Math 120 Midterm 1 Practice 2 Solutions

1. (10 points) Let

$$
f(x)=x^{2}+(1-x) \sin \left(\frac{1}{1-x}\right) .
$$

Using the $\epsilon-\delta$ definition of a limit, prove that

$$
\lim _{x \rightarrow 1} f(x)=1
$$

Note: For this problem, you cannot use the sum rule, product rule, etc. for limits; I want you to prove things "by hand."

Solution.

First, note that $D(f)=\mathbb{R} \backslash\{1\}$, so the domain requirement is met. Next, let $\epsilon>0$. Select $\delta=\min (\epsilon / 4,1)$. Then if $0<|x-1|<\delta$, we have

$$
\begin{align*}
|f(x)-1| & =\left|x^{2}+(1-x) \sin \left(\frac{1}{1-x}\right)-1\right| \\
& \leq\left|x^{2}-1\right|+\left|(1-x) \sin \left(\frac{1}{1-x}\right)\right| \\
& =|x-1||x+1|+|1-x|\left|\sin \left(\frac{1}{1-x}\right)\right| \\
& <\delta|x+1|+\delta\left|\sin \left(\frac{1}{1-x}\right)\right| \tag{1}\\
& \leq 3 \delta+\delta \\
& =4 \delta \\
& =\epsilon .
\end{align*}
$$

On the second line we used the triangle inequality. On the third line we used the fact that $|a b|=|a||b|$. On the fourth line we used the fact that $|x-1|<\delta$. On the fifth line we used the fact that $|x+1| \leq 3$ (since $|x-1|<\delta$ and $\delta \leq 1)$ and $\left|\sin \left(\frac{1}{1-x}\right)\right| \leq 1$.
2. (10 points) Let a, b, c, d be real numbers, with $a<b$ and $c<d$. Prove that if $[a, b] \cup[c, d]$ is a closed interval, then $[a, b] \cap[c, d]$ is not the empty set, i.e. $[a, b] \cap[c, d] \neq \emptyset$.

Solution.

First, lets suppose $a \leq c$.
We will show that if $b<c$ then $[a, b] \cup[c, d]$ is not a closed interval. We will do a proof by contradiction. Recall that a closed interval is a set of the form $[e, f]$ with $e<f$; a set of the form $(-\infty, f]$; or a set of the form $[e, \infty)$. Since $a-1$ is not an element of $[a, b] \cup[c, d],[a, b] \cup[c, d]$ certainly cannot be an interval of the form $(-\infty, f]$. Similarly, since $\max (b, d)+1$ is not an element of $[a, b] \cup[c, d],[a, b] \cup[c, d]$ certainly cannot be an interval of the form $[e, \infty)$. Thus if $[a, b] \cup[c, d]$ is a closed interval, it must be of the form $[e, f]$ for some $e<f$. Since $b \in[a, b] \cup[c, d]$, we must have $e \leq b$. Similarly, since $c \in[a, b] \cup[c, d]$, we must have $f \geq c$. But since $(b+c) / 2$ is not in $[a, b] \cup[c, d]$, we must have that $(b+c) / 2$ is not in $[e, f]$, and thus either $b<(b+c) / 2<e \leq b$ or $c>(b+c) / 2>f \geq c$; this is impossible. Thus if $b<c$ then $[a, b] \cup[c, d]$ is not a closed interval.

This implies that if $[a, b] \cup[c, d]$ is a closed interval, then $b \geq c$. If $b \leq d$ then $b \in[a, b]$ and $b \in[c, d]$, so $b \in[a, b] \cap[c, d]$ and thus $[a, b] \cap[c, d]$ is non-empty. On the other hand, if $b>d$ then $d \in[a, b]$ and $d \in[c, d]$, so $d \in[a, b] \cap[c, d]$ and thus $[a, b] \cap[c, d]$ is non-empty. In either case, $[a, b] \cap[c, d]$ is non-empty.

Finally, if $c<a$ then the above argument remains true if we interchange the roles of $[a, b]$ and $[c, d]$.

Remark. students are also allowed to prove the result by drawing a picture (or series of pictures), but they must explain why their picture is correct.

Name:
Student \#:
3. (10 points) For this problem, you may use the fact that for every real number $a, \lim _{x \rightarrow a} \sin (x)=$ $\sin (a)$ and $\lim _{x \rightarrow a} \cos (x)=\cos (a)$. Let

$$
f(x)=\frac{2 \sin (x)-x \cos (x)+10 x^{3}+2 x+1}{x^{3}-1} .
$$

Compute

$$
\lim _{x \rightarrow 2} f(x),
$$

and prove that your answer is correct. For this problem, you are allowed (and encouraged) to use all of the limit rules discussed in class.

Solution.

Using the rule $\lim _{x \rightarrow 2} x=2$ and the product rule (twice), we have $\lim _{x \rightarrow 2} x^{3}=8$. Using the limit rule $\lim _{x \rightarrow 2} 1=1$ and the difference rule, we have $\lim _{x \rightarrow 2} x^{3}-1=7$.

A similar application of the limit rule $\lim _{x \rightarrow 2} x=2$ and the product rule gives $\lim _{x \rightarrow 2} 10 x^{3}=80$ and $\lim _{x \rightarrow 2} 2 x=4$. Using the sum rule (twice), we conclude that $\lim _{x \rightarrow 2} 10 x^{3}+2 x+1=85$.

Using the product rule and the fact that $\lim _{x \rightarrow 2} \sin (x)=\sin (2)$, we have $\lim _{x \rightarrow 2} 2 \sin (x)=$ $2 \sin (2)$.

Using the product rule, the limit rule $\lim _{x \rightarrow a} x=a$, and the fact that $\lim _{x \rightarrow 2} \cos (x)=\cos (2)$, we have $\lim _{x \rightarrow 2} x \cos (x)=2 \cos (2)$.

Thus by the sum rule, $\lim _{x \rightarrow 2}\left(2 \sin (x)-x \cos (x)+10 x^{3}+2 x+1\right)=2 \sin (2)-2 \cos (2)+85$, and by the quotient rule (which is applicable since $\lim _{x \rightarrow 2}\left(x^{3}-1\right) \neq 0$, we have $\lim _{x \rightarrow 2} f(x)=$ $\frac{85+2 \sin (2)-2 \cos (2)}{7}$.

Name:
Student \#:
4. (10 points) Determine which of the following statements are true and which are false. Write T or F beside each statement. You do not need to justify your answers.
a) $\forall x \in \mathbb{R} \exists y \in \mathbb{R}$ such that $y^{2}<x$. F
b) $\forall \epsilon \in \mathbb{R}, \epsilon>0 \exists \delta \in \mathbb{R}, \delta>0$ such that $\forall x \in \mathbb{R}$, with $0<|x-1|<\delta$, we have $\left|x^{2}-1\right|<\epsilon$. T
c) $\exists x \in \mathbb{R}$ such that $\forall y \in[-1,1]$, we have $x>y$. T
d) $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{Z}$, we have $x>y$. F
e) $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}$, we have $x y>y^{2}$. F

