1. (10 points) Let
\[f(x) = x^2 + (1 - x) \sin \left(\frac{1}{1 - x} \right). \]

Using the \(\epsilon - \delta \) definition of a limit, prove that
\[\lim_{x \to 1} f(x) = 1. \]

Note: For this problem, you cannot use the sum rule, product rule, etc. for limits; I want you to prove things “by hand.”

Solution.
First, note that \(D(f) = \mathbb{R} \setminus \{1\} \), so the domain requirement is met. Next, let \(\epsilon > 0 \). Select \(\delta = \min(\epsilon/4, 1) \). Then if \(0 < |x - 1| < \delta \), we have

\[
|f(x) - 1| = |x^2 + (1 - x) \sin \left(\frac{1}{1 - x} \right) - 1| \\
\leq |x^2 - 1| + |(1 - x) \sin \left(\frac{1}{1 - x} \right)| \\
= |x - 1||x + 1| + |1 - x| |\sin \left(\frac{1}{1 - x} \right)| \\
< \delta |x + 1| + \delta |\sin \left(\frac{1}{1 - x} \right)| \\
\leq 3\delta + \delta \\
= 4\delta \\
= \epsilon.
\]

On the second line we used the triangle inequality. On the third line we used the fact that \(|ab| = |a| |b| \). On the fourth line we used the fact that \(|x - 1| < \delta \). On the fifth line we used the fact that \(|x + 1| \leq 3 \) (since \(|x - 1| < \delta \) and \(\delta \leq 1 \)) and \(|\sin \left(\frac{1}{1 - x} \right)| \leq 1. \)
2. (10 points) Let a, b, c, d be real numbers, with $a < b$ and $c < d$. Prove that if $[a, b] \cup [c, d]$ is a closed interval, then $[a, b] \cap [c, d]$ is not the empty set, i.e. $[a, b] \cap [c, d] \neq \emptyset$.

Solution.

First, let's suppose $a \leq c$. We will show that if $b < c$ then $[a, b] \cup [c, d]$ is not a closed interval. We will do a proof by contradiction. Recall that a closed interval is a set of the form $[e, f]$ with $e < f$; or a set of the form $(-\infty, f]$; or a set of the form $[e, \infty)$. Since $a - 1$ is not an element of $[a, b] \cup [c, d]$, $[a, b] \cup [c, d]$ certainly cannot be an interval of the form $(-\infty, f]$. Similarly, since $\max(b, d) + 1$ is not an element of $[a, b] \cup [c, d]$, $[a, b] \cup [c, d]$ certainly cannot be an interval of the form $[e, \infty)$. Thus if $[a, b] \cup [c, d]$ is a closed interval, it must be of the form $[e, f]$ for some $e < f$. Since $b \in [a, b] \cup [c, d]$, we must have $e \leq b$. Similarly, since $c \in [a, b] \cup [c, d]$, we must have $f \geq c$. But since $(b + c)/2$ is not in $[a, b] \cup [c, d]$, we must have that $(b + c)/2$ is not in $[e, f]$, and thus either $b < (b + c)/2 < e \leq b$ or $c > (b + c)/2 > f \geq c$; this is impossible. Thus if $b < c$ then $[a, b] \cup [c, d]$ is not a closed interval.

This implies that if $[a, b] \cup [c, d]$ is a closed interval, then $b \geq c$. If $b \leq d$ then $b \in [a, b]$ and $b \in [c, d]$, so $b \in [a, b] \cap [c, d]$ and thus $[a, b] \cap [c, d]$ is non-empty. On the other hand, if $b > d$ then $d \in [a, b]$ and $d \in [c, d]$, so $d \in [a, b] \cap [c, d]$ and thus $[a, b] \cap [c, d]$ is non-empty. In either case, $[a, b] \cap [c, d]$ is non-empty.

Finally, if $c < a$ then the above argument remains true if we interchange the roles of $[a, b]$ and $[c, d]$.

Remark. Students are also allowed to prove the result by drawing a picture (or series of pictures), but they must explain why their picture is correct.
3. (10 points) For this problem, you may use the fact that for every real number a, $\lim_{x \to a} \sin(x) = \sin(a)$ and $\lim_{x \to a} \cos(x) = \cos(a)$. Let

$$f(x) = \frac{2\sin(x) - x\cos(x) + 10x^3 + 2x + 1}{x^3 - 1}.$$

Compute

$$\lim_{x \to 2} f(x),$$

and prove that your answer is correct. For this problem, you are allowed (and encouraged) to use all of the limit rules discussed in class.

Solution.

Using the rule $\lim_{x \to 2} x = 2$ and the product rule (twice), we have $\lim_{x \to 2} x^3 = 8$. Using the limit rule $\lim_{x \to 2} 1 = 1$ and the difference rule, we have $\lim_{x \to 2} x^3 - 1 = 7$.

A similar application of the limit rule $\lim_{x \to 2} x = 2$ and the product rule gives $\lim_{x \to 2} 10x^3 = 80$ and $\lim_{x \to 2} 2x = 4$. Using the sum rule (twice), we conclude that $\lim_{x \to 2} 10x^3 + 2x + 1 = 85$.

Using the product rule and the fact that $\lim_{x \to 2} \sin(x) = \sin(2)$, we have $\lim_{x \to 2} 2\sin(x) = 2\sin(2)$.

Using the product rule, the limit rule $\lim_{x \to a} x = a$, and the fact that $\lim_{x \to 2} \cos(x) = \cos(2)$, we have $\lim_{x \to 2} x\cos(x) = 2\cos(2)$.

Thus by the sum rule, $\lim_{x \to 2} \left(2\sin(x) - x\cos(x) + 10x^3 + 2x + 1\right) = 2\sin(2) - 2\cos(2) + 85$, and by the quotient rule (which is applicable since $\lim_{x \to 2} (x^3 - 1) \neq 0$, we have $\lim_{x \to 2} f(x) = \frac{85 + 2\sin(2) - 2\cos(2)}{7}$.
4. (10 points) Determine which of the following statements are true and which are false. Write T or F beside each statement. You do not need to justify your answers.

a) \(\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \) such that \(y^2 < x \). F

b) \(\forall \epsilon \in \mathbb{R}, \ \epsilon > 0 \ \exists \delta \in \mathbb{R}, \ \delta > 0 \) such that \(\forall x \in \mathbb{R}, \) with \(0 < |x - 1| < \delta \), we have \(|x^2 - 1| < \epsilon \). T

c) \(\exists x \in \mathbb{R} \) such that \(\forall y \in [-1, 1], \) we have \(x > y \). T

d) \(\exists x \in \mathbb{R} \) such that \(\forall y \in \mathbb{Z}, \) we have \(x > y \). F

e) \(\exists x \in \mathbb{R} \) such that \(\forall y \in \mathbb{R}, \) we have \(xy > y^2 \). F