
Math 120 Midterm 1 Practice 2 Solutions

1. (10 points) Let

f(x) = x2 + (1− x) sin
( 1

1− x
)
.

Using the ε-δ definition of a limit, prove that

lim
x→1

f(x) = 1.

Note: For this problem, you cannot use the sum rule, product rule, etc. for limits; I want you to
prove things “by hand.”

Solution.
First, note that D(f) = R\{1}, so the domain requirement is met. Next, let ε > 0. Select
δ = min(ε/4, 1). Then if 0 < |x− 1| < δ, we have

|f(x)− 1| =
∣∣x2 + (1− x) sin(

1

1− x
)− 1

∣∣
≤ |x2 − 1|+

∣∣(1− x) sin(
1

1− x
)
∣∣

= |x− 1| |x+ 1|+ |1− x|
∣∣ sin(

1

1− x
)
∣∣

< δ|x+ 1|+ δ
∣∣ sin(

1

1− x
)
∣∣

≤ 3δ + δ

= 4δ

= ε.

(1)

On the second line we used the triangle inequality. On the third line we used the fact that
|ab| = |a| |b|. On the fourth line we used the fact that |x − 1| < δ. On the fifth line we used the
fact that |x+ 1| ≤ 3 (since |x− 1| < δ and δ ≤ 1) and

∣∣ sin( 1
1−x)

∣∣ ≤ 1.
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2. (10 points) Let a, b, c, d be real numbers, with a < b and c < d. Prove that if [a, b] ∪ [c, d] is a
closed interval, then [a, b] ∩ [c, d] is not the empty set, i.e. [a, b] ∩ [c, d] 6= ∅.

Solution.
First, lets suppose a ≤ c.

We will show that if b < c then [a, b] ∪ [c, d] is not a closed interval. We will do a proof by
contradiction. Recall that a closed interval is a set of the form [e, f ] with e < f ; a set of the form
(−∞, f ]; or a set of the form [e,∞). Since a − 1 is not an element of [a, b] ∪ [c, d], [a, b] ∪ [c, d]
certainly cannot be an interval of the form (−∞, f ]. Similarly, since max(b, d)+1 is not an element
of [a, b] ∪ [c, d], [a, b] ∪ [c, d] certainly cannot be an interval of the form [e,∞). Thus if [a, b] ∪ [c, d]
is a closed interval, it must be of the form [e, f ] for some e < f . Since b ∈ [a, b] ∪ [c, d], we must
have e ≤ b. Similarly, since c ∈ [a, b] ∪ [c, d], we must have f ≥ c. But since (b + c)/2 is not in
[a, b] ∪ [c, d], we must have that (b + c)/2 is not in [e, f ], and thus either b < (b + c)/2 < e ≤ b or
c > (b+ c)/2 > f ≥ c; this is impossible. Thus if b < c then [a, b] ∪ [c, d] is not a closed interval.

This implies that if [a, b] ∪ [c, d] is a closed interval, then b ≥ c. If b ≤ d then b ∈ [a, b] and
b ∈ [c, d], so b ∈ [a, b] ∩ [c, d] and thus [a, b] ∩ [c, d] is non-empty. On the other hand, if b > d then
d ∈ [a, b] and d ∈ [c, d], so d ∈ [a, b] ∩ [c, d] and thus [a, b] ∩ [c, d] is non-empty. In either case,
[a, b] ∩ [c, d] is non-empty.

Finally, if c < a then the above argument remains true if we interchange the roles of [a, b] and
[c, d].

Remark. students are also allowed to prove the result by drawing a picture (or series of pictures),
but they must explain why their picture is correct.
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3. (10 points) For this problem, you may use the fact that for every real number a, limx→a sin(x) =
sin(a) and limx→a cos(x) = cos(a). Let

f(x) =
2 sin(x)− x cos(x) + 10x3 + 2x+ 1

x3 − 1
.

Compute
lim
x→2

f(x),

and prove that your answer is correct. For this problem, you are allowed (and encouraged) to use
all of the limit rules discussed in class.

Solution.

Using the rule limx→2 x = 2 and the product rule (twice), we have limx→2 x
3 = 8. Using the

limit rule limx→2 1 = 1 and the difference rule, we have limx→2 x
3 − 1 = 7.

A similar application of the limit rule limx→2 x = 2 and the product rule gives limx→2 10x3 = 80
and limx→2 2x = 4. Using the sum rule (twice), we conclude that limx→2 10x3 + 2x+ 1 = 85.

Using the product rule and the fact that limx→2 sin(x) = sin(2), we have limx→2 2 sin(x) =
2 sin(2).

Using the product rule, the limit rule limx→a x = a, and the fact that limx→2 cos(x) = cos(2),
we have limx→2 x cos(x) = 2 cos(2).

Thus by the sum rule, limx→2

(
2 sin(x)− x cos(x) + 10x3 + 2x + 1

)
= 2 sin(2)− 2 cos(2) + 85,

and by the quotient rule (which is applicable since limx→2(x
3 − 1) 6= 0, we have limx→2 f(x) =

85+2 sin(2)−2 cos(2)
7 .
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4. (10 points) Determine which of the following statements are true and which are false. Write T
or F beside each statement. You do not need to justify your answers.

a) ∀ x ∈ R ∃ y ∈ R such that y2 < x. F

b) ∀ε ∈ R, ε > 0 ∃ δ ∈ R, δ > 0 such that ∀ x ∈ R, with 0 < |x− 1| < δ, we have |x2 − 1| < ε. T

c) ∃ x ∈ R such that ∀ y ∈ [−1, 1], we have x > y. T

d) ∃ x ∈ R such that ∀ y ∈ Z, we have x > y. F

e) ∃ x ∈ R such that ∀ y ∈ R, we have xy > y2. F
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