Math 120 Midterm 1 Practice 2 Solutions

1. (10 points) Let

$$f(x) = x^{2} + (1 - x)\sin\left(\frac{1}{1 - x}\right).$$

Using the ϵ - δ definition of a limit, prove that

$$\lim_{x \to 1} f(x) = 1.$$

Note: For this problem, you cannot use the sum rule, product rule, etc. for limits; I want you to prove things "by hand."

Solution.

First, note that $D(f) = \mathbb{R} \setminus \{1\}$, so the domain requirement is met. Next, let $\epsilon > 0$. Select $\delta = \min(\epsilon/4, 1)$. Then if $0 < |x - 1| < \delta$, we have

$$\begin{aligned} |f(x) - 1| &= \left| x^2 + (1 - x) \sin(\frac{1}{1 - x}) - 1 \right| \\ &\leq |x^2 - 1| + \left| (1 - x) \sin(\frac{1}{1 - x}) \right| \\ &= |x - 1| |x + 1| + |1 - x| \left| \sin(\frac{1}{1 - x}) \right| \\ &< \delta |x + 1| + \delta \left| \sin(\frac{1}{1 - x}) \right| \\ &\leq 3\delta + \delta \\ &= 4\delta \\ &= \epsilon. \end{aligned}$$
(1)

On the second line we used the triangle inequality. On the third line we used the fact that |ab| = |a| |b|. On the fourth line we used the fact that $|x - 1| < \delta$. On the fifth line we used the fact that $|x + 1| \le 3$ (since $|x - 1| < \delta$ and $\delta \le 1$) and $|\sin(\frac{1}{1-x})| \le 1$.

Name: Student #:

2. (10 points) Let a, b, c, d be real numbers, with a < b and c < d. Prove that if $[a, b] \cup [c, d]$ is a closed interval, then $[a, b] \cap [c, d]$ is not the empty set, i.e. $[a, b] \cap [c, d] \neq \emptyset$.

Solution.

First, lets suppose $a \leq c$.

We will show that if b < c then $[a, b] \cup [c, d]$ is not a closed interval. We will do a proof by contradiction. Recall that a closed interval is a set of the form [e, f] with e < f; a set of the form $(-\infty, f]$; or a set of the form $[e, \infty)$. Since a - 1 is not an element of $[a, b] \cup [c, d]$, $[a, b] \cup [c, d]$ certainly cannot be an interval of the form $(-\infty, f]$. Similarly, since $\max(b, d) + 1$ is not an element of $[a, b] \cup [c, d]$, $[a, b] \cup [c, d]$ certainly cannot be an interval of the form $[e, \infty)$. Thus if $[a, b] \cup [c, d]$ is a closed interval, it must be of the form [e, f] for some e < f. Since $b \in [a, b] \cup [c, d]$, we must have $e \le b$. Similarly, since $c \in [a, b] \cup [c, d]$, we must have $f \ge c$. But since (b + c)/2 is not in $[a, b] \cup [c, d]$, we must have that (b + c)/2 is not in [e, f], and thus either $b < (b + c)/2 < e \le b$ or $c > (b + c)/2 > f \ge c$; this is impossible. Thus if b < c then $[a, b] \cup [c, d]$ is not a closed interval.

This implies that if $[a, b] \cup [c, d]$ is a closed interval, then $b \ge c$. If $b \le d$ then $b \in [a, b]$ and $b \in [c, d]$, so $b \in [a, b] \cap [c, d]$ and thus $[a, b] \cap [c, d]$ is non-empty. On the other hand, if b > d then $d \in [a, b]$ and $d \in [c, d]$, so $d \in [a, b] \cap [c, d]$ and thus $[a, b] \cap [c, d]$ is non-empty. In either case, $[a, b] \cap [c, d]$ is non-empty.

Finally, if c < a then the above argument remains true if we interchange the roles of [a, b] and [c, d].

Remark. students are also allowed to prove the result by drawing a picture (or series of pictures), but they must explain why their picture is correct.

Name: Student #:

3. (10 points) For this problem, you may use the fact that for every real number a, $\lim_{x\to a} \sin(x) = \sin(a)$ and $\lim_{x\to a} \cos(x) = \cos(a)$. Let

$$f(x) = \frac{2\sin(x) - x\cos(x) + 10x^3 + 2x + 1}{x^3 - 1}.$$

Compute

 $\lim_{x \to 2} f(x),$

and prove that your answer is correct. For this problem, you are allowed (and encouraged) to use all of the limit rules discussed in class.

Solution.

Using the rule $\lim_{x\to 2} x = 2$ and the product rule (twice), we have $\lim_{x\to 2} x^3 = 8$. Using the limit rule $\lim_{x\to 2} 1 = 1$ and the difference rule, we have $\lim_{x\to 2} x^3 - 1 = 7$.

A similar application of the limit rule $\lim_{x\to 2} x = 2$ and the product rule gives $\lim_{x\to 2} 10x^3 = 80$ and $\lim_{x\to 2} 2x = 4$. Using the sum rule (twice), we conclude that $\lim_{x\to 2} 10x^3 + 2x + 1 = 85$.

Using the product rule and the fact that $\lim_{x\to 2} \sin(x) = \sin(2)$, we have $\lim_{x\to 2} 2\sin(x) = 2\sin(2)$.

Using the product rule, the limit rule $\lim_{x\to a} x = a$, and the fact that $\lim_{x\to 2} \cos(x) = \cos(2)$, we have $\lim_{x\to 2} x \cos(x) = 2\cos(2)$.

Thus by the sum rule, $\lim_{x\to 2} \left(2\sin(x) - x\cos(x) + 10x^3 + 2x + 1\right) = 2\sin(2) - 2\cos(2) + 85$, and by the quotient rule (which is applicable since $\lim_{x\to 2} (x^3 - 1) \neq 0$, we have $\lim_{x\to 2} f(x) = \frac{85 + 2\sin(2) - 2\cos(2)}{7}$.

Name: Student #:

4. (10 points) Determine which of the following statements are true and which are false. Write T or F beside each statement. You do not need to justify your answers.

- a) $\forall \; x \in \mathbb{R} \; \exists \; y \in \mathbb{R} \text{ such that } y^2 < x.$ F
- b) $\forall \epsilon \in \mathbb{R}, \ \epsilon > 0 \ \exists \ \delta \in \mathbb{R}, \ \delta > 0$ such that $\forall \ x \in \mathbb{R}, \ \text{with} \ 0 < |x 1| < \delta, \ \text{we have} \ |x^2 1| < \epsilon. \ T$
- c) $\exists x \in \mathbb{R}$ such that $\forall y \in [-1, 1]$, we have x > y. T
- d) $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{Z}$, we have x > y. F
- e) $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}$, we have $xy > y^2$. F