Math 120 Homework 6 Solutions

• Due Friday October 21 at start of class.

• If your homework is longer than one page, staple the pages together, and put your name on each sheet of paper. **Homework that is not stapled will loose 1 point.**

• Each homework problem should be correct as stated. Occasionally, however, I might screw something up and give you an impossible homework problem. If you believe a problem is incorrect, please email me. If you are right, the first person to point out an error will get +1 on that homework, and I will post an updated version.

Landau’s Big O notation

1. (2 points) Prove that \(x^3 + x^2 + 10 = O(1) \) as \(x \to 0 \).

 Proof. Let \(M = 12, \delta = 1 \). Observe that if \(|x| \leq 1 \), then \(|x^3| \leq 1 \), and similarly if \(|x| \leq 1 \) then \(|x|^2 \leq 1 \). Thus if \(|x-0| < \delta = 1 \), then \(|x^3 + 2x^2 + 10| \leq |x^3| + |x^2| + 10 \leq 1 + 1 + 10 \leq 12 \leq M|1| \).

b. (2 points) Prove that \(x^2 + x = O(1) \) as \(x \to 0 \).

 Proof. Let \(M = 2, \delta = 1 \). Observe that if \(|x| \leq 1 \), then \(|x^2| \leq |x| \). Thus if \(|x-0| < \delta = 1 \), then \(|x^2 + x| \leq |x^2| + |x| \leq |x| + |x| = 2|x| \leq M|x| \).

c. (2 points) Prove that \(x^2 + x = O(1) \) as \(x \to 0 \).

 Proof. Let \(M = 2, \delta = 1 \). Observe that if \(|x| \leq 1 \), then \(|x^2| \leq 1 \) and \(|x| \leq 1 \). Thus \(|x^2 + x| \leq |x^2| + |x| \leq 1 + 1 \leq 2 \leq M|1| \).

d. (2 points) Prove that the statement “\(1 = O(2) \) as \(x \to 0 \)” is false.

 Proof. Suppose that \(1 = O(2) \) as \(x \to 0 \) (we will arrive at a contradiction). This means that there exists a number \(M \) and a number \(\delta > 0 \) so that \(1 \leq M|x^2| \) whenever \(|x-0| < \delta \). If \(M \leq 0 \), then this is clearly false; just take \(x = \delta/2 \). Now suppose \(M > 0 \). Let \(x = \min(\delta, 1/\sqrt{M}) \). Then \(M|x^2| < 1 \), which contradicts the assumption that \(1 \leq M|x^2| \).

2. (2 points) Prove that \(\cos(x) = O(1) \) as \(x \to \infty \)

 Proof. Let \(R = 0, M = 1 \). Then for all \(x \in \mathbb{R} \) (and in particular, for all \(x \geq 0 \)), we have \(|\cos(x)| \leq 1 \leq M|1| \).

b. (2 points) Prove that \(x^2 + \sin(3x) + 1 = O(x^2) \) as \(x \to \infty \).

 Proof. Let \(R = 1, M = 3 \). Then for all \(x \geq 1 \), we have \(|x^2| \geq 1 \) and \(|\sin(3x)| \leq 1 \), so \(|x^2 + \sin(3x) + 1| \leq |x^2| + |\sin(3x)| + |1| \leq |x^2| + |x^2| + |x^2| \leq M|x^2| \).

c. (2 points) Prove that \(x^2 + \sin(3x) + 1 = O(x^3) \) as \(x \to \infty \).

 Proof. Let \(R = 1, M = 3 \). Then for all \(x \geq 1 \), \(|x^2| \leq |x^3| \). We already showed that \(|x^2 + \sin(3x) + 1| \leq 3|x^2| \) if \(x > 1 \), so \(|x^2 + \sin(3x) + 1| \leq 3|x^2| \leq 3|x^3| \) if \(x > 1 \).

3. (4 points) Prove that if \(f(x) = O(g(x)) \) as \(x \to c \) and \(g(x) = O(h(x)) \) as \(x \to c \), then \(f(x) = O(h(x)) \) as \(x \to c \).
Proof. Since \(f(x) = O(g(x)) \) as \(x \to c \) there exists \(M_1 \) and \(\delta_1 > 0 \) so that \(|f(x)| \leq M_1|g(x)| \) whenever \(|x - c| < \delta_1 \). Similarly, there exists \(M_2 \) and \(\delta_2 \) so that \(|g(x)| \leq M_2|h(x)| \) whenever \(|x - c| < \delta_2 \). Let \(M = M_1M_2 \) and let \(\delta = \min(\delta_1, \delta_2) \). Then whenever \(|x - c| < \delta \), we have
\[
|f(x)| \leq M_1|g(x)| \leq M_1M_2|h(x)|.
\]

4. (4 points) Prove that if \(f \) and \(g \) are functions whose domain is \(\mathbb{R} \), and \(f = O(g) \), then the statement \(\lim_{x \to \infty} g(x)/f(x) = 0 \) is false.

Proof. Since \(f(x) = O(g(x)) \), there exists \(R \) and \(M \) so that \(|f(x)| \leq M|g(x)| \), i.e. \(|g(x)/f(x)| \geq 1/M \) for all \(x \geq R \). Now, suppose that \(\lim_{x \to \infty} g(x)/f(x) = 0 \). This would mean that for all \(\delta > 0 \), there exists \(R_1 \) so that if \(x > R_1 \), then \(|g(x)/f(x)| \leq \delta \). We will show that this cannot happen. Indeed, let \(\delta = 1/M \). Then for all \(R_1 > 0 \), there exists \(x > R_1 \) so that \(|g(x)/f(x)| > \delta \); just take \(x = \min(M, M_1) \).

Taylor polynomials

5 a. (5 points) Prove by induction that if \(k \) and \(n \) are integers and \(1 \leq k \leq n \), and if \(f(x) = x^n \), then \(f^{(k)}(x) = n(n-1)(n-2) \cdots (n-k+1)x^{n-k} \).

Proof. For each value of \(n \), we will prove the result by induction on \(k \). First, if \(k = 1 \) then \(f(x) = (x^n)' = nx^{n-1} \); this establishes the base case \(k = 1 \). Now suppose (for a fixed value of \(n \)) that we have proved that \(f^{(k)}(x) = n(n-1)(n-2) \cdots (n-k+1)x^{n-k} \). If \(k = n \) then there is nothing more to prove. If \(k < n \), then
\[
f^{(k+1)}(x) = (f^{(k)})'(x) = (n(n-1)(n-2) \cdots (n-k+1)x^{n-k})'
\]
\[
= n(n-1)(n-2) \cdots (n-k+1)(n-k)x^{n-k-1}
\]
\[
= n(n-1)(n-2) \cdots (n-k+1)((n-k)x^{n-k-1})
\]
\[
= n(n-1)(n-2) \cdots (n-k+1)((n-k+1)x^{n-(k+1)}).
\]
This establishes the induction step, and completes the proof.

b. (3 points) Prove that if \(k > n \) and if \(f(x) = x^n \), then \(f^{(k)}(x) = 0 \). Hint: part a might be helpful.

Proof. First, by part a, we have \(f^{(n)}(x) = n! \), and thus \(f^{(n+1)}(x) = 0 \). By definition, if \(k > n \) then
\[
f^{(k)}(x) = \left(\frac{d^k}{dx^k} f \right)(x) = \left(\frac{d^{k-n-1}}{dx^{k-n-1}} \left(\frac{d^{n+1}}{dx^{n+1}} f \right) \right)(x) = \left(\frac{d^{k-n-1}}{dx^{k-n-1}}(0) \right)(x) = 0,
\]
so \(f^{(k)}(x) = 0 \).

For the next few problems, we will use the following definition. Let \(f \) be a function that is \(n \) times differentiable on \([a,b] \). Let \(c \in [a,b] \). We define the “degree \(n \) Taylor expansion of \(f \) around \(c \)” to be the function
\[
h(x) = f(c) + \sum_{k=1}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^k.
\]

6. (3 points) Let \(f(x) \) and \(g(x) \) be functions that are \(n \)-times differentiable on \([a,b] \). Let \(c \in [a,b] \). Let \(f_n \) and \(g_n \) be the \(n \)-th order Taylor expansions of \(f \) and \(g \) around the point \(c \), respectively. Prove that \((f_n + g_n)(x) \) is the \(n \)-th order Taylor expansion of \(f + g \) around the point \(c \).
Proof. This is just a repeated application of the derivative rule “ \((f + g)'(x) = f'(x) + g'(x)\),” and thus \((f + g)^{(k)}(x) = f^{(k)}(x) + g^{(k)}(x)\).

Let \(h = f + g\), and let \(h_n\) be the degree \(n\) Taylor expansion of \(f\) around \(c\). Then

\[
f_n + g_n = f(c) + \sum_{k=1}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k + g(c) + \sum_{k=1}^{n} \frac{g^{(k)}(c)}{k!} (x - c)^k
\]

\[
= f(c) + g(c) + \sum_{k=1}^{n} \left[\frac{f^{(k)}(c)}{k!} (x - c)^k + \frac{g^{(k)}(c)}{k!} (x - c)^k \right]
\]

\[
= (f + g)(c) + \sum_{k=1}^{n} \frac{(f + g)^{(k)}(c)}{k!} (x - c)^k
\]

\[
= h_n(x).
\]

5. (4 points) Compute the degree 3 Taylor expansion of \(f(x) = x^5 + 2x^4 + 3x^3 + 4x^2 + 5x + 1\) around the point \(x = 0\). You don’t need to prove that your answer is correct, but do show your work.

Proof. The Taylor expansion is

\[1 + 5x + 4x^2 + 3x^3\]

(but when you do it, you need to show your work.)

6. (4 points) Compute the degree 3 Taylor expansion of \(f(x) = x^5 + 2x^4 + 3x^3 + 4x^2 + 5x + 1\) around the point \(x = 2\). You don’t need to prove that your answer is correct, but do show your work.

Proof. The Taylor expansion is

\[115 + 201(x - 2) + 150(x - 2)^2 + 59(x - 2)^3\]

(but when you do it, you need to show your work.)