Math 120 Homework 7

- Due Friday November 4 at start of class.

- If your homework is longer than one page, staple the pages together, and put your name on each sheet of paper. **Homework that is not stapled will loose 1 point.**

- Each homework problem should be correct as stated. Occasionally, however, I might screw something up and give you an impossible homework problem. If you believe a problem is incorrect, please email me. If you are right, the first person to point out an error will get +1 on that homework, and I will post an updated version.

An interesting function

Recall that a polynomial is a function of the form \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \), where \(a_n, a_{n-1}, \ldots, a_0 \) are real numbers, and \(a_n \neq 0 \).

1. (4 points) Prove that if \(P(x) \) and \(Q(x) \) are polynomials, then their product \(P(x)Q(x) \) is a polynomial. Hint: you can prove this by induction on the degree of \(P \) (but you can also prove it some other way if you want.).

Solution. First, we will prove that the sum of two polynomials is a polynomial. If \(P(x) = a_n x^n + \ldots a_0 \) and \(Q(x) = b_m x^m + \ldots + b_m \), then for each \(j = 0, \ldots, \max(n,m) \),

\[
 c_j = \begin{cases}
 a_j, & m < j \leq n, \\
 b_j, & n < j \leq m, \\
 a_j + b_j, & j \leq \min(m,n).
\end{cases}
\]

Let \(\ell \) be the largest index \(j \) for which \(c_j \) is non-zero. Then \(P(x) + Q(x) = c_\ell x^\ell + \ldots + c_0 \).

Next we will prove that the product of two polynomials is a polynomial; we will prove the result by induction on the degree of \(P \). First, if \(P \) has degree 0, then \(P(x) = a_0 \). If \(Q(x) = b_m x^m + \ldots + b_0 \), then \(P(x)Q(x) = a_0 b_m x^m + a_0 b_{m-1} x^{m-1} + \ldots + a_0 b_0 \), which is a polynomial. Now, suppose the result has been proved whenever \(P \) is a polynomial of degree at most \(n \). Let \(P \) be a polynomial of degree \(n+1 \), i.e. \(P(x) = a_{n+1} x^{n+1} + a_n x^n + \ldots + a_0 \). Then we can write \(P = a_{n+1} x^{n+1} + P_1(x) \), where \(P_1(x) = a_n x^n + \ldots + a_0 \) is a polynomial of degree at most \(n \) (note that \(P_1 \) might be of degree less than \(n \), since \(a_n \) might be 0). Then \(P(x)Q(x) = a_{n+1} x^{n+1} Q(x) + P_1(x) Q(x) \). Since \(P_1 \) has degree at most \(n \), we know that \(P_1(x) Q(x) \) is a polynomial. Similarly, \(a_{x+1} x^{n+1} Q(x) = a_{n+1} b_m x^{n+m+1} + \ldots + a_{c+1} b_0 x^{n+1} \) is a polynomial, and we showed above that the sum of two polynomials is a polynomial. Thus \(P(x)Q(x) \) is a polynomial, which completes the induction step.

2. (6 points) Let \(f(x) = e^{-1/x} \) if \(x > 0 \) (i.e. \(D(f) = (0, \infty) \)). Prove by induction that for every integer \(n \geq 1 \), there exists a polynomial \(P_n(x) \) so that \(f^{(n)}(x) = P_n(1/x) e^{-1/x} \).

Solution. We will actually prove the result for all \(n \geq 0 \). The base case \(n = 0 \) is trivial: let \(P_0(x) = 1 \). Now suppose we know that there is a polynomial \(P_n \) so that \(f^{(n)}(x) = P_n(1/x) e^{-1/x} \);
we will prove the result for \(n + 1 \). We have
\[
f^{(n+1)}(x) = (f^{(n)})'(x) = (P_n(1/x)e^{-1/x})' = P'_n(1/x)(-1/x^2)e^{-1/x} + P_n(1/x)e^{-1/x}(1/x^2) = (P'_n(1/x)(-1/x^2) + P_n(1/x)(1/x^2))e^{-1/x}.
\]
Thus if we define \(P_{n+1}(y) = P'_n(y)(-y^2) + P_n(y)y^2 \), then \(f^{(n+1)}(x) = P_{n+1}(1/x)e^{-1/x} \). By problem 1, \(P'_n(y)(-y^2) \) and \(P_n(y)y^2 \) are polynomials, and the sum of two polynomials is also a polynomial, so \(P_{n+1}(y) \) is a polynomial. This completes the induction step.

3. (6 points) Let \(f(x) \) be the function from question 2. Prove that for every integer \(n \geq 1 \), \(\lim_{x \to 0^+} f^{(n)}(x) = 0 \). Hint: HW3 #2 might be helpful.

Solution. First, recall from lecture that if \(P(x) \) is a polynomial, then \(\lim_{x \to \infty} P(x)e^{-x} = 0 \). Let \(g(x) = 1/x \). By HW3 #2, we have that for each \(n \geq 1 \),
\[
0 = \lim_{x \to \infty} P_n(x)e^{-x} = \lim_{x \to 0^+} P_n(1/x)e^{-1/x} = \lim_{x \to 0^+} f^{(n)}(x).
\]

4. (6 points) Let
\[
g(x) = \begin{cases} e^{-1/x}, & x > 0, \\ 0, & x \leq 0 \end{cases}
\]
Prove that \(g \) is infinitely differentiable on \(\mathbb{R} \), i.e. for every integer \(n \geq 0 \) and every \(x \in \mathbb{R} \), \(g^{(n)}(x) \) exists.

Solution. Let \(t(x) = 0 \). If \(x < 0 \) then by the limits are a local property rule, we have \(g^{(n)}(x) = t^{(n)}(x) = 0 \), so in particular, \(g(x) \) is infinitely differentiable at every point \(x < 0 \). Similarly, if \(x > 0 \) the by the limits are a local property rule, we have \(g^{(n)}(x) = f^{(n)}(x) = P_n(1/x)e^{-1/x} \) so again, \(g(x) \) is infinitely differentiable at every point \(x > 0 \). It remains to prove that \(g(x) \) is infinitely differentiable at \(x = 0 \). We will prove by induction on \(n \) that \(g^{(n)}(0) = 0 \) for all \(n \). We will begin with \(n = 0 \). Since \(h(x) \) is defined for all \(x \in \mathbb{R} \), \(g(x) \) is 0-times differentiable at 0, and \(g^{(0)}(0) = g(0) = 0 \). Now suppose we have shown that \(g^{(n)}(0) = 0 \). In order to prove that \(g^{(n+1)}(0) = 0 \), it suffices to prove that
\[
\lim_{h \to 0^-} \frac{g^{(n)}(h) - g^{(n)}(0)}{h} = \lim_{x \to 0^+} \frac{g^{(n)}(h) - g^{(n)}(0)}{h} = 0.
\]
Since \(g^{(n)}(0) = 0 \) and \(g^{(n)}(h) = 0 \) for all \(h < 0 \), we have \(\lim_{h \to 0^-} \frac{g^{(n)}(h) - g^{(n)}(0)}{h} = 0 \). Since \(g^{(n)}(h) = f^{(n)}(h) \) for all \(h > 0 \), by problem 3 we have \(\lim_{x \to 0^+} \frac{g^{(n)}(h) - g^{(n)}(0)}{h} = 0 \). This completes the proof.

5. (3 points) Recall the definition of the degree \(n \) Taylor expansion of a function around a point \(c \in \mathbb{R} \) from HW6. For each integer \(n \geq 1 \), compute the degree \(n \) Taylor expansion of \(g(x) \) around the point \(c = 0 \).

Let \(P_n(x) \) be the degree \(n \) Taylor expansion of \(g(x) \) around 0. We have
\[
P_n(x) = g(0) + \sum_{j=1}^{n} \frac{g^{(j)}(0)}{j!}x^j = 0 + \sum_{j=1}^{n} 0 \cdot x^j = 0.
\]
Remark: This is strange: The function \(g(x) \) from problem 4 and the function \(h(x) = 0 \) are both smooth, and at the point \(c = 0 \), all of their derivatives agree. But the two functions are not equal to each other...
A question asked in class

The following problems are optional, bonus problems. Thus, it is possible to score as high as 37/25 = 148% on this homework.

Let f be a function with $D(f) = \mathbb{R}$ and suppose that f is differentiable at every point $x \in \mathbb{R}$. Suppose there exist points $a, b \in \mathbb{R}$ with $f'(a) > 0$, $f'(b) < 0$. We will prove that f is not one-to-one. For simplicity, we will assume $a < b$ (the case $a > b$ is similar; just replace $f(x)$ with $f(-x)$). The following questions will be about this function f.

6. (2 points) For $t \in (a, b]$, define $S_t = \{f(x) : a \leq x < t\}$. Prove that if f (described above) is one-to-one, then for each $t \in [a, b]$, $f(t) \notin S_t$.

Proof. Since We will prove the result by contradiction. Suppose $f(t) \in S_t$. We must show that f fails to be one-to-one. But if $f(t) \in S(t)$, then there exists some $x \in [a, t)$ so that $f(x) = f(t)$. Since $x \notin [a, t)$, this means x and t are distinct, but $f(x) = f(t)$, which is a contradiction.

7. (5 points) Prove that if f (described above) is one-to-one, then for each $t \in (a, b]$, $S_t = [f(a), f(t)]$. Hint: this is not so easy.

Solution. First, suppose $f(t) > f(a)$. Since f is differentiable, it is continuous, so by the intermediate value theorem applied to f on the interval $[a, t]$, we have that for every value of y between $f(a)$ and $f(t)$, there is a value of x between a and t so that $f(x) = y$. In particular, this means that $[f(a), f(t)) \subset S_t$. Now suppose $S_t \neq [f(a), f(t))$. This means there exists a point $y \in S_t \setminus [f(a), f(t))$. Let $x_0 \in [a, t)$ with $f(x_0) = y$. If $y < f(a)$, then by the intermediate value theorem, there exists a point $x \in (x_0, t)$ with $f(x) = f(a)$, and this contradicts the fact that f is one-to-one. If $y = f(t)$, then this contradicts the fact that f is one-to-one. If $y > f(t)$, then by the intermediate value theorem there exists a point $x \in (a, x_0)$ with $f(x) = f(t)$, and this again contradicts the fact that f is one-to-one. Thus if $f(t) > f(a)$, then $S_t = [f(a), f(t))$.

Next, suppose $f(t) < f(a)$. Since $f'(a) > 0$, there exists a number $\delta > 0$ so that for all $x \in [a, a + \delta)$, $f(x) > f(a)$. In particular, $f(a + \delta/2) > f(a)$. Thus by the intermediate value theorem, there exists a number $x \in (a + \delta/2, t)$ with $f(x) = f(a)$, and this again contradicts the fact that f is one-to-one.

We conclude that $S_t = [f(a), f(t))$.

8 (5 points) Prove that f (described above) cannot be one-to-one.

Solution. Since $f'(b) < 0$, there exists a number $\delta > 0$ so that for all $x, y \in (b - \delta, b)$, if $x < y$ then $f(x) > f(y)$. But $S_x = [f(a), f(x))$ and $S_y = [f(a), f(y))$. If $f(x) > f(y)$, then by problem 7, $S_y \subset S_x$, so for every number z with $x < z < y$, there is a number $w \in [a, x)$ with $f(z) = f(w)$, and thus f cannot be one-to-one.