Math 120 Midterm 1 Practice 1 Solutions

1. (10 points) Let f be a function whose domain is \mathbb{R}. Suppose that for all $x \in(-1,1)$,

$$
x^{2} \leq f(x) \leq|x| .
$$

Prove that $\lim _{x \rightarrow 0} f(x)=0$.
Solution. By the limit rule " $\lim _{x \rightarrow a} x=a$ ", we have $\lim _{x \rightarrow 0} x=0$. By the product rule, we have $\lim _{x \rightarrow 0} x^{2}=\left(\lim _{x \rightarrow 0} x\right)^{2}=0$. Thus $\lim _{x \rightarrow 0} x=\lim _{x \rightarrow 0} x^{2}=0$. Thus by the squeeze theorem applied to the functions x, f, and x^{2} on the domain $(-1,1)$, we have that $\lim _{x \rightarrow 0} f(x)=0$.

Name:
Student \#:
2. (10 points) Let $S \subset \mathbb{R}$ be a set. Using the quantifiers \exists and \forall, write the sentences a) " S has an upper bound," b) " S has a least upper bound," and c) " S does not have a least upper bound."

Solution.
a) $\exists y \in \mathbb{R}$ s.t. $\forall x \in \S, x \leq y$
b) $\exists y \in \mathbb{R}$ s.t. $\forall x \in \S, x \leq y$, and $\forall t>0, \exists z \in S$ s.t. $z>y-t$.
c) $\forall y \in \mathbb{R},(\exists x \in S$ s.t. $x>y$ or $\exists t>0$ s.t. $\forall x \in S, x \leq y-t)$

Name:
Student \#:
3. (10 points) Let $f(x)=x^{2}+x+1$. Using the definition of a limit, prove that

$$
\lim _{x \rightarrow 4} f(x)=21
$$

Remember that there are two conditions you must establish in order to prove that a limit exists.
Solution. First, note that $D(f)=\mathbb{R}$. Thus there certainly exists a number $t>0$ so that $\{x \in$ $\mathbb{R}: 0<|x-4|<t\} \subset D(f)$. In fact, any number $t>0$ will suffice.

Now, let $\epsilon>0$. Select $\delta=\min (\epsilon / 10,1)$. Then if $0<|x-4|<\delta$, then since $\delta \leq 1$, we have $3 \leq 4-\delta<x<4+\delta \leq 5$, so $|x| \leq 5$. Thus by repeated use of the triangle inequality,

$$
\begin{aligned}
|f(x)-21| & =\left|x^{2}+x+1-21\right| \\
& \leq\left|x^{2}-16\right|+|x-4|+|1-1| \\
& \leq|(x-4)(x+4)|+|x-4| \\
& \leq|x-4||x+4|+|x-4| \\
& \leq|x-4|(|x|+4)+|x-4| \\
& <\delta(5+4)+\delta \\
& =10 \delta \\
& \leq \epsilon .
\end{aligned}
$$

Name:
Student \#:
4. (10 points) $f(x)=\cos (x)+0.1 \sin (x)+x$. (Remember that in this class, angles are measured in radians). Prove that the statement

$$
\lim _{x \rightarrow 1} f(x)=100
$$

is false.
Solution. First, note that $D(f)=\mathbb{R}$, so the domain requirement is met. Next, observe that for every $x \in \mathbb{R},|\cos (x)| \leq 1$ and $|\sin (x)| \leq 1$, and thus $|0.1 \sin (x)| \leq 0.1$.

Select $\epsilon=1$, and let $\delta>0$. If $\delta>1$, select $x=2$. Otherwise, select $x=1+\delta / 2$. In either case, we have $0<|x-1|<\delta$, and $1<x \leq 2$. Then

$$
\begin{aligned}
|f(x)-100| & =|100-f(x)| \\
& \geq 100-|f(x)| \\
& =100-|\cos (x)+0.1 \sin (x)+x| \\
& \geq 100-|\cos (x)|-0.1|\sin (x)|-|x| \\
& \geq 100-1-0.1-2 \\
& >96 \\
& >\epsilon .
\end{aligned}
$$

We conclude that the statement $\lim _{x \rightarrow 1} f(x)=100$ is false.

