Midterm 2: Question 4

To solve this problem, we know that the derivative of a constant function is 0, but we haven't yet proved that if the derivative of a function is always 0, then it is constant. So we need to both prove that the derivative is zero, and that this implies it is constant.

Part I: Prove that $\forall y \in \mathbb{R}, f'(y) = 0$

- Statement: $\lim_{x \to y} \frac{f(x) f(y)}{x y} = 0$
- Proof: We will use an epsilon-delta proof for this problem.
 - Domain requirement is met as $D(f) = \mathbb{R}$
 - Let $\varepsilon > 0$, choose $\delta = \varepsilon$.
 - Let $x \in \mathbb{R}$ with $0 < |x y| < \delta$
 - * To prove that f'(x) = 0, we need $\left|\frac{f(x)-f(y)}{x-y} 0\right| < \varepsilon$
 - We know $|f(x) f(y)| \le |x y|^2$
 - As |x y| > 0, $\frac{|f(x) f(y)|}{|x y|} \le |x y|$
 - Then $\left|\frac{f(x)-f(y)}{x-y}\right| \le |x-y|$
 - $\operatorname{So} \left| \frac{f(x) f(y)}{x y} 0 \right| \le |x y| < \delta = \varepsilon$
 - Therefore, $\forall y \in \mathbb{R}$, the derivative f'(y) = 0

Part II: Prove that if f'(x) = 0, f(x) = C, with $C \in \mathbb{R}$

- Proof: We will use the Mean Value Theorem.
 - As $\forall y \in \mathbb{R}, f'(y) = 0, f$ is differentiable on \mathbb{R}
 - Then $\forall a, b, \in \mathbb{R}$, with a < b, $[a, b] \subset D(f)$, f is continuous on [a, b], and f is differentiable on (a, b)
 - Then by the Mean Value Theorem, $\exists c \in (a, b)$ s.t. $\frac{f(b)-f(a)}{b-a} = f'(c) = 0$
 - f(b) f(a) = 0(b a) = 0
 - $-f(b) = f(a) \ \forall \ a, b \in \mathbb{R}$, so f(x) is constant, so $f(x) = C, C \in \mathbb{R}$