Math 120 Homework 9 Solutions

L’Hopital’s rule

1. In this problem we will use Taylor’s theorem to understand the indeterminate form 0/0. Let \(f \) and \(g \) be functions that are twice differentiable on the interval \([-1, 1]\), and suppose that \(f'' \) and \(g'' \) are continuous on \([-1, 1]\). Suppose that \(f(0) = 0 \), \(g(0) = 0 \), and \(g'(0) \neq 0 \).

(a) Prove that for each \(x \in (0, 1) \) for which \(g(x) \neq 0 \), there exist numbers \(x_1, x_2 \in (0, x) \) so that

\[
\frac{f(x)}{g(x)} = \frac{f'(0)x + \frac{f''(x_1)}{2}x^2}{g'(0)x + \frac{g''(x_2)}{2}x^2}.
\]

(b) Prove that

\[
\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \frac{f'(0)}{g'(0)}.
\]

Solution

a. Apply Taylor’s theorem with \(n = 2 \) to \(f \) and \(g \), with \(c = 0 \). We conclude that there are points \(0 \leq x_1, x_2 \leq x \) so that

\[
f(x) = f(0) + f'(0)x + \frac{f''(x_1)}{2}x^2 = f'(0)x + \frac{f''(x_1)}{2}x^2,
\]

and \(g(x) = g'(0)x + \frac{g''(x_2)}{2}x^2 \).

Since \(g(x) \neq 0 \), we have

\[
\frac{f(x)}{g(x)} = \frac{f'(0)x + \frac{f''(x_1)}{2}x^2}{g'(0)x + \frac{g''(x_2)}{2}x^2}.
\]

b. Since \(f''(x) \) is continuous on \([-1, 1]\), by the extreme value theorem there exists \(M \) so that \(|f''(x)| \leq M \) for all \(x \in [-1, 1] \). Similarly there exists \(N \) so that \(|f''(x)| \leq N \) for all \(x \in [-1, 1] \).

Since \(g'(0) \neq 0 \) and \(g' \) is continuous, there exists \(t > 0 \) so that \(|g'(x)| > 0 \) for all \(x \in (-t, t) \) (this follows from the \(\epsilon - \delta \) definition of continuity at 0: let \(\epsilon = |g'(0)| \) and let \(t = \delta \)). Thus for each \(x \in (0, t) \), we have

\[
\left| \frac{f(x)}{g(x)} - \frac{f'(0)}{g'(0)} \right| = \left| \frac{f''(0)\frac{x^2}{2} + f''(x_1)\frac{x^2}{2} - f''(x_2)\frac{x^2}{2}}{g'(0)(g'(0)x + \frac{g''(x_2)}{2}x^2)} \right|
\]

\[
= \frac{x^2}{2} \left| \frac{f''(x_1)g'(0) - f''(x_2)g'(0)}{g'(0)(g'(0)x + \frac{g''(x_2)}{2}x^2)} \right|
\]

\[
= \frac{Mg'(0) + Nf'(0)}{g'(0)(2g'(0) + \frac{g''(x_2)}{2}x)} \quad x
\]

\[
\leq \left| \frac{Mg'(0) + Nf'(0)}{g'(0)^2} \right| x.
\]

Let \(t_1 = \min(t, g'(0)/N) \). Then if \(x \in (0, t_1) \), we have

\[
\left| \frac{f(x)}{g(x)} - \frac{f'(0)}{g'(0)} \right| \leq \left| \frac{Mg'(0) + Nf'(0)}{(g'(0))^2} \right| x.
\]
Now, let $\varepsilon > 0$. Select
\[
\delta = \min \left(t_1, \varepsilon \frac{(g'(0))^2}{M g'(0) + N f'(0)} \right).
\]
Then for all $x \in \mathbb{R}$ with $0 < x < \delta$, we have
\[
\left| \frac{f(x)}{g(x)} - \frac{f'(0)}{g'(0)} \right| < \varepsilon.
\]
This proves that $\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \frac{f'(0)}{g'(0)}$, as desired.

2. Use L'Hopital’s rule to prove the following

(a) Prove that if f and g are polynomials with $f(x) = a_n x^n + \ldots + a_0$ and $g(x) = b_n x^n + \ldots + b_0$, with $a_n \neq 0$, $b_n \neq 0$, then
\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{a_n}{b_n}.
\]

(b) Prove that if f and g are polynomials with $\deg(g) > \deg(f)$, then
\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.
\]

Solution

a. We will prove the result by induction on n. The base case $n = 0$ is trivial: we have $f(x) = a_0$ and $g(x) = a_0$, so
\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{a_0}{b_0} = a_0/b_0.
\]
Next, suppose the result has been proved for all pairs of polynomials of degree at most n, and let f and g be polynomials of degree $n + 1$. Since $\deg f \geq 1$, the limit rule for quotients of polynomials (proved in lecture) says that $\lim_{x \to \infty} f(x) = \infty$ or $-\infty$. Similarly, $\lim_{x \to \infty} g(x) = \infty$ or $-\infty$. We proved in lecture that for any polynomial g, there exists a number $R > 0$ so that if $x > R$ then $g(x) \neq 0$. Thus $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ is of the indeterminate form $\frac{\infty}{\infty}$, and L’Hopital’s rule can be applied. If $f(x) = a_{n+1} x^{n+1} + a_n x^n + \ldots + a_0$, then $f'(x) = (n+1) a_{n+1} x^n + n a_n x^{n-1} + \ldots + a_1$, and similarly if $g(x) = b_{n+1} x^{n+1} + b_n x^n + \ldots + b_0$, then $g'(x) = (n+1) b_{n+1} x^n + n b_n x^{n-1} + \ldots + b_1$. These are polynomials of degree n, so by the induction assumption,
\[
\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \frac{(n+1) a_{n+1}}{(n+1) b_{n+1}} = \frac{a_{n+1}}{b_{n+1}}.
\]
Thus by L’Hopital’s rule,
\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \frac{a_{n+1}}{b_{n+1}},
\]
which completes the induction step and finishes the proof.

b. We will again prove the result by induction on the degree of f. If $f(x) = a_0$ has degree 0, then since g has degree > 0, we have $\lim_{x \to \infty} g(x) = \infty$, so $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{a_0}{g(x)} = 0$.

Now suppose the result has been proved for all pairs of polynomials where the numerator has degree
\[\leq n, \text{ and let } f, g \text{ be polynomials where } \deg f = n + 1 \text{ and } \deg g > \deg(f). \text{ The same argument from part a shows that we may apply L’hopital’s rule to conclude that} \]

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = 0,
\]

where for the second equality we used the induction assumption, since \(\deg f' = n \) and \(\deg g' > \deg f' \). This completes the induction step and concludes the proof.

5+5 = 10 points.

3. (this problem requires material covered in Monday Nov 20) Consider \(\lim_{x \to \infty} \frac{\cosh x}{\sinh x} \). Prove that this is of the indeterminate form \(\infty/\infty \). Prove that if we repeatedly apply L’Hopital’s rule (without simplifying the expression), we will always have a limit of the indeterminate form \(\infty/\infty \).

Hint: induction might be a useful tool to prove this.

Solution. First, note that the domain of \(\sinh(x) \) and \(\cosh(x) \) is \(\mathbb{R} \). Recall \(\sinh(x) = \frac{1}{2} (e^x - e^{-x}) \).

Since \(e^x > 1 + x \) and \(e^{-x} \leq e^0 = 1 \) for all \(x \geq 0 \), we have \(\sinh(x) \geq \frac{x}{2} \) for all \(x \geq 0 \). Thus for all \(M \geq 0 \), if we select \(R = 2M \) then for all \(x > R \) we have \(\sinh(x) > M \). In particular, this implies \(\lim_{x \to \infty} \sinh(x) = \infty \). An analogous argument (using the fact that \(\cosh(x) \geq \frac{x}{2} \) for all \(x > 0 \)) proves that \(\lim_{x \to \infty} \cosh(x) = \infty \). Thus \(\lim_{x \to \infty} \frac{\cosh(x)}{\sinh(x)} \) is of the indeterminate form \(\infty/\infty \).

We will now prove that for all \(n \geq 0 \), \(\lim_{x \to \infty} \frac{\cosh(n x)}{\sinh(n x)} \) of the indeterminate form \(\infty/\infty \). Note that

\[
\sinh^{(n)}(x) = \begin{cases}
\sinh(x), & n \text{ is even}, \\
\cosh(x), & n \text{ is odd}.
\end{cases}
\]

Similarly,

\[
\cosh^{(n)}(x) = \begin{cases}
\cosh(x), & n \text{ is even}, \\
\sinh(x), & n \text{ is odd}.
\end{cases}
\]

Thus

\[
\lim_{x \to \infty} \frac{\cosh^{(n)}(x)}{\sinh^{(n)}(x)} = \begin{cases}
\lim_{x \to \infty} \frac{\cosh(x)}{\sinh(x)}, & n \text{ is even}, \\
\lim_{x \to \infty} \frac{\cosh(x)}{\sinh(x)}, & n \text{ is odd}.
\end{cases}
\]

Since \(\lim_{x \to \infty} \sinh(x) = \infty \) and \(\lim_{x \to \infty} \cosh(x) = \infty \), \(\lim_{x \to \infty} \frac{\cosh^{(n)}(x)}{\sinh^{(n)}(x)} \) is always of the indeterminate form \(\infty/\infty \), so repeated applications of L’Hopital’s rule won’t help us evaluate the limit.

6 points

Logarithmic differentiation

4. (a) Let \(f \) and \(g \) be functions that are differentiable at \(c \). Suppose that \(f(c) > 0 \) and \(g(c) > 0 \). Using logarithmic differentiation, the sum rule for derivatives and the chain rule, prove that

\[
(fg)'(c) = f'(c)g(c) + f(c)g'(c).
\]

Note: you are not allowed to use the product rule to prove Equation (1).

(b) Let \(f \) and \(g \) be functions that are differentiable at \(c \). Using part a, prove that

\[
(fg)'(c) = f'(c)g(c) + f(c)g'(c).
\]

Note: you are not allowed to use the product rule to prove Equation (2).
Solution

a. Recall that since \(f \) is differentiable at \(c \), it is also continuous at \(c \). Since \(f(c) > 0 \), there exists a number \(\delta_1 > 0 \) so that if \(|x - c| < \delta_1 \) then \(|f(x)| > 0 \). Similarly, there exists a number \(\delta_2 > 0 \) so that if \(|x - c| < \delta_2 \) then \(|g(x)| > 0 \). Let \(\delta = \min(\delta_1, \delta_2) \).

Since \(f(x) > 0 \) and \(g(x) > 0 \) for all \(x \) with \(|x - c| < \delta \), we have that \(\log(f(x)) \) and \(\log(g(x)) \) are well-defined for all \(x \) with \(|x - c| < \delta \). Thus

\[
\frac{f''(c)}{f(c)} + \frac{f'(c)}{g(c)} = \frac{d}{dx}(\log(f(x)) + \log(g(x)))|_{x=c} = \frac{d}{dx} \log(fg(x))|_{x=c} = \frac{(fg)'(c)}{fg(c)}.
\]

Multiplying both sides by the non-zero quantity \(f(c)g(c) \), we obtain

\[
(fg)'(c) = f'(c)g(c) + f(c)g'(c).
\]

b. Define \(F(x) = f(x) - f(c) + 1 \), \(G(x) = g(x) - g(c) + 1 \). Then \(F \) and \(G \) are differentiable at \(c \), and \(F(c) > 0 \), \(G(c) > 0 \). Observe that

\[
F(x)G(x) = f(x)g(x) + f(c)g(x) + f(x)g(c) + f(x) + g(x).
\]

Thus by the sum rule for derivatives, we have

\[(FG)'(c) = (fg)'(c) - f'(c)g(c) - f'(c)c + f'(c) + g'(c).\] (3)

By part a, we have

\[(FG)'(c) = F'(c)G(c) + F(c)G'(c).
\]

Since \(F'(c) = f'(c) \) and \(G'(c) = g'(c) \), this becomes

\[(FG)'(c) = f'(c)(g(c) - g(c) + 1) + (f(c) - f(c) + 1)g'(c) = f'(c) + g'(c).
\]

Combining this with (3) above, we obtain

\[f'(c) + g'(c) = (fg)'(c) - f'(c)c - f'(c)c + f'(c) + g'(c),\]

so

\[(fg)'(c) = f(c)g'(c) - f'(c)g(c)\).

5+5 = 10 points