array}{cc}
v_{2,1} & v_{2,3} \\
v_{3,1} & v_{3,3}
\end{array}\right|+v_{1,3}\left|\begin{array}{cc}
v_{2,1} & v_{2,2} \\
v_{3,1} & v_{3,2}
\end{array}\right| \\
& =v_{1,1}\left(v_{2,2} v_{3,3}-v_{2,3} v_{3,2}\right)-v_{1,2}\left(v_{2,1} v_{3,3}-v_{2,3} v_{3,1}\right)+v_{1,3}\left(v_{2,1} v_{3,2}-v_{2,2} v_{3,1}\right) \\
& =v_{1,1} v_{2,2} v_{3,3}-v_{1,1} v_{2,3} v_{3,2}-v_{1,2} v_{2,1} v_{3,3}+v_{1,2} v_{2,3} v_{3,1}+v_{1,3} v_{2,1} v_{3,2}-v_{1,3} v_{2,2} v_{3,1}
\end{aligned}
$$

These two expressions are the same.
5. Let $v_{1}=(1, \ldots, 0), v_{2}=(0,1,0, \ldots, 0), v_{3}=(0,0,1, \ldots, 0)$, and in general let $v_{j}$ be the vector that has a one in the $j$-th position and zeroes elsewhere. Prove that

$$
f\left(v_{1}, \ldots, v_{n}\right)=1
$$

Let $v_{1}, \ldots, v_{n}$ be as above. Observe that if $\pi=e$, then $\prod_{j=1}^{n} v_{j \pi, j}=1=\prod_{j=1}^{n} v_{j, j}=\prod_{j=1}^{n} 1=1$. If $\pi \neq e$, then there exists at least one index $k$ with $k \neq k \pi$, and thus $v_{k \pi, k}=0$, so $\prod_{j=1}^{n} v_{j \pi, j}=0$. This means that

$$
f\left(v_{1}, \ldots, v_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{j=1}^{n} v_{j \pi, j}=1+\sum_{\pi \neq e} \operatorname{sgn}(\pi) \prod_{j=1}^{n} v_{j \pi, j}=1+0=1
$$

6. Prove that if two of the vectors are interchanged, then the sign of $f$ flips. More formally, prove that if $v_{1}, \ldots, v_{n}$ are vectors in $\mathbb{R}^{n}$, then

$$
f\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right)=-f\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{n}\right)
$$

(in the above expression, each of the vectors $v_{1}, \ldots, v_{n}$ are in the same place, except the vectors $v_{i}$ and $v_{j}$ have switched places on the right hand side).

Hint: it might be helpful to recall the definition of $\operatorname{sgn}(\pi)$.
Let $\tilde{\pi} \in S_{n}$ be the transposition $\tilde{\pi}=(i j)$. Note that for each $\pi \in S_{n}, \operatorname{sgn}(\pi)=-\operatorname{sgn}(\tilde{\pi} \pi)$.
Next we will make a crucial observation: if $\pi_{1}, \pi_{2} \in S_{n}$, then $\pi_{1}=\pi_{2}$ if and only if $\tilde{\pi} \pi_{1}=\tilde{\pi} \pi_{2}$. This means that if we enumerate the elements of $S_{n}$ as $S_{n}=\left\{\pi_{1}, \ldots, \pi_{n!}\right\}$. Then we also have $S_{n}=\left\{\tilde{\pi} \pi_{1}, \ldots, \tilde{\pi} \pi_{n!}\right\}$. In particular, this means that

$$
\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{k=1}^{n} v_{k \pi, k}=\sum_{\pi \in S_{n}} \operatorname{sgn}(\tilde{\pi} \pi) \prod_{k=1}^{n} v_{k \tilde{\pi} \pi, k}
$$

But this is great! We have $\operatorname{sgn}(\tilde{\pi} \pi)=-\operatorname{sgn}(\pi)$, and we have $v_{k \tilde{\pi} \pi, k}=v_{k \pi, k}$, unless $k=i$ (in which case $k \tilde{\pi} \pi=j \pi$ ), or $k=j$ (in which case $k \tilde{\pi} \pi=i \pi$ ), i.e.

$$
\sum_{\pi \in S_{n}} \operatorname{sgn}(\tilde{\pi} \pi) \prod_{k=1}^{n} v_{k \tilde{\pi} \pi, k}=-\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{k=1}^{n} v_{k \tilde{\pi} \pi, k}=-f\left(v_{1}, \ldots, v_{j} \ldots, v_{i}, \ldots, v_{n}\right)
$$

i.e.

$$
f\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right)=-f\left(v_{1}, \ldots, v_{j} \ldots, v_{i}, \ldots, v_{n}\right)
$$

as desired.
7. Let $v_{1}, \ldots, v_{n}$ be vectors in $\mathbb{R}^{n}$. Suppose that two of the vectors are the same, i.e. $v_{i}=v_{j}$ for some $i \neq j$. Prove that

$$
f\left(v_{1}, \ldots, v_{n}\right)=0
$$

Solution. This follows quickly from problem 6: we have

$$
f\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right)=-f\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{n}\right)
$$

But since $v_{i}=v_{j}$, we also have

$$
f\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right)=f\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{n}\right)
$$

i.e.

$$
f\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right)=-f\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right)
$$

from which it follows that $f\left(v_{1}, \ldots, v_{n}\right)=0$.
8. Let $v_{1}, \ldots, v_{n}$ be vectors in $\mathbb{R}^{n}$, let $1 \leq j \leq n$ and let $v_{j}^{\prime}$ be a vector in $\mathbb{R}^{n}$. Prove that

$$
f\left(v_{1}, \ldots, v_{j}+v_{j}^{\prime}, \ldots, v_{n}\right)=f\left(v_{1}, \ldots, v_{j}, \ldots, v_{n}\right)+f\left(v_{1}, \ldots, v_{j}^{\prime}, \ldots, v_{n}\right)
$$

Solution. The main issue with this problem is that the notation is a bit tricky. In the formula (4), we need to figure out which terms of the form $v_{\pi i, i}$ are entries of $v_{j}$, i.e. for which value of $i$ is it the case that $i \pi=j$. But we can apply $\pi^{-1}$ to both sides to see that $i=j \pi^{-1}$, i.e. one of the terms in the product $v_{\pi 1,1} v_{\pi 2,2} \cdots v_{\pi n, n}$ will be of the form $v_{j, \pi^{-1} j}$, and this is the only term containing an entry from the vector $v_{j}$.

One other note on notation: We'll write the vector $v_{j}+v_{j}^{\prime}$ as $\left(v_{j, 1}+v_{j, 1}^{\prime}, v_{j, 2}+v_{j, 2}^{\prime}, \ldots, v_{j, n}+v_{j, n}^{\prime}\right)$. We're now ready to solve the problem. We have

$$
\begin{aligned}
& f\left(v_{1}, \ldots, v_{j}+v_{j}^{\prime}, \ldots, v_{n}\right) \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) v_{1 \pi, 1} v_{2 \pi, 2} \cdots\left(v_{j, \pi^{-1} j}+v_{j, \pi^{-1} j}^{\prime}\right) \cdots v_{n \pi, n} \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) v_{1 \pi, 1} v_{2 \pi, 2} \cdots v_{j, \pi^{-1} j} \cdots v_{n \pi, n}+\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) v_{1 \pi, 1} v_{2 \pi, 2} \cdots v_{j, \pi^{-1} j}^{\prime} \cdots v_{n \pi, n} \\
& =f\left(v_{1}, \ldots, v_{j}, \ldots, v_{n}\right)+f\left(v_{1}, \ldots, v_{j}^{\prime}, \ldots, v_{n}\right)
\end{aligned}
$$

