Midterm 2: Question 4

To solve this problem, we know that the derivative of a constant function is 0 , but we haven't yet proved that if the derivative of a function is always 0 , then it is constant. So we need to both prove that the derivative is zero, and that this implies it is constant.

Part I: Prove that $\forall y \in \mathbb{R}, f^{\prime}(y)=0$

- Statement: $\lim _{x \rightarrow y} \frac{f(x)-f(y)}{x-y}=0$
- Proof: We will use an epsilon-delta proof for this problem.
- Domain requirement is met as $D(f)=\mathbb{R}$
- Let $\varepsilon>0$, choose $\delta=\varepsilon$.
- Let $x \in \mathbb{R}$ with $0<|x-y|<\delta$
* To prove that $f^{\prime}(x)=0$, we need $\left|\frac{f(x)-f(y)}{x-y}-0\right|<\varepsilon$
- We know $|f(x)-f(y)| \leq|x-y|^{2}$
- As $|x-y|>0, \frac{|f(x)-f(y)|}{|x-y|} \leq|x-y|$
- Then $\left|\frac{f(x)-f(y)}{x-y}\right| \leq|x-y|$
- So $\left|\frac{f(x)-f(y)}{x-y}-0\right| \leq|x-y|<\delta=\varepsilon$
- Therefore, $\forall y \in \mathbb{R}$, the derivative $f^{\prime}(y)=0$

Part II: Prove that if $f^{\prime}(x)=0, f(x)=C$, with $C \in \mathbb{R}$

- Proof: We will use the Mean Value Theorem.
- As $\forall y \in \mathbb{R}, f^{\prime}(y)=0, f$ is differentiable on \mathbb{R}
- Then $\forall a, b, \in \mathbb{R}$, with $a<b,[a, b] \subset D(f), f$ is continuous on $[a, b]$, and f is differentiable on (a, b)
- Then by the Mean Value Theorem, $\exists c \in(a, b)$ s.t. $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)=0$
$-f(b)-f(a)=0(b-a)=0$
- $f(b)=f(a) \forall a, b \in \mathbb{R}$, so $f(x)$ is constant, so $f(x)=C, C \in \mathbb{R}$

