Math 120 Homework 1 Solutions

Comments
Students often used a proof by contradiction, even when it was not necessary. i.e. students often had reasoning along the line of:

1) We want to show A.
2) For contradiction we assume not A
3) We prove A is true (without using not A)
4) Absurd
5) So A is true.
While this is a valid proof, Line (3) alone would have been enough.

Sets

1. Let $S = \{1, 2, 3, 4, 5\}$, $T = \{1, 3, 6\}$. What is
 a. $S \cap T$
 b. $S \cup T$
 c. $S \setminus T$
 d. $T \setminus S$

Solution.
a: $\{1, 3\}$
b: $\{1, 2, 3, 4, 5, 6\}$
c: $\{2, 4, 5\}$
d: $\{6\}$
(4 points; 1 point each).

Comments.
Some students were confused about \cup vs \cap. If you are one of them, be sure to review the definitions.

2 a. Give examples of sets S and T where $S \setminus T = T \setminus S$.
b. Give examples of sets S and T where $S \setminus T \neq T \setminus S$.

Solution.
a: $S = T = \{1\}$. Then $S \setminus T = \emptyset$ and $T \setminus S = \emptyset$.
b: $S = \{1\}, T = \{2\}$. Then $S \setminus T = \{1\}$ and $T \setminus S = \{2\}$ so $S \setminus T \neq T \setminus S$.
(4 points; 2 points each)

3. Give an example of sets S and T so that S and T have infinitely many elements, but $S \cap T$ has finitely many elements.

Solution.
Let $S = \{n \in \mathbb{Z}: n \geq 0\}$, $T = \{n \in \mathbb{Z}: n \leq 0\}$. Since there are infinitely many non-negative integers, S is infinite. Similarly, since there are infinitely many non-positive integers, T is infinite. But $S \cap T = \{0\}$, which is finite. (2 points).

Comments.
Remember that an interval $[a, b] \subset \mathbb{R}$ with $a < b$ is an interval of finite length, but it is not a finite interval. This was a source of confusion for some students.
4. Recall that two sets are the same if they contain the same elements. Prove that if \(S \setminus T = \emptyset \) and \(T \setminus S = \emptyset \), then \(S = T \).

Solution.
We need to show that every element of \(S \) is also in \(T \), and vice-versa. First, let \(x \) be an element of \(S \). Since \(x \) is not an element of \(S \setminus T = \{ y \in S : y \text{ is not in } T \} \), we must have \(x \in T \). Thus every element of \(S \) is also in \(T \). An identical argument with \(S \) and \(T \) reversed shows that every element of \(T \) is also in \(S \). Thus \(S = T \). (3 points).

Upper bounds and least upper bounds

5. Let \(S \subset \mathbb{R} \). Prove that if \(x \in \mathbb{R} \) is an upper bound for \(S \), then \(x + 1 \) is also an upper bound for \(S \).

Solution.
We need to show that for every \(y \in S \), we have \(y \leq x + 1 \). Since \(x \) is an upper bound for \(S \), we know that for every \(y \in S \), we have \(y \leq x \). But since \(x < x + 1 \), we have \(y \leq x < x + 1 \), and thus \(y \leq x + 1 \) (indeed, the stronger statement \(y < x + 1 \) is true, but we don’t need this). Thus \(x + 1 \) is an upper bound for \(S \). (3 points)

6. Let \(S \subset \mathbb{R} \). Suppose that \(x \in \mathbb{R} \) is an upper bound for \(S \). Must it always be true that \(x - 1 \) is an upper bound for \(S \)? If so, then prove it. If not, then give an example of a set \(S \) and an upper bound \(x \) where \(x - 1 \) is not an upper bound for \(S \).

Solution.
No: Let \(S = \{ 1, 2, 3, 4, 5 \} \) and let \(x = 5 \). Then \(x \) is an upper bound for \(S \), but \(x - 1 = 4 \) is not an upper bound for \(S \) since \(5 \in S \) and \(5 > (x - 1) = 4 \). (2 points)

7. In this problem, we will use a proof by contradiction to prove that \(\sqrt{2} \) is not a rational number. Suppose that \(\sqrt{2} \) is a rational number, i.e. there exist integers \(m \) and \(n \) so that \(\frac{m}{n}^2 = 2 \). We can also suppose that \(m \) and \(n \) are not both even, since otherwise we could replace \(m \) and \(n \) by \(m/2 \) and \(n/2 \), and keep iterating this procedure until at least one of \(m \) and \(n \) is not even.

a. Prove that \(m \) must be even.

b. Prove that \(n \) must be even.

c. Explain why we have arrived at a contradiction to the assumption that \(\sqrt{2} \) is a rational number.

Solution
a. By assumption, \(2 = (m/n)^2 \), where \(m \) and \(n \) are integers. Thus \(2n^2 = m^2 \). Thus \(m^2 \) is even, so \(m \) is even.
b. Since \(m \) is even, it can be written as \(m = 2k \) for some integer \(k \). Thus \(2n^2 = m^2 = (2k)^2 = 4k^2 \). Dividing by two, we have \(n^2 = 2k^2 \), so \(n^2 \) is even and thus \(n \) is even.
c. This is a contradiction because we assumed that there were integers \(m \) and \(n \) with \((m/n)^2 = 2 \). We noted that if such integers exist, then we can also find integers \(m \) and \(n \), not both of which are even, so that \((m/n)^2 = 2 \). But we just showed that if \((m/n)^2 = 2 \), then both \(m \) and \(n \) must be even, which is a contradiction.
(6 points—2 points each)

8. Consider the set of rational numbers that are positive and whose square is smaller than two, i.e. \(S = \{ z \in \mathbb{Q} : z > 0 \text{ and } z^2 < 2 \} \).

a. Give an example of a rational number that is an upper bound for \(S \).

b. Prove that if \(x \) is a rational number that is greater than zero, then \((2x + 2)/(2 + x) \) is also a
rational number
c. Prove that if \(x \) is a rational number and if \(x \) is an upper bound for \(S \), then \(x^2 \geq 2 \). Hint: it might be useful to use the fact that if \(a > 0 \) and \(b > 0 \) are real rational numbers with \(a > b \), then \(a^2 > b^2 \) (this is true for real numbers as well, of course).
d. Prove that if \(x \) is a rational number with \(x > 0 \) and \(x^2 \geq 2 \), then \(x \) is an upper bound for \(S \).
e. Prove that if \(x \) is a rational number that is an upper bound for \(S \), then \((2x + 2)/(2 + x) \) is also an upper bound for \(S \).
f. Prove that if \(x \) is a rational number that is an upper bound for \(S \), then \((2x + 2)/(2 + x) < x \).

Solution
a. We will show that \(x = 2 \) is an upper bound for \(S \). This is because if \(z \in S \), then \(2 - z = (2 - z)/(2 + z)/(2 + z) = (4 - z^2)/(2 + z) \) since \(z^2 < 2 \), and since \(2 + z > 0 \), we have \((4 - z^2)/(2 + z) < (4 - 2)/(2 + z) = 2/(2 + z) > 0 \), so \(2 - z > 0 \) and thus \(z < 2 \).

Comments.
Very few students explained why their example was an upper bound (got only 1 point for writing a number with no explanation).

b. Assume \(x \) is rational, i.e. \(x = m/n \) with \(m, n \in \mathbb{Z} \) and \(n \neq 0 \). Note that \(m \) and \(n \) have the same sign since \(x > 0 \). In particular, we can take \(m \) and \(n \) to both be positive. Then
\[
\frac{2x + 2}{x} = \frac{2 + \frac{m}{2}}{2 + \frac{m}{n}} = \frac{2m + 2}{2n + m}.
\]
Since \(m \) and \(n \) are both positive, we have \(2n + m \neq 0 \). Thus we have written \(\frac{2x + 2}{2 + x} \) as a quotient of two integers with non-zero denominator, so \(\frac{2x + 2}{2 + x} \) is rational.

Comments.
When students are writing \((2 + 2x)/(2 + x) \) as a fraction, few mention that the denominator is not zero.

Some students plugged in specific values of \(x \) in \((2 + 2x)/(2 + x) \) but do not prove the general case. This was also a problem in parts e and f.

c. We will prove this by contradiction. Suppose there existed a rational number \(x \) that is an upper bound for \(S \), but with \(x^2 < 2 \). First, since \(1 \in S \), we must have \(x \geq 1 \), so in particular \(x > 0 \). Let \(y = (2x + 2)/(2 + x) \). By part b., \(y \) is a rational number. Since \(x > 0 \), \(y = (2x + 2)/(2 + x) > 0 \). Next, note that \(2 - y^2 = 0 \), so \(y^2 < 2 \). This means that \(y \in S \).

Finally, note that \(y - x = \ldots > 0 \), so \(y > x \). This means that there exists an element of \(S \) (namely \(y \)) that is bigger than \(x \), which contradicts the assumption that \(x \) is an upper bound for \(S \).

Comments.
Almost everyone went with the following statement: If \(x \) is an upper bound and \(z \) is in \(S \), then \(x^2 \geq z^2 \) and \(z^2 < 2 \), so \(x^2 > 2 > z^2 \) with no explanation.

Equivalently, many people said that \(\sqrt{2} \) is the least upper bound of \(S \) with no justification.

d. We need to show that for every \(z \in S \), \(z < x \). But \(x - z = (x - z)/(x + z)/(x + z) = (x^2 - z^2)/(x + z) \). But since \(x^2 \geq 2 \) and \(z^2 < 2 \), and \(x > 0 \), \(z > 0 \), we have \((x^2 - z^2)/(x + z) \geq (2 - z^2)/(x + z) > 0 \), so \(x > z \). Thus \(x \) is an upper bound for \(S \).

e. By part c, \(x^2 \geq 2 \). Let \(y = (2x + 2)/(2 + x) \). By part d, it suffices to show that \(y^2 > 2 \). But \(y^2 = (2x + 2)/(2 + x)^2 = 2^2 > 2 \).
f. By part c, \(x^2 \geq 2 \). Let \(y = (2x + 2)/(2 + x) \). We have \(x - y = \ldots > 0 \). Thus \(y < x \).