
Math 341 Homework 1 Solutions

All problems are worth 5 points, for a total of 45.

Sets

For these problems, we will need some notation not discussed in class. If S and T are sets, S ∪ T
is the set containing all elements that are in S or in T (or in both). This is called the union of S
and T . Similarly, S ∩ T is the set containing all elements that are in S and in T . This is called the
intersection of S and T .

We can extend this definition to take a union of multiple sets. For example, if S1, . . . Sk are sets,
we write S1∪S2∪. . .∪Sk, or

⋃k
i=1 Si to denote the union of S1, . . . , Sk; this is the set of elements that

are contained in at least one of the sets S1, . . . , Sk. Similarly, we write S1 ∩S2 ∩ . . .∩ Sk =
⋂k

i=1 Si
to denote the intersection of S1, . . . , Sk; this is the set of elements that are contained in all of the
sets S1, . . . , Sk.

1. Let S and T be sets of finite cardinality (i.e. both |S| and |T | are finite). Prove that

|S ∪ T | = |S|+ |T | − |S ∩ T |.

Solution First, it follows immediately from the definition of cardinality that if A and B are finite
sets with A ∩B = ∅, then |A ∪B| = |A|+ |B|. Similarly, if A,B,C are finite sets, no two of which
contain an element in common, then |A∪B ∪C| = |A|+ |B|+ |C|. In the other extreme, if A and
B are finite sets with A ⊂ B, then |B\A| = |B| − |A|; here B\A = {b ∈ B : b 6∈ A}. Observe as well
that A ∩B ⊂ A and A ∩B ⊂ B.

Observe that we can write T = (T\S) ∪ (T ∩ S). Since these two sets are disjoint, we have
|T | = |T\S|+ |S ∩ T |. Similarly, |S| = |S\T |+ |S ∩ T |.

Now, observe that the three we can write S ∪ T = (S\T ) ∪ (T\S) ∪ (S ∩ T ), and these three
sets are disjoint. Thus

|S ∪ T | = |S\T |+ |T\S|+ |S ∩ T | =
(
|S| − |S ∩ T |

)
+
(
|T | − |S ∩ T |

)
+ |S ∩ T | = |S|+ |T | − |S ∩ T |.

2. Let S be a nonempty set. Without using the binomial theorem, prove that S has the same
number of subsets of even and of odd cardinality. Hint: it might be useful to consider the cases
where |S| is even and where |S| is odd separately.

Solution. It is tempting to just use the bijection f : P(S) → P(S) given by f(A) = S\A. While
this works when |S| is odd, it does not work when |S| is even. Instead, we will need a slightly more
involved proof.

Let S be a set of sets. Define

O(S) = |{A ∈ S : A has odd cardinality},
E(S) = |{A ∈ S : A has even cardinality}.
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Our goal is to show that for every set S of cardinality at least one, O(P(S)) = E(P(S)). Let S be
a set of cardinality at least one. Select an element a ∈ S. Define

S1 = |{A ∈ P(S) : |A| is even, a ∈ A},
S2 = |{A ∈ P(S) : |A| is odd, a ∈ A},
S3 = |{A ∈ P(S) : |A| is even, a 6∈ A},
S4 = |{A ∈ P(S) : |A| is odd, a 6∈ A}.

We have that P(S) = A1 ∪A2 ∪A3 ∪A4, and these four sets are disjoint, i.e. Ai ∩Aj = ∅ if i 6= j.
Thus |O(P(S))| = |S2|+ |S4| and |E(P(S))| = |S1|+ |S3|.

Define S′ = S\{a}. Observe that there is a bijection between S1 and O(P(S′)), given by
A 7→ A\{a}. In words, if A ∈ S1, then a ∈ A and |A| is even; thus A\{a} ∈ P(A′) and |A\{a}| is
odd, and conversely. We conclude that

S1 = O(P(A′)),

and similarly,
S2 = E(P(A′)).

Next, observe that there is a bijection between S3 and E(P(A′)) given by A 7→ A. In words, if
A ∈ S3, then a 6∈ A and |A| is even; thus A ∈ P(A′), and conversely. We conclude that

S3 = E(P(A′)),

and similarly,

S4 = O(P(A′)).

Thus

|O(P(S))| = |E(P(A′))|+ |O(P(A′))|,
|E(P(S))| = |O(P(A′))|+ |E(P(A′))|,

which implies |O(P(S))| = |E(P(S))|.

3. Let k and n be positive integers. Let A1, . . . Ak be sets. Suppose that

∣∣∣ k⋃
i=1

Ai

∣∣∣ = n2,

that
|Ai| ≥ 2n for every 1 ≤ i ≤ k,

and that
|Ai ∩Aj | ≤ 1 for every 1 ≤ i < j ≤ k.

Prove that k ≤ n.

Solution. We will prove the result by contradiction. Suppose k > n. For each i = 1, . . . , n, define

A′i = Ai\
⋃

j=1,...,n
j 6=i

Aj = Ai\(A1 ∪A2 ∪ . . . ,∪Ai−1 ∪Ai+1 ∪ . . . ∪An).
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Since |Ai ∩ Aj | ≤ 1 for each index j 6= i, we have |A′i| ≥ |Ai| − (n− 1) > n. Furthermore, the sets
A′1, . . . A

′
n are disjoint. Thus

n2 =
∣∣∣ k⋃
i=1

Ai

∣∣∣ ≥ ∣∣∣ n⋃
i=1

Ai

∣∣∣ ≥ ∣∣∣ n⋃
i=1

A′i

∣∣∣ =
n∑

i=1

|A′i| >
n∑

i=1

n = n2,

which is a contradiction.

Binomial theorem

4. Let p be a prime number. Prove that there exists a polynomial Q(x) with positive integer
coefficients so that

(1 + x)p − (1 + xp) = pQ(x).

Solution. First, we will prove that if p is a prime and if 1 ≤ k < p is an integer, then p does not
divide k!. For each prime p, we will prove this by induction on k. If k = 1 then k! = 1 and p
clearly does not divide k (since p prime implies p ≥ 2). Next suppose that 1 ≤ k < p and that we
have already proved p does not divide (k − 1)!. If p divides k! then either p divides k or p divides
(k − 1)!. By the induction hypothesis, p does not divide (k − 1)!. But since k < p, p cannot divide
k. We conclude that p does not divide k!, which completes the induction step.

We are now ready to solve the problem. Using the binomial theorem, we have

(1 + x)p − (1 + xp) =

p−1∑
k=1

(
p

k

)
xk.

Recall that for 0 ≤ k ≤ p,
(
p
k

)
= p!

k!(p−k)! . Since k < p and p − k < p, we know from above that p

does not divide k!, nor does it divide (p−k)!. Thus it does not divide k!(p−k)!. On the other hand,
p! = p(p − 1)!, so p does divide p!. We conclude that p divides

(
p
k

)
, i.e. we can write

(
p
k

)
= pak,

where ak is a positive integer (specifically, ak = (p−1)!
k!(p−k)!).

We can now re-write the above equation as

(1 + x)p − (1 + xp) = p

p−1∑
k=1

akx
k = pQ(x),

where Q(x) =
∑p−1

k=1 akx
k.

5. Prove that for every positive integer n and every integer k, we have

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

Hint: there’s a reason this is is in the “Binomial Theorem” section.

Solution. Recall the binomial theorem

(1 + x)n =
n∑

k=0

(
n

k

)
xk.
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This is an identity about polynomials. Since polynomials are differentiable, we can differentiate
both sides of this equation to obtain

n(1 + x)n−1 =
n∑

k=1

(
n

k

)
kxk−1.

Next, apply the binomial theorem again to obtain

n(1 + x)n−1 = n
n−1∑
k=0

(
n− 1

k

)
xk =

n−1∑
k=0

n

(
n− 1

k

)
xk =

n∑
k=1

n

(
n− 1

k − 1

)
xk−1,

i.e.
n∑

k=1

k

(
n

k

)
xk−1 =

n∑
k=1

n

(
n− 1

k − 1

)
xk−1.

Since these two polynomials are equal, the coefficients of each term must be equal. In particular,
we must have k

(
n
k

)
= n

(
n−1
k−1
)
.

Alternately, the result could also be proved directly by doing some algebra.

The size of n!

6. Recall that a polynomial is a function of the form P (n) = aCn
C + aC−1n

C−1 + . . .+ a0, where
C ≥ 0 is an integer and a0, . . . , aC are real numbers.

Prove that for every polynomial P , there exists a number N so that n! > P (n) for all n ≥ N .

Solution. Recall what we prove in lecture: For every positive integer C, there is a number N so that
n! ≥ nC for all n ≥ N . This fact will be useful for us later on. Let P = aCn

C +aC−1n
C−1 + . . .+a0

be a polynomial. Define A = |aC |+ |aC−1|+ . . . |a0|. Note that if n ≥ A+ 1, then

nC+1 = nnC

> AnC

= (|aC |+ |aC−1|+ . . .+ |a0|)nC

= |aC |nC + |aC−1|nC + . . .+ |a0|nC

≥ |aC−1|nC−1 + |aC−2|nC−2 + . . .+ |a0|
≥ |aCnC + aC−1n

C−1 + . . .+ a0|
= |P (n)|
≥ P (n).

Apply the result mentioned above to C+ 1, and let N1 be the resulting number, i.e. for all n ≥ N1,
we have n! ≥ nC+1. Define N = max(A+ 1, N1). Then for all n ≥ N , we have

n! ≥ nC+1 > P (n),

as desired.
7. Prove that for every real number C > 1, there exists a number N so that n! > Cn for all n ≥ N .
Define N to be the smallest integer larger than 2C2. First we will suppose that n is even, so n/2
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is an integer. Observe that if n ≥ N , then for each j = 0, 1, . . . n/2, n − j ≥ n/2 ≥ C2. Thus for
each n ≥ N , we have

n! = n(n− 1)(n− 2) . . . 1

≥ n(n− 1) . . . (n/2)

≥ (C2)(C2) · · · (C2)

= (C2)n/2+1

= Cn+2

> Cn.

If n is odd, then a similar argument shows that

n! = n(n− 1)(n− 2) . . . 1

≥ n(n− 1) . . . ((n+ 1)/2)((n− 1)/2)

≥ (C2)(C2) · · · (C2)((n− 2)/2)

= (C2)n/2((n− 2)/2)

> Cn.

Statistical physics and entropy

8. In this problem we will investigate the entropy of two different gases in the same box using the
lattice model discussed in class.

Consider the system consisting of k1 oxygen molecules and k2 nitrogen molecules in a box. The
box contains n possible locations where a gas molecule can reside, and at most one molecule can
be located in each location. All oxygen molecules are indistinguishable, and all nitrogen molecules
are indistinguishable, but oxygen and nitrogen molecules can be distinguished from each other.

What is the entropy of this system? Prove that your answer is correct.

Solution. Using the entropy formula, the entropy of this system is kB logW , where W is the number
of microstates. Thus our task is to calculate W . If each oxygen molecule and each nitrogen molecule
had a label, then the number of microstates would be n(n−1) · · · (n−k1−k2+1) = n!/(n−k1−k2)!.
However, since oxygen molecules are indistinguishable from each other and nitrogen molecules are
indistinguishable from each other, the number of microstates is reduced by a multiplicative factor
of k1!k2!, i.e.

W =
n!

(n− k1 − k1)!k1!k2!
.

Students are also welcome to simplify this formula using Stirling’s approximation and the pa-
rameters θ1 and θ2, which measure the concentration of oxygen and nitrogen molecules.

9. Consider a system consisting of k oxygen molecules in a box. The box contains n possible
locations. Will adding an additional oxygen molecule to the box increase the entropy of the system?
Prove that your answer is correct. (Hint: the answer may depend on the value of k and n).

Solution. If k = n then it is not possible to add another molecule to the box. For 0 ≤ k < n,
let W1 be the number of microstates before the molecule is added, and let W2 be the number of
microstates after the molecule is added. We have

W1

W2
=

(
n

k+1

)(
n
k

) =
k!(n− k)!

(k + 1)!(n− k − 1)!
=
n− k
k + 1

.
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Observe that W1/W2 > 1 if n− k > k + 1 (i.e. k < (n− 1)/2 ), while W1/W2 < 1 if n− k < k + 1
(i.e. k > (n− 1)/2 ). If k = (n− 1)/2 then W1/W2 = 1.

We wish to determine whether adding another molecule increases or decreases entropy, i.e.
we need to determine whether kB log(W1) is larger or smaller than kB log(W2). But kB logW1 −
kB logW2 = kB log(W1/W2). Since kB is positive, we have that kB logW1 − kB logW2 if and only
if W1/W2 > 1, i.e. if and only if k < (n− 1)/2. Similarly, kB logW1 − kB logW2 < 0 if and only if
k > (n− 1)/2, and kB logW1 − kB logW2 = 0 if and only if k = (n− 1)/2.

We conclude: If 0 ≤ k < (n − 1)/2, then adding another molecule increases entropy. If If
(n− 1)/2 < k < n, then adding another molecule decreases entropy. If k = (n− 1)/2 then adding
another molecule leaves the entropy unchanged.
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