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Chapter 1

Introductory Comments to
the Student

This textbook is meant to be an introduction to abstract linear algebra for
first, second or third year university students who are specializing in math-
ematics or a closely related discipline. We hope that parts of this text will
be relevant to students of computer science and the physical sciences. While
the text is written in an informal style with many elementary examples, the
propositions and theorems are carefully proved, so that the student will get
experince with the theorem-proof style. We have tried very hard to em-
phasize the interplay between geometry and algebra, and the exercises are
intended to be more challenging than routine calculations. The hope is that
the student will be forced to think about the material.

The text covers the geometry of Euclidean spaces, linear systems, ma-
trices, fields (Q,R, C and the finite fields Fp of integers modulo a prime p),
vector spaces over an arbitrary field, bases and dimension, linear transfor-
mations, linear coding theory, determinants, eigen-theory, projections and
pseudo-inverses, the Principal Axis Theorem for unitary matrices and ap-
plications, and the diagonalization theorems for complex matrices such as
the Jordan decomposition. The final chapter gives some applications of
symmetric matrices positive definiteness. We also introduce the notion of a
graph and study its adjacency matrix. Finally, we prove the convergence of
the QR algorithm. The proof is based on the fact that the unitary group is
compact.

Although, most of the topics listed above are found in a standard course
on linear algebra, some of the topics such as fields and linear coding theory
are seldom treated in such a course. Our feeling is, however, that because
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coding theory is such an important component of the gadgets we use ev-
eryday, such as personal computers, CD players, modems etc., and because
linear coding theory gives such a nice illustration of how the basic results
of linear algebra apply, including it in a basic course is clearly appropriate.
Since the vector spaces in coding theory are defined over the prime fields, the
students get to see explicit situations where vector space structures which
don’t involve the real numbers are important.

This text also improves on the standard treatment of the determinant,
where either its existence in the n×n case for n > 3 is simply assumed or it
is defined inductively by the Laplace expansion, an d the student is forced
to believe that all Laplace expansions agree. We use the classical definition
as a sum over all permutations. This allows one to give a quite easy proof
of the Laplace expansion, for example. Much of this material here can be
covered in a 13-15 week semester.

Throughout the text, we have attempted to make the explanations clear,
so that students who want to read further will be able to do so.
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Chapter 2

Euclidean Spaces and Their
Geometry

By Euclidean n-space, we mean the space Rn of all (ordered) n-tuples of real
numbers. This is the domain where much, if not most, of the mathematics
taught in university courses such as linear algebra, vector analysis, differen-
tial equations etc. takes place. And although the main topic of this book
is algebra, the fact is that algebra and geometry can hardly be seperated:
we need a strong foundation in both. The purpose of this chapter is thus
to provide a succinct introduction to Euclidean space, with the emphasis on
its geometry.

2.1 Rn and the Inner Product.

2.1.1 Vectors and n-tuples

Throughout this text, R will stand for the real numbers. Euclidean n-space,
Rn, is by definition the set of all (ordered) n-tuples of real numbers. An
n-tuple is just a sequence consisting of n real numbers written in a column
like

r =




r1
r2
...
rn


 .

Sometimes the term sequence is replaced by the term or string or word. The
entries r1, . . . , rn are called the components of the n-tuple, ri being the ith
component. It’s important to note that the order of the components matters:
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e.g. 


1
2
3


 6=




2
3
1


 .

Definition 2.1. The elements of Rn will be called vectors, and Rn itself will
be called a Euclidean n-space.

Vectors will be denoted by a bold faced lower case letters a,b, c . . . and
so forth. To simplify our notation a bit, we will often express a vector as a
row expression by putting




r1
r2
...
rn


 = (r1, r2, . . . , rn)

T .

A word of explanation about the term vector is in order. In physics
books and in some calculus books, a vector refers any directed line segment
in R2 or R3. Of course, a vector r in Rn is a directed line segment starting
at the origin 0 = (0, 0, . . . , 0)T of Rn. This line segment is simply the set of
points of the form tr = (tr1, tr2, . . . trn)

T , where 0 ≤ t ≤ 1. More generally,
the term vector may refer to the set of all directed line segments parallel
to a given segment with the same length. But in linear algebra, the term
vector is used to denote an element of a vector space. The vector space we
are dealing with here, as will presently be explained, is Rn, and its vectors
are therefore real n-tuples.

2.1.2 Coordinates

The Euclidean spaces R1, R2 and R3 are especially relevant since they phys-
ically represent a line, plane and a three space respectively. It’s a familiar
assumption that the points on a line L can be put into a one to one cor-
respondence with the real numbers R. If a ∈ R (that is, if a is an element
of R), then the point on L corresponding to a has distance |a| from the
origin, which is defined as the point corresponding to 0. Such a one to one
correspondence puts a coordinate system on L.

Next, we put a coordinate system called xy-coordinates on a plane by
selecting two (usually orthogonal) lines called an x-axis and a y-axis, each
having a coordinate system, and identifying a point P in the plane with the
element (p1, p2)

T of R2, where p1 is the projection of P parallel to the y-axis
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onto the x-axis, and p2 is the projection of P parallel to the x-axis onto the
y-axis. This is diagrammed in the following figure.

(a, b)
b

(0, 0)

a

y

x

FIGURE (Euclidean PLANE)

In the same manner, the points of Euclidean 3-space are parameterized
by the ordered 3-tuples of real numbers, i.e. R3; that is, that is, every point
is uniquely identified by assigning it xyz-coordinates. Thus we can also put
a coordinate system on R3.

FIGURE (Euclidean 3-space)

But just as almost everyone eventually needs more storage space, we
may also need more coordinates to store important data. For example, if
we are considering a linear equation such as

3x+ 4y + 5z + 6w = 0,

where the solutions are 4-tuples, we need R4 to store them. While extra
coordinates give more degrees of freedom, our geometric intuition doesn’t
work very well in dimensions bigger than three. This is where the algebra
comes in.



16

2.1.3 The Vector Space Rn

Vector addition in R2 or R3 is probably already very familiar to you. Two
vectors are added by a rule called the Parallelogram Law, which we will
review below. Since n may well be bigger than 3, we define vector addition
in a different, in fact much simpler, way by putting

a + b =




a1

a2
...
an


+




b1
b2
...
bn


 =




a1 + b1
a2 + b2

...
an + bn


 . (2.1)

Thus addition consists of adding the corresponding components of the two
vectors being added.

There is a second operation called scalar multiplication, where a vector
a is dilated by a real number r. This is defined (in a rather obvious way) by

ra = r




a1

a2
...
an


 =




ra1

ra2
...
ran


 . (2.2)

These two operations satisfy the axioms which define a vector space.
They will be stated explicitly in Chapter 4. Scalar multiplication has an
obvious geometric interpretation. Multiplying a by r stretches or shrinks a
along itself by the factor |r|, changing its direction if r < 0. The geometric
interpretation of addition is the Parallelogram Law.

a

b

b + ta

a + sb
a + b

PARALLELOGRAM LAW
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Parallelogram Law: The sum a+b is the vector along the diagonal of the

parallelogram with vertices at 0, a and b.

Thus vector addition (2.1) agrees with the classical way of defining ad-
dition. The Parallelogram Law in R2 by showing that the line through
(a, b)T parallel to (c, d)T meets the line through (c, d)T parallel to (a, b) at
(a+ c, b+d)T . Note that lines in R2 can be written in the form rx+ sy = t,
where r, s, t ∈ R, so this is an exercise in writing the equation of a line and
computing where two lines meet. (See Exercise 2.29.)

Checking the Parallelogram Law in R3 requires that we first discuss how
to represent a line in R3. The Parallelogram Law in Rn, will follow in exactly
the same way. We will treat this matter below.

2.1.4 The dot product

We now take up measurements in Rn. The way we measure things such as
length and angles is to use an important operation called either the inner

product or the dot product.

Definition 2.2. The inner product of two vectors a = (a1, a2, . . . , an)
T and

b = (b1, b2, . . . , bn)
T in Rn is defined to be

a · b :=
n∑

i=1

aibi. (2.3)

Note that if n = 1, a · b is the usual product. The inner product has
several important properties. Let a, b and c be arbitrary vectors and r any
scalar (i.e., r ∈ R). Then

(1) a · b = b · a,

(2) (a + b) · c = a · c + b · c,

(3) (ra) · b = a · (rb) = r(a · b), and

(4) a · a > 0 unless a = 0, in which case a · a = 0.

These properties are all easy to prove, so we will leave them as exercises.
The length |a| of a ∈ Rn is defined in terms of the dot product by putting

|a| =
√

a · a

= (
n∑

i=1

a2
i )

1/2.
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This definition generalizes the usual square root of the sum of squares defi-
nition of length for vectors in R2 and R3. Notice that

|ra| = |r||a| .

The distance between two vectors a and b is defined as the length of
their difference a− b. Denoting this distance by d(a,b), we see that

d(a,b) = |a − b|
=

(
(a− b) · (a − b)

)1/2

=
( n∑

i=1

(ai − bi)
2
)1/2

.

2.1.5 Orthogonality and projections

Next we come to an important notion which involves both measurement and
geometry. Two vectors a and b in Rn are said to be orthogonal (a fancy word
for perpendicular) if a · b = 0. Note that the zero vector 0 is orthogonal to
every vector, and by property (4) of the dot product, 0 is the only vector
orthogonal to itself. Two vectors in R2, say a = (a1, a2)

T and b = (b1, b2)
T ,

are orthogonal if and only if and only if a1b1 + a2b2 = 0. Thus if a1, b2 6= 0,
then a and b are orthogonal if and only if a2/a1 = −b1/b2. Thus, the slopes
of orthogonal vectors in R2 are negative reciprocals.

For vectors in Rn, the meaning of orthogonality follows from the following
property.

Proposition 2.1. Two vectors a and b in Rn are orthogonal if and only if
|a + b| = |a− b|.

Let’s prove this geometrically, at least for R2. Consider the triangle with
vertices at 0,a,b. The hypotenuse of this triangle is a segment of length
|a−b|, which follows from the Parallelogram Law. Next consider the triangle
with vertices at 0,a,−b. The hypotenuse of this triangle is a segment of
length |a+b|, which also follows from the Parallelogram Law. Now suppose
|a+b| = |a−b|. Then by the side side side criterion for congruence, which
says that two triangles are congruent if and only if they have corresponding
sides of equal length, the two triangles are congruent. It follows that a and b
are orthogonal. For the converse direction, suppose a and b are orthogonal.
Then the side angle side criterion for congruence applies, so our triangles
are congruent. Thus |a + b| = |a − b|.
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a + ba− b a

b−b 0

DIAGRAM FOR PROOF

In fact, it is much easier to use algebra (namely the dot product). The
point is that a ·b = 0 if and only if |a+b| = |a−b|. The details are left as
an exercise.

One of the most fundamental applications of the dot product is the
orthogonal decomposition of a vector into two or more mutually orthogonal
components.

Proposition 2.2. Let a,b ∈ Rn be given, and suppose that b 6= 0. Then
there exists a unique scalar r such that a = rb + c where b and c are
orthogonal. In fact,

r = (
a · b
b · b),

and

c = a− (
a · b
b · b)b.

Proof. We see this as follows: since we want rb = a − c, where c has the
property that b · c = 0, then

rb · b = (a− c) · b = a · b− c · b = a · b.

As b · b 6= 0, it follows that r = a · b/b · b. The reader should check that

c = a − (
a · b
b · b)b is orthogonal to b. Thus we get the desired orthogonal

decomposition

a = (
a · b
b · b)b + c.
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c

b

Pc(a)

Pb(a)

a

ORTHOGONAL DECOMPOSITION

Definition 2.3. The vector

Pb(a) = (
a · b
b · b)b

will be called the orthogonal projection of a on b.

By the previous Proposition, another way to express the orthogonal de-
composition of a into the sum of a component parallel to b and a component
orthogonal to b is

a = Pb(a) + (a − Pb(a)). (2.4)

Now suppose b and c are any two nonzero orthogonal vectors in R2, so
that b · c = 0. I claim that any vector a orthogonal to b is a multiple of c.
Reason: if b = (b1, b2)

T and a = (a1, a2)
T , then a1b1 + a2b2 = 0. Assuming,

for example, that b1 6= 0, then

a1 = −b2
b1
a2 =

c1
c2
a2,

and the claim follows.
It follows that for any a ∈ R2, there are scalars r and s so that a =

rb + sc. We can solve for r and s by using the dot product as before. For
example, a · b = rb · b. Hence we can conclude that if b 6= 0, then

rb = Pb(a),

and similarly, if c 6= 0, then

sc = Pc(a).
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Therefore, we have now proved a fundamental fact which we call the pro-
jection formula for R2.

Proposition 2.3. If b and c are two non zero mutually orthogonal vectors
in R2, then any vector a in R2 can be uniquely expressed as the sum of its
projections. In other words,

a = Pb(a) + Pc(a) = (
a · b
b · b)b + (

a · c
c · c )c. (2.5)

Projections can be written much more simply if we bring in the notion
of a unit vector. When b 6= 0, the unit vector along b is defined to be the
vector of length one given by the formula

b̂ =
b

(b · b)1/2
=

b

|b| .

(Check that b̂ is indeed of length one,) Unit vectors are also called directions.

Keep in mind that the direction â exists only when a 6= 0. It is obviously
impossible to assigne a direction to the zero vector. If b̂ and ĉ are unit
vectors, then the projection formula (2.5) takes the simpler form

a = (a · b̂)b̂ + (a · ĉ)ĉ. (2.6)

Example 2.1. Let b = (3, 4)T and c = (4,−3)T . Then b̂ =
1

5
(3, 4)T and

ĉ =
1

5
(4,−3)T . Let a = (1, 1). Thus, for example, Pb(a) =

7

5
(3, 4)T , and

a =
7

5
(3, 4)T +

1

5
(4,−3)T .

2.1.6 The Cauchy-Schwartz Inequality and Cosines

If a = b + c is an orthogonal decomposition in Rn (which just means that
b · c = 0), then

|a|2 = |b|2 + |c|2.
This is known as Pythagoras’s Theorem (see Exercise 4).

If we apply Pythagoras’ Theorem to (2.4), for example, we get

|a|2 = |Pb(a)|2 + |a− Pb(a)|2.
Hence,

|a|2 ≥ |Pb(a)|2 = (
a · b
b · b)2|b|2 =

(a · b)2

|b|2 .

Cross multiplying and taking square roots, we get a famous fact known as
the Cauchy-Schwartz inequality.
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Proposition 2.4. For any a, b ∈ Rn, we have

|a · b| ≤ |a||b|.

Moreover, if b 6= 0, then equality holds if and only if a and b are collinear.

Note that two vectors a and b are said to be collinear whenever one of
them is a scalar multiple of the other. If either a and b is zero, then auto-
matically they are collinear. If b 6= 0 and the Cauchy-Schwartz inequality is
an equality, then working backwards, one sees that |a − Pb(a)|2 = 0, hence
the validity of the second claim. You are asked to supply the complete proof
in Exercise 6.

Cauchy-Schwartz says that for any two unit vectors â and b̂, we have
the inequality

−1 ≤ â · b̂ ≤ 1.

We can therefore define the angle θ between any two non zero vectors a and
b in Rn by putting

θ := cos−1(â · b̂).

Note that we don’t try to define the angle when either a or b is 0. (Recall
that if −1 ≤ x ≤ 1, then cos−1 x is the unique angle θ such that 0 ≤ θ ≤ π
with cos θ = x.) With this definition, we have

a · b = |a||b| cos θ (2.7)

provided a and b are any two non-zero vectors in Rn. Hence if |a| = |b| = 1,
then the projection of a on b is

Pb(a) = (cos θ)b.

θ

b

a

0 Pb(a) = |a|(cos θ)b

PROJECTION
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Thus another way of expressing the projection formula is

â = (cos β)b̂ + (cos γ)ĉ.

Here β and γ are the angles between a and b and c respectively, and cos β
and cos γ are the corresponding direction cosines.

In the case of R2, there is already a notion of the angle between two
vectors, defined in terms of arclength on a unit circle. Hence the expression
a · b = |a||b| cos θ is often (especially in physics) taken as definition for the
dot product, rather than as definition of angle, as we did here. However,
defining a · b in this way has the disadvantage that it is not at all obvious
that elementary properties such as the identity (a+b) ·c = a ·c+b ·c hold.
Moreover, using this as a definition in Rn has the problem that the angle
between two vectors must also be defined. The way to solve this is to use
arclength, but this requires bringing in an unnecessary amount of machinery.
On the other hand, the algebraic definition is easy to state and remember,
and it works for any dimension. The Cauchy-Schwartz inequality, which is
valid in Rn, tells us that it possible two define the angle θ between a and b
via (2.7) to be θ := cos−1(â · b̂).

2.1.7 Examples

Let us now consider a couple of typical applications of the ideas we just
discussed.

Example 2.2. A film crew wants to shoot a car moving along a straight
road with constant speed x km/hr. The camera will be moving along a
straight track at y km/hr. The desired effect is that the car should appear
to have exactly half the speed of the camera. At what angle to the road
should the track be built?

Solution: Let θ be the angle between the road and the track. We need
to find θ so that the projection of the velocity vector vR of the car on the
track is exactly half of the velocity vector vT of the camera. Thus

(vR · vT
vT · vT

)
vT =

1

2
vT

and vR · vT = |vR||vT | cos θ. Now |vR| = x and |vT | = y since speed is by
definition the magnitude of velocity. Thus

xy

y2
cos θ =

1

2
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Consequently, cos θ = y/2x. In particular the camera’s speed cannot exceed
twice the car’s speed.

Example 2.3. What we have seen so far can be applied to finding a formula
for the distance from a point v = (v1, v2)

T in R2 to a line ax + by =
c. Of course this problem can be solved algebraically by considering the
line through (v1, v2)

T orthogonal to our line. A more illuminating way to
proceed, however, is to use projections since they will give a method which
can be used in any Rn, whereas it isn’t immediately clear how to extend
the first method. The way to proceed, then, is to begin by converting the
line into a more convenient form. The way we will do this is to choose two
points (x0, y0)

T = a and (x1, y1)
T = b on the line. Then the line can also be

represented as the set of all points of the form a+ tc, where c = b−a. Since
distance is invariant under translation, we can replace our original problem
with the problem of finding the distance d from w = v − a to the line tc.
Since this distance is the length of the component of w orthogonal to c, we
get the formula

d = |w − Pc(w)|
=

∣∣∣w −
(w · c

c · c
)

c
∣∣∣

We will give another way to express this distance below.

Example 2.4. Suppose ` is the line through (1, 2)T and (4,−1)T . Let us
find the distance d from (0, 6)T to `. Since (4,−1)T − (1, 2)T = (3,−3)T , we
may as well take

c = 1/
√

2(1,−1)T .

We can also take w = (0, 6)T − (1, 2)T , although we could also use (0, 6)T −
(4,−1)T . The formula then gives

d =

∣∣∣∣(−1, 4)T −
(

(−1, 4)T · (1,−1)T√
2

)
(1,−1)T√

2

∣∣∣∣

=

∣∣∣∣(−1, 4)T −
(−5

2

)
(1,−1)T

∣∣∣∣

=

∣∣∣∣∣

(
3

2
,
3

2

)T ∣∣∣∣∣

=
3
√

2

2
.



25

Exercises

Exercise 2.1. Verify the four properties of the dot product on Rn.

Exercise 2.2. Verify the assertion that b·c = 0 in the proof of Theorem 2.2.

Exercise 2.3. Prove the second statement in the Cauchy-Schwartz inequal-
ity that a and b are collinear if and only if |a · b| ≤ |a||b|.

Exercise 2.4. A nice application of Cauchy-Schwartz is that if a and b are
unit vectors in Rn such that a · b = 1, then a = b. Prove this.

Exercise 2.5. Show that Pb(rx + sy) = rPb(x) + sPb(y) for all x,y ∈ Rn

and r, s ∈ R. Also show that Pb(x) · y = x · Pb(y).

Exercise 2.6. Prove the vector version of Pythagoras’s Theorem. If c =
a + b and a · b = 0, then |c|2 = |a|2 + |b|2.

Exercise 2.7. Show that for any a and b in Rn,

|a + b|2 − |a − b|2 = 4a · b.

Exercise 2.8. Use the formula of the previous problem to prove Proposition
2.1, that is to show that |a + b| = |a− b| if and only if a · b = 0.

Exercise 2.9. Prove the law of cosines: If a triangle has sides with lengths
a, b, c and θ is the angle between the sides of lengths a and b, then c2 =
a2 + b2 − 2ab cos θ. (Hint: Consider c = b − a.)

Exercise 2.10. Another way to motivate the definition of the projection
Pb(a) is to find the minimum of |a− tb|2. Find the minimum using calculus
and interpret the result.

Exercise 2.11. Orthogonally decompose the vector (1, 2, 2) in R3 as p + q
where p is required to be a multiple of (3, 1, 2).

Exercise 2.12. Use orthogonal projection to find the vector on the line
3x+ y = 0 which is nearest to (1, 2). Also, find the nearest point.

Exercise 2.13. How can you modify the method of orthogonal projection
to find the vector on the line 3x+ y = 2 which is nearest to (1,−2)?
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2.2 Lines and planes.

2.2.1 Lines in Rn

Let’s consider the question of representing a line in Rn. First of all, a line in
R2 is cut out by a singlle linear equation ax+ by = c. But a single equation
ax+ by+ cz = d cuts out a plane in R3, so a line in R3 requires at least two
equations, since it is the intersection of two planes. For the general case, Rn,
we need a better approach. The point is that every line is determined two
points. Suppose we want to express the line through a and b Rn. Notice
that the space curve

x(t) = a + t(b− a) = (1 − t)a + tb, (2.8)

where t varies through R, has the property that x(0) = a, and x(1) = b.
As you can see from the Parallelogram Law, this curve traces out the line
through a parallel to b− a as in the diagram below.

Equation (2.8) lets us define a line in any dimension. Hence suppose a
and c are any two vectors in Rn such that c 6= 0.

Definition 2.4. The line through a parallel to c is defined to be the path
traced out by the curve x(t) = a + tc as t takes on all real values. We will
refer to x(t) = a + tc as the vector form of the line.

In this form, we are defining x(t) as a vector-valued function of t. The
vector form x(t) = a + tc leads directly to parametric form of the line. In
the parametric form, the components x1, . . . , xn of x are expressed as linear
functions of t as follows:

x1 = a1 + tc1, x2 = a2 + tc2, . . . , xn = an + tcn. (2.9)

Letting a vary while b is kept fixed, we get the family of all lines of the
form x = a + tc. Every point of Rn is on one of these lines, and two lines
either coincide or don’t meet at all. (The proof of this is an exercise.) We
will say that two lines a+ tc and a′ + tc′ are parallel if c and c′ are collinear.
We will also say that the line a + tc is parallel to c.

Example 2.5. Let’s find an expression for the line in R4 passing through
(3, 4,−1, 0) and (1, 0, 9, 2). We apply the trick in (2.8). Consider

x = (1 − t)(3, 4,−1, 0) + t(1, 0, 9, 2).
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Clearly, when t = 0, x = (3, 4,−1, 0), and when t = 1, then x = (1, 0, 9, 2).
We can also express x in the vector form x = a + t(b − a) where a =
(3, 4,−1, 0) and b = (1, 0, 9, 2). The parametric form is

x1 = −2t+ 1, x2 = −4t+ 4, x3 = 10t+ 1, x4 = 2t.

Example 2.6. The intersection of two planes in R3 is a line. Let’s show this
in a specific example, say the planes are x+y+z = 1 and 2x−y+2z = 2. By
inspection, (1, 0, 0) and (0, 0, 1) lie on both planes, hence on the intersection.
The line through these two points is (1− t)(1, 0, 0) + t(0, 0, 1) = (1− t, 0, t).
Setting x = 1 − t, y = 0 and z = t and substituting this into both plane
equations, we see that this line does indeed lie on both planes, hence is in
the intersection. But by staring at the equations of the planes (actually by
subtracting twice the first equation from the second), we see that every point
(x, y, z) on the intersection has y = 0. Thus all points on the intersection
satisfy y = 0 and x+ z = 1. But any point of this form is on our line, so we
have shown that the intersection of the two planes is the line.

Before passing to planes, let us make a remark about the Parallelogram
Law for Rn, namely that a + b is the vector along the diagonal of the
parallelogram with vertices at 0, a and b. This is valid in any Rn, and can
be seen by observing (just as we noted for n = 2) that the line through a
parallel to b meets the line through b parallel to a at a + b. We leave this
as an exercise.

2.2.2 Planes in R3

The solution set of a linear equation

ax+ by + cz = d (2.10)

in three variables x, y and z is called a plane in R3. The linear equation
(2.10) expresses that the dot product of the vector a = (a, b, c)T and the
variable vector x = (x, y, z)T is the constant d:

a · x = d.

If d = 0, the plane passes through the origin, and its equation is said to
be homogeneous. In this case it is easy to see how to interpret the plane
equation. The plane ax+ by + cz = 0 consists of all (r, s, t)T orthogonal to
a = (a, b, c)T . For this reason, we call (a, b, c)T a normal to the plane. (On
a good day, we are normal to the plane of the floor.)
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Example 2.7. Find the plane through (1, 2, 3)T with nomal (2, 3, 5)T . Now
a = (2, 3, 5)T , so in the equation (2.10) we have d = (2, 3, 5)T ·(1, 2, 3)T = 23.
Hence the plane is 2x+ 3y + 5z = 23.

Holding a 6= 0 constant and varying d gives a family of planes filling up
R3 such that no two distinct planes have any points in common. Hence the
family of planes ax+by+cz = d (a, b, c fixed and d arbitrary) are all parallel.
By drawing a picture, one can see from the Parallelogram Law that every
vector (r, s, t)T on ax+ by+ cz = d is the sum of a fixed vector (x0, y0, z0)

T

on ax+ by + cz = d and an arbitrary vector (x, y, z)T on the parallel plane
ax+ by + cz = 0 through the origin.

FIGURE

2.2.3 The distance from a point to a plane

A nice application of our projection techniques is to be able to write down a
simple formula for the distance from a point to a plane P in R3. The problem
becomes quite simple if we break it up into two cases. First, consider the
case of a plane P through the origin, say with equation ax + by + cz = 0.
Suppose v is an arbitrary vector in R3 whose distance to P is what we
seek. Now we can decompose v into orthogonal components where one of
the components is along the normal n = (a, b, c)T , say

v = Pn(v) + (v − Pn(v)), (2.11)

where
Pn(v) =

(v · n
n · n

)
n.

It’s intuitively clear that the distance we’re looking for is

d = |Pn(v)| = |v · n|/√n · n,

but we need to check this carefully. First of all, we need to say that the
distance from v to P means the minimum value of |v− r|, where r is on P .
To simplify notation, put p = Pn(v) and q = v − p. Since v = p + q,

v − r = p + q− r.

Since P contains the origin, q − r lies on P since both q and r do, so by
Pythagoras,

|v − r|2 = |p|2 + |q− r|2.
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But p is fixed, so |v−r|2 is minimized by taking |q−r|2 = 0. Thus |v−r|2 =
|p|2, and the distance D(v, P ) from v to P is indeed

D(v, P ) = |p| =
|v · n|

(n · n)
1

2

= |v · n̂|.

Also, the point on P nearest v is q. If v = (r, s, t)T , the distance is

D(v, P ) =
|ar + bs+ ct|√
a2 + b2 + c2

.

We now attack the general problem by reducing it to the first case. We
want to find the distance D(v, Q) from v to an arbitrary plane Q in R3.
Suppose the equation of Q is ax+ by+ cz = d, and let c be a vector on Q. I
claim that the distance from v to Q is the same as the distance from v−c to
the plane P parallel to Q through the origin, i.e. the plane ax+ by+ cz = 0.
Indeed, we already showed that every vector on Q has the form w+c where
w is on P . Thus let r be the vector on Q nearest v. Since d(v, r) = |v−r|, it
follows easily from r = w + c that d(v, r) = d(v− c,w). Hence the problem
amounts to minimizing d(v − c,w) for w ∈ P , which we already solved.
Thus

D(v, Q) = |(v − c) · n̂|,
which reduces to the formula

D(v, Q) =
|ar + bs+ ct− d|√

a2 + b2 + c2
,

since

c · n̂ =
c · n

(n · n)
1

2

=
d√

a2 + b2 + c2
.

In summary, we have

Proposition 2.5. Let Q be the plane in R3 defined by ax+by+cz = d, and
let v be any vector in R3, possibly lying on Q. Let D(v, Q) be the distance
from v to Q. Then

D(v, Q) =
|ar + bs+ ct− d|√

a2 + b2 + c2
.

In fact, the problem we just solved has a far more general version known
as the least squares problem. We will come back to this topic in a later
chapter.
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Ii is as an exercises to find a formula for the distance from a point to a
line. A more challenging exercise is to find the distance between two lines.
If one of the lines is parallel to a and the other is parallel to b, then it turns
out that what is needed is a vector orthogonal to both a and b. This is the
same problem encountered if one wants to find the plane through three non
collinear points. What is needed is a vector orthogonal to q− p and r− p.
Both of these problems are solved by using the cross product, which we take
up in the next section.
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Exercises

Exercise 2.14. Express the line ax+ by = c in R2 in parametric form.

Exercise 2.15. Express the line with vector form (x, y)T = (1,−1)T +
t(2, 3)T in the form ax+ by = c.

Exercise 2.16. Find the line through the points a and b in the following
cases:

(i) a = (1, 1,−3)T and b = (6, 0, 2)T , and

(ii) a = (1, 1,−3, 4)T and b = (6, 0, 2,−3)T .

Exercise 2.17. Prove the Parallelogram Law in Rn for any n.

Exercise 2.18. Find the line of intersection of the planes 3x − y + z = 0
and x− y − z = 1 in parametric form.

Exercise 2.19. Do the following:

(a) Find the equation in vector form of the line through (1,−2, 0)T parallel
to (3, 1, 9)T .

(b) Find the plane perpendicular to the line of part (a) passing through
(0, 0, 0)T .

(c) At what point does the line of part (a) meet the plane of part (b)?

Exercise 2.20. Determine whether or not the lines (x, y, z)T = (1, 2, 1)T +
t(1, 0, 2)T and (x, y, z)T = (2, 2,−1)T + t(1, 1, 0)T intersect.

Exercise 2.21. Consider any two lines in R3. Suppose I offer to bet you
they don’t intersect. Do you take the bet or refuse it? What would you do
if you knew the lines were in a plane?

Exercise 2.22. Use the method of § 2.2.2 to find an equation for the plane
in R3 through the points (6, 1, 0)T , (1, 0, 1)T and (3, 1, 1)T

Exercise 2.23. Compute the intersection of the line through (3,−1, 1)T

and (1, 0, 2)T with the plane ax+ by + cz = d when

(i) a = b = c = 1, d = 2,

(ii) a = b = c = 1 and d = 3.

Exercise 2.24. Find the distance from the point (1, 1, 1)T to

(i) the plane x+ y + z = 1, and

(ii) the plane x− 2y + z = 0.
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Exercise 2.25. Find the orthogonal decomposition (1, 1, 1)T = a+b, where
a lies on the plane P with equation 2x+ y + 2z = 0 and a · b = 0. What is
the orthogonal projection of (1, 1, 1)T on P ?

Exercise 2.26. Here’s another bet. Suppose you have two planes in R3 and
I have one. Furthermore, your planes meet in a line. I’ll bet that all three
of our planes meet. Do you take this bet or refuse it. How would you bet if
the planes were all in R4 instead of R3?

Exercise 2.27. Show that two lines in Rn (any n) which meet in two points
coincide.

Exercise 2.28. Verify that the union of the lines x = a + tb, where b is
fixed but a is arbitrary is Rn. Also show that two of these lines are the same
or have no points in common.

Exercise 2.29. Verify the Parallelogram Law (in Rn) by computing where
the line through a parallel to b meets the line through b parallel to a.
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2.3 The Cross Product

2.3.1 The Basic Definition

The cross product of two non parallel vectors a and b in R3 is a vector
in R3 orthogonal to both a and b defined geometrically as follows. Let P
denote the unique plane through the origin containing both a and b, and
let n be the choice of unit vector normal to P so that the thumb, index
finger and middle finger of your right hand can be lined up with the three
vectors a,b and n without breaking any bones. In this case we call (a,b,n)
a right handed triple. (Otherwise, it’s a left handed triple.) Let θ be the
angle between a and b, so 0 < θ < π. Then we put

a× b = |a||b| sin θn. (2.12)

If a and b are collinear, then we set a × b = 0. While this definition
is very pretty, and is useful because it reveals the geometric properties of
the cross product, the problem is that, as presented, it isn’t computable
unless a · b = 0 (since sin θ = 0). For example, one sees immediately that
|a× b| = |a||b| sin θ.

To see a couple of examples, note that (i, j,k) and (i,−j,−k) both are
right handed triples, but (i,−j,k) and (j, i,k) are left handed. Thus i×j = k,
while j× i = −k. Similarly, j×k = i and k× j = −i. In fact, these examples
point out two of the general properties of the cross product:

a× b = −b× a,

and
(−a) × b = −(a× b).

The question is whether or not the cross product is computable. In fact, the
answer to this is yes. First, let us make a temporary definition. If a,b ∈ Rn,
put

a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

We call a ∧ b the wedge product of a and b. Notice that a ∧ b is defined
without any restrictions on a and b. It is not hard to verify by direct
computation that a ∧ b is orthogonal to both a and b, so a ∧ b = r(a× b)
for some r ∈ R.

The key fact is the following

Proposition 2.6. For all a and b in R3,

a× b = a ∧ b.
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This takes care of the computability problem since a ∧ b is easily com-
puted. An outline the proof goes as follows. The wedge product and the
dot product are related by the following identity:

|a ∧ b|2 + (a · b)2 = (|a||b|)2. (2.13)

The proof is just a calculation, and we will omit it. Since a ·b = |a||b| cos θ,
and since sin θ ≥ 0, we deduce that

|a ∧ b| = |a||b| sin θ. (2.14)

It follows that a∧b = ±|a||b| sin θn. The fact that the sign is + proven by
showing that

(a ∧ b) · n > 0.

The proof of this step is a little tedious so we will omit it.

2.3.2 Some further properties

Before giving applications, we let us give some of the algebraic properties of
the cross product.

Proposition 2.7. Suppose a,b, c ∈ R3. Then :

(i) a× b = −b× a,

(ii) (a + b) × c = a× c + b × c, and

(iii) for any r ∈ R,
(ra) × b = a× (rb) = r(a× b).

Proof. The first and third identities are obvious from the original definition.
The second identity, which says that the cross product is distributive, is not
at all obvious from the definition. On the other hand, it is easy to check
directly that

(a + b) ∧ c = a ∧ c + b ∧ c,

so (ii) has to hold also since ⊗ = ∧.

Recalling that R2 can be viewed as the complex numbers, it follows that
vectors in R1 = R and R2 can be multiplied, where the multiplication is both
associative and commutative. Proposition 2.7 says that the cross product
gives a multiplication on R3 which is distributive, but not commutative. It is
in fact anti-commutative. Also, the cross product isn’t associative: (a×b)×c
and a × (b × c) are not in general equal. Instead of the usual associative
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law for multiplication, the cross product satisfies a famous identity known
as the Jacobi identity:

a× (b × c) + b× (c × a) + c × (a× b) = 0.

The Jacobi Identity and the anti-commutativity a×b = −b×a are the basic
axioms for what is called a Lie algebra, which is an important structure in
abstract algebra with many applications in mathematics and physics. The
next step in this progression of algebras (that is, a product on R4 is given by
the the quaternions, which are fundamental, but won’t be considered here.

2.3.3 Examples and applications

The first application is to use the cross product to find a normal n to the
plane P through p,q, r, assuming they don’t all lie on a line. Once we have
n, it is easy to find the equation of P . We begin by considering the plane
Q through the origin parallel to P . First put a = q − p and b = r − p.
Then a,b ∈ Q, so we can put n = a × b. Suppose n = (a, b, c)T and
p = (p1, p2, p3)

T . Then the equation of Q is ax + by + cz = 0, and the
equation of P is obtained by noting that

n · ((x, y, z)T − (p1, p2, p3)
T ) = 0,

or, equivalently,

n · (x, y, z)T = n · (p1, p2, p3)
T .

Thus the equation of P is

ax+ by + cz = ap1 + bp2 + cp3.

Example 2.8. Let’s find an equation for the plane in R3 through (1, 2, 1)T ,
(0, 3,−1)T and (2, 0, 0)T . Using the cross product, we find that a normal
is (−1, 2, 1)T × (−2, 3,−1)T = (−5,−3, 1)T . Thus the plane has equation
−5x − 3y + z = (−5,−3, 1)T · (1, 2, 1)T = −10. One could also have used
(0, 3,−1)T or (2, 0, 0)T on the right hand side with the same result, of course.

The next application is the area formula for a parallelogram.

Proposition 2.8. Let a and b be two noncollinear vectors in R3. Then the
area of the parallelogram spanned by a and b is |a × b|.

We can extend the area formula to 3-dimensional (i.e. solid) parallelo-
grams. Any three noncoplanar vectors a, b and c in R3 determine a solid
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parallelogram called a parallelepiped. This parallelepiped P can be explic-
itly defined as

P = {ra + sb + tc | 0 ≤ r, s, t ≤ 1}.
For example, the parallelepiped spanned by i, j and k is the unit cube in R3

with vertices at 0, i, j, k, i + j, i + k, j + k and i + j + k. A parallelepiped
has 8 vertices and 6 sides which are pairwise parallel.

To get the volume formula, we introduce the triple product a · (b× c) of
a, b and c.

Proposition 2.9. Let a, b and c be three noncoplanar vectors in R3. Then
the volume of the parallelepiped they span is |a · (b × c)|.

Proof. We leave this as a worthwhile exercise.

By the definition of the triple product,

a · (b× c) = a1(b2c3 − b3c2) − a2(b3c1 − b1c3) + a3(b1c2 − b2c1).

The right hand side of this equation is a 3× 3 determinant which is written

det



a1 a2 a3

b1 b2 b3
c1 c2 c3


 .

We’ll see somewhat later how the volume of n-dimensional parallelepiped is
expressed as the absolute value of a certain n × n determinant, which is a
natural generalization of the triple product.

Example 2.9. We next find the formula for the distance between two lines.
Consider two lines `1 and `2 in R3 parameterized as a1 + tb1 and a2 + tb2

respectively. We want to show that the distance between `1 and `2 is

d = |(a1 − a2) · (b1 × b2)|/|b1 × b2|.

This formula is somewhat surprising because it says that one can choose
any two initial points a1 and a2 to compute d. First, let’s see why b1 × b2

is involved. This is in fact intuitively clear, since b1 × b2 is orthogonal to
the directions of both lines. But one way to see this concretely is to take
a tube of radius r centred along `1 and expand r until the tube touches
`2. The point v2 of tangency on `2 and the center v1 on `1 of the disc
(orthogonal to `1) touching `2 give the two points so that d = d(v1,v2),
and, by construction, v1 − v2 is parallel to b1 × b2. Now let vi = ai + tibi
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for i = 1, 2, and denote the unit vector in the direction of b1 × b2 by û.
Then

d = |v1 − v2|

= (v1 − v2) ·
(v1 − v2)

|v1 − v2|
= |(v1 − v2) · û|
= |(a1 − a2 + t1b1 − t2b2) · û|
= |(a1 − a2) · û|.

The last equality is due to the fact that b1 ×b2 is orthogonal to t1b1 − t2b2

plus the fact that the dot product is distributive. This is the formula we
sought.

For other applications of the cross product, consult Vector Calculus by
Marsden and Tromba.
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Exercises

Exercise 2.30. Using the cross product, find the plane through the origin
that contains the line through (1,−2, 0)T parallel to (3, 1, 9)T .

Exercise 2.31. Using the cross product, find
(a) the line of intersection of the planes 3x+2y−z = 0 and 4x+5y+z = 0,

and
(b) the line of intersection of the planes 3x+2y−z = 2 and 4x+5y+z = 1.

Exercise 2.32. Is x× y orthogonal to 2x − 3y? Generalize this property.

Exercise 2.33. Find the distance from (1, 2, 1)T to the plane containing
1, 3, 4)T , (2,−2,−2)T , and (7, 0, 1)T . Be sure to use the cross product.

Exercise 2.34. Formulate a definition for the angle between two planes in
R3. (Suggestion: consider their normals.)

Exercise 2.35. Find the distance from the line x = (1, 2, 3)T + t(2, 3,−1)T

to the origin in two ways:
(i) using projections, and
(ii) using calculus, by setting up a minimization problem.

Exercise 2.36. Find the distance from the point (1, 1, 1)T to the line x =
2 + t, y = 1 − t, z = 3 + 2t,

Exercise 2.37. Show that in R3, the distance from a point p to a line
x = a + tb can be expressed in the form

d =
|(p − a) × b|

|b| .

Exercise 2.38. Prove the identity

|a × b|2 + (a · b)2 = (|a||b|)2.

Deduce that if a and b are unit vectors, then

|a× b|2 + (a · b)2 = 1.

Exercise 2.39. Show that

a× (b× c) = (a · c)b − (a · b)c.

Deduce from this a× (b× c) is not necessarily equal to (a×b)× c. In fact,
can you say when they are equal?



Chapter 3

Linear Equations and
Matrices

3.1 Linear equations: the beginning of algebra

The subject of algebra arose from the study of equations. The simplest kind
of equations are linear equations, which are equations of the form

a1x1 + a2x2 + · · · + anxn = c,

where a1, a2, . . . an are a set of numbers called the coefficients, x1, x2, . . . xn
are the variables and c is the constant term. In most familiar situations,
the coefficients are real numbers, but in some of the other settings we will
encounter later, such as coding theory, the coefficients might be elements of
some a finite field. Such considerations will be taken up in later chapters.

The simplest linear equation one can imagine is an equation with only
one variable, such as ax = b. For example, consider 3x = 4. This equation
is easy to solve since we can express the solution as x = 3/4. In general, if

a 6= 0, then x =
b

a
, and this is the only solution. But if a = 0 and b 6= 0,

there is no solution, since the equation is 0 = b. And in the case where a and
b are both 0, every real number x is a solution. This points outs a general
property of linear equations. Either there is a unique solution (i.e. exactly
one), no solution or infinitely many solutions.

Let’s take another example. Suppose you are planning to make a cake
using 10 ingredients and you want to limit the cake to 2000 calories. Let
ai be the number of calories per gram of the ith ingredient. Presumably,
each ai is nonnegative, although this problem may eventually be dealt with.

39
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Next, let xi be the number of grams of the ith ingredient. Then a1x1+a2x2+
· · ·+a10x10 is the total number of calories in the recipe. Since you want the
total number of calories in your cake to be at most 2000, you could consider
the equation a1x1 + a2x2 + · · · + a10x10 = 2000. The totality of possible
solutions x1, x2, . . . , x10 to this equation is the set of all possible recipes
you can concoct with exactly 2000 calories. Decreasing the amount of any
ingredient will then clearly decrease the total number of calories. Of course,
any solution where some xi is negative don’t have a physical meaning.

A less simple example is the question of finding all common solutions of
the equations z = x2 + xy5 and z2 = x+ y4. Since the equations represent
two surfaces in R3, we would expect the set of common solutions to be a
curve. It’s impossible to express the solutions in closed form, but we can
study them locally. For example, both surfaces meet at (1, 1, 1)T , so we can
find the tangent line to the curve of intersection at (1, 1, 1)T by finding the
intersection of the tangent planes of the surfaces at this point. This will at
least give us a linear approximation to the curve.

General, nonlinear systems are usually very difficult to solve; their theory
involves highly sophisticated mathematics. On the other hand, it turns out
that systems of linear equations can be handled much more simply. There
are elementary methods for solving them, and modern computers make it
possible to handle gigantic linear systems with great speed. A general linear
system having of m equations in n unknowns x1, . . . , xn can be expressed in
the following form:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a23x2 + · · · + a2nxn = b2

... (3.1)

am1x1 + am2x2 + · · · + amnxn = bm.

Here, all the coefficients aij and all constants bi are assumed for now to be
real numbers. When all the constants bi = 0, we will call the system homo-

geneous. The main problem, of course, is to find a procedure or algorithm
for describing the solution set of a linear system as a subset of Rn.

For those who skipped Chapter 1, let us insert a word about notation.
A solution of (3.1) is an n-tuple of real numbers, i. e. an element of Rn. By
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convention, n-tuples are always written as column vectors. To save space,
we will use the notation

(u1, u2, . . . , un)
T =




u1

u2
...
un


 .

The meaning of the superscript T will be clarified below. We would also like
to point out that a brief summary of the highlights of this chapter may be
found in the last section.

3.1.1 The Coefficient Matrix

To simplify notation, we will introduce the coefficient matrix.

Definition 3.1. The coefficient matrix of the above linear system is the
m× n array

A =




a11 a12 . . . a1n

a21 a23 . . . a2n
...

... · · · ...
am1 am2 . . . amn


 . (3.2)

The augmented coefficient matrix is the m× (n+ 1) array

(A|b) =




a11 a12 . . . a1n b1
a21 a23 . . . a2n b2
...

... · · · ...
am1 am2 . . . amn bm


 . (3.3)

In general, an m × n matrix is simply a rectangular m × n array as in
(3.2). When m = n, we will say that A is a square matrix of degree n.

Now let’s look at the strategy for finding solving the system. First of
all, we will call the set of solutions the solution set. The strategy for finding
the solution set is to replace the original system with a sequence of new
systems so that each new system has the same solution set as the previous
one, hence as the original system.

Definition 3.2. Two linear systems are said to be equivalent if they have
the same solution sets.

Two equivalent systems have the same number of variables, but don’t
need to have the same number of equations.
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3.1.2 Gaussian reduction

The procedure for solving an arbitrary system is called Gaussian reduction.
Gaussian reduction is an algorithm for solving an arbitrary system by per-
forming a sequence of explicit operations, called elementary row operations,
to bring the augmented coefficient matrix (A|b) in (3.3) to a form called
reduced form, or reduced row echelon form. First of all, we define reduced
row echelon form.

Definition 3.3. A matrix A is said to be in reduced row echelon form, or
simply, to be reduced, if it has three properties.

(i) The first non zero entry in each row of A is 1.

(ii) The first non zero entry in every row is to the right of the first non
zero entry in all the rows above it.

(iii) Every entry above a first non zero entry is zero.

We will call a first non zero entry in a row its corner entry. A first non zero
entry in a row which has not been made into 1 by a dilation is called the
pivot of the row. Pivots aren’t required to be 1.

For reasons that will be explained later, an n×n matrix in reduced row
echelon form is called the n× n identity matrix. For example,

I2 =

(
1 0
0 1

)
and I3 =




1 0 0
0 1 0
0 0 1


 .

Here are some more examples of reduced matrices:




1 0 0 2
0 1 0 3
0 0 1 5


 ,

(
1 2 3 0 9
0 0 0 1 4

)
,

(
0 1 3 0 9
0 0 0 1 0

)
.

Notice that the last matrix in this example would be the coefficient matrix
of a system in which the variable x1 does not actually appear. The only
variables that occur are x2, . . . , x5. Note also that the n×n identity matrix
In and every matrix of zeros are also reduced.
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3.1.3 Elementary row operations

The strategy in Gaussian reduction is to use a sequence of steps called
elementary row operations on the rows of the coefficient matrix A to bring
A into reduced form. There are three types of elementary row operations
defined as follows:

• (Type I) Interchange two rows of A.

• (Type II) Multiply a row of A by a non zero scalar.

• (Type III) Replace a row of A by itself plus a multiple of a different
row.

We will call Type I operations row swaps and Type II operations row

dilations. Type III operations are called transvections. We will boycott this
term. The main result is that an arbitrary matrix A can always be put into
reduced form by a sequence of row operations. Before proving this, we will
work an example.

Example 3.1. Consider the counting matrix

C =




1 2 3
4 5 6
7 8 9


 .

We can row reduce C as follows:

C
R2−4R1→




1 2 3
0 −3 −6
7 8 9


 R3−7R1→




1 2 3
0 −3 −6
0 −6 −12




R3−2R2→




1 2 3
0 −3 −6
0 0 0


 (−1/3)R2→




1 2 3
0 1 2
0 0 0


 R1−2R2→




1 0 −1
0 1 2
0 0 0


 .

Notice that we have indicated the row operations.

Proposition 3.1. Every matrix A can be put into reduced form by some
(not unique) sequence of elementary row operations.
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Proof. If a11 6= 0, we can make it 1 by the dilation which divides the first
row by a11. We can then use row operations to make all other entries in
the first column zero. If a11 = 0, but the first column has a non zero
entry somewhere, suppose the first non zero entry is in the ith row. Then
swapping the first and ith rows puts a non zero entry in the (1, 1) position.
Now proceed as above, dividing the new first row by the inverse of the new
(1, 1) entry, getting a corner entry in the (1, 1) position. Now that there
we have a corner entry in (1, 1), we can use operations of type III to make
all elements in the first column below the (1, 1) entry 0. If the first column
consists entirely of zeros, proceed directly to the second column and repeat
the procedure just described on the second column. The only additional
step is that if the (2, 2) entry is a corner, then the (1, 2) entry may be made
into 0 by another Type III operation. Continuing in this manner, we will
eventually obtain a reduced matrix.

Remark: Of course, the steps leading to a reduced form are not unique.
Nevertheless, the reduced form of A itself is unique. We now make an
important definition.

Definition 3.4. The reduced form of an m×n matrix A is denoted by Ared.
The row rank, or simply, the rank of an m × n matrix A is the number of
non-zero rows in Ared.

3.2 Solving Linear Systems

Let A be an m×n matrix and consider the linear system whose augmented
coefficient matrix is (A|b). The first thing is to point out the role of row
operations.

3.2.1 Equivalent Systems

Recall that two linear systems are said to be equivalent if they have the
same solution sets. The point about Gaussian reduction is that performing
a row operation on the augmented coefficient matrix of a linear system gives
a new system which is equivalent to the original system.

For example, a row swap, which corresponds to interchanging two equa-
tions, clearly leaves the solution set unchanged. Similarly, multiplying the
ith equation by a non-zero constant a does likewise, since the original system
can be recaptured by multiplying the ith equation by a−1. The only ques-
tion is whether a row operation of Type III changes the solutions. Suppose
the ith equation is replaced by itself plus a multiple k of the jth equation,



45

where i 6= j. Then any solution of the original system is still a solution of
the new system. But any solution of the new system is also a solution of
the original system since subtracting k times the jth equation from the ith
equation of the new system gives us back the original system. Therefore the
systems are equivalent.

To summarize this, we state

Proposition 3.2. Performing a sequence of row operations on the aug-
mented coefficient matrix of a linear system gives a new system which is
equivalent to the original system.

3.2.2 The Homogeneous Case

We still have to find a way to write down the solution set. The first step
will be to consider the homogeneous linear system with coefficient matrix
(A|0). This is the same as dealing with the coefficient matrix A all by itself.

Definition 3.5. The solution set of a homogeneous linear system with co-
efficient matrix A is denoted by N (A) and called the null space of A.

The method is illustrated by the following example.

Example 3.2. Consider the homogeneous linear system

0x1 + x2 + 2x3 + 0x4 + 3x+ 5 − x6 = 0

0x1 + 0x2 + 0x3 + x4 + 2x5 + 0x6 = 0.

The coefficient matrixA is already reduced. Indeed,

A =

(
0 1 2 0 3 −1
0 0 0 1 2 0

)
.

Our procedure will be to solve for the variables in the corners, which we
will call the corner variables. We will express these variables in terms of
the remaining variables, which we will call the free variables. In A above,
the corner columns are the second and fourth, so x2 and x4 are the corner
variables and the variables x1, x3, x5 and x6 are the free variables. Solving
gives

x2 = −2x3 − 3x5 + x6

x4 = −2x5

In this expression, the corner variables are dependent variables since they
are functions of the free variables. Now let (x1, x2, x3, x4, x5, x6) denoted
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an arbitrary vector in R6 which is a solution to the system, and let us call
this 6-tuple the general solution vector. Replacing the corner variables by
their expressions in terms of the free variables gives a new expression for the
general solution vector involving just the free variables. Namely

x = (x1,−2x3 − 3x5 + x6, x3, − 2x5, x5, x6)
T .

The general solution vector now depends only on the free variables, and
there is a solution for any choice of these variables.

Using a little algebra, we can compute the vector coefficients of each
one of the free variables in x. These vectors are called the fundamental

solutions. In this example, the general solution vector x gives the following
set of fundamental solutions:

f1 = (1, 0, 0, 0, 0, 0)T , f2 = (0, 0,−2, 1, 0, 0)T , f3 = (0,−3, 0, − 2, 1, 0)T ,

and
f4 = (0,−1, 0, 0, 0, 1)T .

Hence the general solution vector has the form

x = x1f1 + x3f2 + x4f3 + x5f4.

In other words, the fundamental solutions span the solution space, i.e. every
solution is a linear combination of the fundamental solutions.

This example suggest the following

Proposition 3.3. In an arbitrary homogeneous linear system with coef-
ficient matrix A, any solution is a linear combination of the fundamental
solutions, and the number of fundamental solutions is the number of free
variables. Moreover,

#corner variables + #free variables = #variables. (3.4)

Proof. The proof that every solution is a linear combination of the funda-
mental solutions goes exactly like the above example, so we will omit it.
Equation (3.4) is an obvious consequence of the fact that every variable is
either a free variable or a corner variable, but not both.

There is something strange in Example 3.2. The variable x1 never ac-
tually appears in the system, but it does give a free variable and a corre-
sponding fundamental solution (1, 0, 0, 0, 0, 0)T . Suppose instead of A the
coefficient matrix is

B =

(
1 2 0 3 −1
0 0 1 2 0

)
.
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Now (1, 0, 0, 0, 0, 0)T is no longer a fundamental solution. In fact the solution
set is now a subset of R5. The corner variables are x1 and x3, and there are
now only three fundamental solutions corresponding to the free variables
x2, x4, and x5.

Even though (3.4) is completely obvious, it gives some very useful infor-
mation. Here is a typical application.

Example 3.3. Consider a system involving 25 variables and assume there
are 10 free variables. Then there are 15 corner variables, so the system
has to have at least 15 equations, that is, there must be at least 15 linear
constraints on the 25 variables.

We can also use (3.4) to say when a homogeneous system with coefficient
matrix A has a unique solution (that is, exactly one solution). Now 0 is
always a solution. This is the so called trivial solution. Hence if the solution
is to unique, then the only possibility is that N (A) = {0}. But this happens
exactly when there are no free variables, since if there is a free variable there
will be non trivial solutions. Thus a homogeneous system has a unique
solution if and only if every variable is a corner variable, which is the case
exactly when the number of corner variables is the number of columns of A.
It follows that if a homogeneous system has more variables than equations,
there have to be non trivial solutions, since there has to be at least one free
variable.

3.2.3 The Non-homogeneous Case

Next, consider the system with augmented coefficient matrix (A|b). If b 6=
0, the system is called non-homogeneous. To resolve the non-homogeneous
case, we need to observe a result sometimes called the Super-Position Prin-

ciple.

Proposition 3.4. If a system with augmented coefficient matrix (A|b) has
a particular solution p, then any other solution has the form p + x, where
x varies over all solutions of the associated homogeneous equation. That is,
x varies over N (A).

Proof. Let us sketch the proof. (It is quite easy.) Suppose p = (p1, . . . , pn)
and let x = (x1, . . . , xn) be an element of N (A). Then substituting pi + xi
into the system also gives a solution. Conversely, if q is another particular
solution, then p−q is a solution to the homogeneous system, i.e. an element
of N (A). Therefore q = p + x, where x = q − p ∈ N (A). This completes
the proof.



48

Example 3.4. Consider the system involving the counting matrix C of
Example 3.1:

1x1 + 2x2 + 3x3 = a

4x1 + 5x2 + 6x3 = b

7x1 + 8x2 + 9x3 = c,

where a, b and c are fixed arbitrary constants. This system has augmented
coefficient matrix

(C|b) =




1 2 3 a
4 5 6 b
7 8 9 c


 .

We can use the same sequence of row operations as in Example 3.1 to put
(C|b) into reduced form (Cred|c) but to minimize the arithmetic with de-
nominators, we will actually use a different sequence.

(C|b) =
R2−R1→




1 2 3 a
3 3 3 b− a
7 8 9 c


 R3−2R2→




1 2 3 a
3 3 3 b− a
1 2 3 c− 2b+ 2a


 R3−R1→




1 2 3 a
3 3 3 b− a
0 0 0 c− 2b+ a


 (−1/3)R3→




1 2 3 a
−1 −1 −1 (1/3)a − (1/3)b
0 0 0 c− 2b+ a


 R2+R1→




1 2 3 a
0 1 2 (4/3)a − (1/3)b
0 0 0 c− 2b+ a


 R1−2R2→




1 0 −1 (−5/3)a + (2/3)b
0 1 2 (4/3)a − (1/3)b
0 0 0 c− 2b+ a


 .

The reduced system turns out to be the same one we obtained by using the
sequence in Example 11.2. We get

1x1 + 0x2 − 1x3 = (−5/3)a + (2/3)b

0x1 + 1x2 + 2x3 = (4/3)a − (1/3)b

0x1 + 0x2 + 0x3 = a− 2b+ c

Clearly the above system may in fact have no solutions. In fact, from
the last equation, we see that whenever a − 2b + c 6= 0, there cannot be a
solution. Such a system is called inconsistent. For a simpler, example, think
of three lines in R2 which don’t pass through a common point. This is an
example where the system has three equations but only two variables.
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Example 3.5. Let’s solve the system of Example 3.4 for a = 1, b = 1 and
c = 1. In that case, the original system is equivalent to

1x1 + 0x2 − 1x3 = −1

0x1 + 1x2 + 2x3 = 1

0x1 + 0x2 + 0x3 = 0

It follows that x1 = −1 + x3 and x2 = 1− 2x3. This represents a line in R3.

The line if the previous example is parallel to the line of intersection of
the three planes

1x1 + 2x2 + 3x3 = 0

4x1 + 5x2 + 6x3 = 0

7x1 + 8x2 + 9x3 = 0,

These planes meet in a line since their normals are contained in a plane
through the origin. On the other hand, when a− 2b+ c 6= 0, what happens
is that the line of intersection of any two of the planes is parallel to the third
plane (and not contained in it).

that slightly perturbing the lines will

3.2.4 Criteria for Consistency and Uniqueness

To finish our treatment of systems (for now), we derive two criteria, one for
consistency and the other for uniqueness. Consider the m×n linear system
(3.1) with coefficient matrix A and augmented coefficient matrix (A|b).

Proposition 3.5. Suppose the coefficient matrix A has rank k, that is Ared

has k corners. Then N (A) = {0} if and only if k = n. The (possibly non-
homogeneous) linear system (A|b) is consistent if and only if the rank of A
and of (A|b) coincide. If (A|b) is consistent and k = n, then the solution is
unique. Finally, if A is n× n, the system (3.1) is consistent for all b if and
only if the rank of A equals n.

Proof. The first statement is a repetition of a result we already proved. The
second follows as in the previous example, because if the rank of (A|b) is
greater than k, then the last equation amounts to saying 0 = 1. If A is n×n
of rank n, then it is clear that (A|b) and A have the same rank, namely n.
It remains to show that if A and (A|b) have the same rank for all b, then
A has rank n. But if the rank of A is less than n, one can (exactly as in
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Example 3.4) produce a b for which (A|b) has rank greater than the rank
of A.

Systems where m = n are an important special case as they are neither
under determined (fewer equations than unknowns) nor over determined
(more equations than unknowns). When A is n × n of rank n, the system
(3.1) is called nonsingular. Thus the nonsingular systems are the square
systems which are always consistent and always have unique solutions. We
also say that an n× n matrix nonsingular if it has maximal rank n. If the
rank of A is less than n, we say that A is singular.

Example 3.6. An amusing geometric criterion for a 3 × 3 matrix

A =




a1

a2

a3




to be nonsingular is that

a1 · (a2 × a3) 6= 0.

Indeed, we know that a1, a2, and a3 are not in a plane through the origin
if and only if a1 · (a2 × a3) 6= 0. But the above Proposition also says that
the rank of A is three precisely when there is no non-zero vector orthogonal
to each of a1, a2, and a3.

The expression a1 · (a2 × a3) is called the determinant of A and abbre-
viated det(A). In algebraic terms, we have

det



a11 a12 a13

a21 a22 a23

a31 a32 a33


 = (3.5)

a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33.

Determinants will be taken up in a later chapter.
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Exercises

Exercise 3.1. Consider the linear system

x1 + 2x2 + 4x3 + 4x4 = 7

x2 + x3 + 2x4 = 3

x1 + 0x2 + 2x3 + 0x4 = 1

(a) Let A be the coefficient matrix of the associated homogeneous system.
Find the reduced form of A.

(b) Determine whether the system is consistent and, if so, find the general
solution.

(c) Find the fundamental solutions of Ax = 0 and show that the funda-
mental solutions span N (A).

(d) Is the system Ax = b consistent for all b ∈ R3? If not, find an
equation which the components of b must satisfy.

Exercise 3.2. If A is 9× 27, explain why the system Ax = 0 must have at
least 18 fundamental solutions.

Exercise 3.3. Consider the system Ax = 0 where A =
(

1 −1 2 −1 1
−2 2 1 −2 0

)
. Find

the fundamental solutions and show they span N (A).

Exercise 3.4. Let A be the 2 × 5 matrix of Problem 3.3. Solve the com-
pounded linear system (

A| 1 −1
−2 0

)
.

Exercise 3.5. Set up a linear system to determine whether (1, 0,−1, 1)
is a linear combination of (−1, 1, 2, 0), (2, 1, 0, 1) and (0, 1, 0,−1) with real
coefficients. What about when the coefficients are in Z3? Note that in Z3,
−1 = 2.

Exercise 3.6. A baseball team has won 3 mores games at home than on
the road, and lost 5 more at home than on the road. If the team has played
a total of 42 games, and if the number of home wins plus the number of road
losses is 20, determine the number of home wins, road wins, home losses and
road losses.

Exercise 3.7. For what real values of a and b does the system
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x+ ay + a2z = 1

x+ ay + abz = a

bx+ a2y + a2bz = a2b

have a unique solution?

Exercise 3.8. True or False: If the normals of three planes in R3 through
the origin lie in a plane through the origin, then then the planes meet in a
line.

Exercise 3.9. Suppose A is a 12 × 15 matrix of rank 12. How many fun-
damental solutions are there in N (A)?

Exercise 3.10. . How many 2×2 matrices of rank 2 are there if we impose
the condition that thhe entries are either 0 or 1? What about 3×3 matrices
of rank 3 with the same condition?

Exercise 3.11. Find the ranks of each of the following matrices:




1 2 3
1 4 9
1 8 27


 ,




1 2 2
1 4 4
1 8 8


 .

Can you formulate a general result from your results?

Exercise 3.12. If a chicken and a half lay and egg and a half in a day and
a half, how many eggs does a single chicken lay in one day? Bonus marks
for relating this to linear equations.

3.3 Matrix Algebra

Our goal in this section is to introduce matrix algebra and to show how it
it is closely related to the theory of linear systems.

3.3.1 Matrix Addition and Multiplication

Let Rm×n denote the set of all m × n matrices with real entries. There
are three basic algebraic operations on matrices. These are addition, scalar
multiplication and matrix multiplication. There are conditions which govern
when two matrices can be added and when they can be multiplied. In
particular, one cannot add or multiply any pair of matrices. First of all,
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suppose A = (aij) ∈ Rm×n and r is a scalar. Then the scalar multiple rA of
A is the matrix rA = (raij) ∈ Rm×n in which every element of A has been
multiplied by r. For example, if A is 2 × 3, then

3A =

(
3a11 3a12 3a13

3a21 3a22 3a23

)
.

Matrix addition can only be carried out on matrices of the same dimen-
sion. When A and B have the same dimension, say m×n, we take their sum
in the obvious manner. If A = (aij) and B = (bij), then A+B is defined to
be the m× n matrix A+B := (aij + bij). In other words, the (i, j) entry of
A+B is aij + bij . For example,

(
a11 a12

a21 a22

)
+

(
b11 b12
b21 b22

)
=

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
.

Addition and scalar multiplication can be combined in the usual way to
give linear combinations of matrices (of the same dimension). Here is an
example.

Example 3.7. Let

A =

(
1 1 0 2
2 −4 0 1

)
and B =

(
1 1 1 0
0 2 1 2

)
.

Then

3A =

(
3 3 0 6
6 −12 0 3

)
and A+B =

(
2 2 1 2
2 −2 1 3

)
.

The m × n matrix such that every entry is 0 is called the m × n zero

matrix. Clearly, the m×n zero matrix is an additive identity for addition of
m× n matrices. Now that the additive identity is defined, we can also note
that any m×nmatrix A has as an additive inverse −A, since A+(−A) = O.

3.3.2 Matrices Over F2: Lorenz Codes and Scanners

So far we have only considered matrices over the real numbers. After we
define fields, in the next Chapter, we will be able to compute with matrices
over other fields, such as the complex numbers C. Briefly, a field is a set with
addition and multiplication which satisfies the basic algebraic properties of
the integers, but where we can also divide.

The smallest field is F2, the integers mod 2, which consists of 0 and
1 with the usual rules of addition and multiplication, except that 1 + 1 is
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defined to be 0: 1 + 1 = 0. The integers mod 2 are most used in computer
science since. (Just look at the on-off switch on a PC.) Adding 1 represents
a change of state while adding 0 represents status quo.

Matrices over F2 are themselves quite interesting. For example, since F2

has only two elements, there are precisely 2mn such matrices. Addition on
such matrices also has some interesting properties, as the following example
shows.

Example 3.8. For example,

(
1 0 1
0 1 1

)
+

(
1 1 1
1 1 1

)
=

(
0 1 0
1 0 0

)
,

and (
1 0 1
0 1 1

)
+

(
1 0 1
0 1 1

)
=

(
0 0 0
0 0 0

)
.

In the first sum, the parity of every element in the first matrix is reversed.
In the second, we see every matrix over F2 is its own additive inverse.

Example 3.9. Random Key Crypts. Suppose Rocky wants to send a
message to Bullwinkle, and he wants to make sure that Boris and Natasha
won’t be able to learn what it says. Here is what the ever resourceful flying
squirrel can do. First he encodes the message as a sequence of zeros and ones.
For example, he can use the binary expansions of 1 through 26, thinking of
1 as a, 2 as b etc. Note that 1 = 1, 2 = 10, 3 = 11, 4 = 100 . . . , 26 = 11010.
Now he represents each letter as a five digit string: a = 00001, b = 00010,
c = 00011, and so on, and encodes the message. Rocky now has a long string
zeros and ones, which is usually called the plaintext. Finally, to make things
more compact, he arranges the plaintext into a 01 matrix by adding line
breaks at appropriate places. Let’s denote this matrix by P , and suppose
P is m× n. Now the fun starts. Rocky and Bullwinkle have a list of m× n
matrices of zeros and ones that only they know. The flying squirrel selects
one of these matrices, say number 47, and tells Bullwinkle. Let E be matrix
number 47. Cryptographers call E the key. Now he sends the ciphertext

encE(P ) = P + E to Bullwinkle. If only Rocky and Bullwinkle know E,
then the matrix P containing the plaintext is secure. Even if Boris and
Natasha succeed in overhearing the ciphertext P + E, they will still have
to know E to find out what P is. The trick is that the key E has to be
sufficiently random so that neither Boris nor Natasha can guess it. For
example, if E is the all ones matrix, then P isn’t very secure since Boris
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and Natasha will surely try it. Notice that once Bullwinkle receives the
ciphertext, all he has to do is add E and he gets P . For

encE(P ) +E = (P +E) +E = P + (E +E) = P +O = P.

This is something even a mathematically challenged moose can do. Our
hero’s encryption scheme is extremely secure if the key E is sufficiently
random and it is only used once. (Such a crypt is called a one time pad.)
However, if he uses E to encrypt another plaintext message Q, and Boris
and Natasha pick up both encE(P ) = P + E and encE(Q) = Q + E, then
they can likely find out what both P and Q say. The reason for this is that

(P +E) + (Q+E) = (P +Q) + (E +E) = P +Q+O = P +Q.

The point is that knowing P + Q may be enough for a cryptographer to
deduce both P and Q. However, as a one time pad, the random key is very
secure (in fact, apparently secure enough for communications on the hot line
between Washington and Moscow).

Example 3.10. (Scanners) We can also interpret matrices over F2 in an-
other natural way. Consider a black and white photograph as being a rect-
angular array consisting of many black and white dots. By giving the white
dots the value 0 and the black dots the value 1, our black and white photo
is therefore transformed into a matrix over F2. Now suppose we want to
compare two black and white photographs whose matrices A and B have
the same dimensions, that is, both are m× n. It turns out to be inefficient
for a computer to scan the two matrices to see in how many positions they
agree. However, suppose we consider the sum A + B. When A + B has a
1 in the (i, j)-component, then aij 6= bij, and when it has 0, then aij = bij.
Hence the sum two identical photographs will be the zero matrix, and the
sum of two complementary photographs will sum to the all ones matrix. An
obvious and convenient measure of how similar the two matrices A and B
are is the number of non zero entries of A+B. This number. which is easily
tabulated, is known as the Hamming distance between A and B.

3.3.3 Matrix Multiplication

The third algebraic operation, matrix multiplication, is the most important
and the least obvious to define. For one thing, the product of two matrices of
the same dimension is only defined if the matrices are square. The product
AB of two matrices A and B exists only when the number of columns of A
equals the number of rows of B.
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Definition 3.6. Let A be m× n and B n× p. Then the product AB of A
and B is the m× p matrix C whose entry in the ith row and kth column is

cik =
n∑

j=1

aijbjk.

Thus

AB =
( n∑

j=1

aijbjk
)
.

Put another way, if the columns of A are a1, . . . ,an, then the rth column
of AB is

b1ra1 + b2ra2 + . . . bnran.

Hence the rth column of AB is the linear combination of the columns of A
using the entries of the rth column of B as the scalars. One can also express
AB as a linear comination of the rows of B. This turns out to be connected
with row operations. The reader is invited to work this out explicitly.

Example 3.11. Here are two examples.

(
1 3
2 4

)(
6 0
−2 7

)
=

(
1 · 6 + 3 · (−2) 1 · 0 + 3 · 7
2 · 6 + 4 · (−2) 2 · 0 + 4 · 7

)
=

(
0 21
4 28

)
.

Note how the columns of the product are linear combinations. Computing
the product in the opposite order gives a different result:

(
6 0
−2 7

)(
1 3
2 4

)
=

(
6 · 1 + 0 · 2 6 · 3 + 0 · 4
−2 · 1 + 7 · 2 −2 · 3 + 7 · 4

)
=

(
6 18
12 22

)
.

From this example, we have a pair of 2 × 2 matrices A and B such
that AB 6= BA. More generally, multiplication of n × n matrices is not
commutative, although there is a notable exception: if A and B are 1 × 1,
then AB = BA.

3.3.4 The Transpose of a Matrix

Another operation on matrices is transposition, or taking the transpose. If
A is m× n, the transpose AT of A is the n×m matrix AT := (crs), where
crs = asr. This is easy to remember: the ith row of AT is just the ith column
of A. Here are two obvious facts. First,

(AT )T = A.
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Second, a matrix and its transpose have the same diagonal. A matrix A
which is equal to its transpose (that is, A = AT ) is called symmetric. Clearly,
every symmetric matrix is square. The symmetric matrices over R turn out
to be especially important, as we will see later.

Example 3.12. If

A =

(
1 2
3 4

)
,

then

AT =

(
1 3
2 4

)
.

An example of a 2 × 2 symmetric matrix is

(
1 3
3 5

)
.

Notice that the dot product v · w of any two vectors v,w ∈ Rn can be
expressed as a matrix product, provided we use the transpose. In fact,

v · w = vTw =
∑

viwi.

The transpose of a product has an amusing property:

(
AB
)T

= BTAT .

This transpose identity can be seen as follows. The (i, j) entry of BTAT is
the dot product of the ith row of BT and the jth column of AT . Since this
is the same thing as the dot product of the jth row of A and the ith column
of B, which is the (j, i) entry of AB, and hence the (i, j) entry of (AB)T ,
we see that (AB)T = BTAT . Suggestion: try this out on an example.

3.3.5 The Algebraic Laws

Except for the commutativity of multiplication, the expected algebraic prop-
erties of addition and multiplication all hold for matrices. Assuming all the
sums and products below are defined, matrix algebra obeys following laws:

(1) Associative Law: Matrix addition and multiplication are associa-
tive:

(
A+B

)
+ C = A+

(
B + C

)
and

(
AB
)
C = A

(
BC

)
.
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(2) Distributive Law: Matrix addition and multiplication are distribu-
tive:

A
(
B + C

)
= AB +AC and

(
A+B

)
C = AC +BC.

(3) Scalar Multiplication Law: For any scalar r,

(
rA
)
B = A

(
rB
)

= r
(
AB
)
.

(4) Commutative Law for Addition: Matrix addition is commuta-
tive: A+B = B +A.

Verifying these properties is a routine exercise. I suggest working a
couple of examples to convince yourself, if necessary. Though seemingly
uninteresting, the associative law for multiplication will often turn to be a
very important property.

Recall that the n×n identity matrix In is the matrix having one in each
diagonal entry and zero in each entry off the diagonal. For example,

I2 =

(
1 0
0 1

)
and I3 =




1 0 0
0 1 0
0 0 1


 .

Note that it makes sense to refer to the identity matrix over F2, since ! is
the multiplicative identity of F2.

The identity matrix In is a multiplicative identity for matrix multiplica-
tion. More precisely, we have

Proposition 3.6. If A is an m× n matrix, then AIn = A and ImA = A.

Proof. This is an exercise.
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Exercises

Exercise 3.13. Make up three matrices A,B,C so that AB and BC are
defined. Then compute AB and (AB)C. Next compute BC and A(BC).
Compare your results.

Exercise 3.14. Suppose A and B are symmetric n× n matrices. (You can
even assume n = 2.)

(a) Decide whether or not AB is always symmetric. That is, whether
(AB)T = AB for all symmetric A and B?

(b) If the answer to (a) is no, what condition ensures AB is symmetric?

Exercise 3.15. Suppose B has a column of zeros. How does this affect any
product of the form AB? What if A has a row or a column of zeros?

Exercise 3.16. Let A be the 2×2 matrix over F2 such that aij = 1 for each
i, j. Compute Am for any integer m > 0. Does this question make sense if
m < 0? (Note Aj is the product AA · · ·A of A with itself j times.)

Exercise 3.17. Generalize this question to 2 × 2 matrices over F2p.

Exercise 3.18. Let A be the n× n matrix over R such that aij = 2 for all
i, j. Find a formula for Aj for any positive integer j.

Exercise 3.19. Verify Proposition 3.6 for all m× n matrices A over R.

Exercise 3.20. Give an example of a 2× 2 matrix A such that every entry
of A is either 0 or 1 and A2 = I2 as a matrix over F2, but A2 6= I2 as a
matrix over the reals.
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3.4 Elementary Matrices and Row Operations

The purpose of this section is make an unexpected connection between ma-
trix multiplication and row operations. We will see that in fact row opera-
tions can be done by matrix multiplication. For example, in the 2× n case,
we use the following three types of 2 × 2 matrices:

E1 =

(
0 1
1 0

)
, E2 =

(
r 0
0 1

)
or

(
1 0
0 r

)
, E3 =

(
1 s
0 1

)
or

(
1 0
s 1

)
.

These matrices enable us to do row operations of types I, II and III respec-
tively via left or pre-multiplication, so they are called elementary matrices.
For example, (

0 1
1 0

)(
a b
c d

)
=

(
c d
a b

)
,

(
r 0
0 1

)(
a b
c d

)
=

(
ra rb
c d

)
,

and (
1 s
0 1

)(
a b
c d

)
=

(
a+ sc b+ sd
c d

)
.

Suitably modified, the same procedure works in general. An m × m
matrix obtained from Im by performing a single row operation is called an
elementary m×m matrix. Here is the main point.

Proposition 3.7. Let A be anm×mmatrix, and assume E is an elementary
m × m matrix. Then EA is the matrix obtained by performing the row
operation corresponding to E on A.

Proof. This follows from the fact that

EA = (EIm)A,

and EIm is the result of applying the row operation corresponding to E to
Im. Thus left multiplication by E will do the same thing to A that it does
to Im.

Since any matrix can be put into reduced form by a sequence of row
operations, and since row operations can be performed by left multiplication
by elementary matrices, we have

Proposition 3.8. An arbitrary m × n matrix A can be put into reduced
form by a performing sequence of left multiplications on A using only m×m
elementary matrices.
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Proof. This follows from the above comments.

This procedure can be expressed as follows: starting with A and replac-
ing it by A1 = E1A, A2 = E2(E1A)) and so forth, we get the sequence

A→ A1 = E1A→ A2 = E2(E1A) → · · · → Ek(Ek−1(· · · (E1A) · · · )),

the last matrix being Ared. What we obtain by this process is a matrix

B = (Ek(Ek−1 · · · (E1A) · · · ))

with the property that BA = Ared. We want to emphasize that although B
is expressed as a certain product of elementary matrices, the way we have
chosen these matrices is never unique. However, it will turn out that B is
unique in certain cases, one of which is the case where A is a nonsingular
n× n matrix.

Note that we could have expressed B without parentheses writing it
simply as B = EkEk−1 · · ·E1, due to the fact that, by the associative law,
the parens can be rearranged at will.

When we are reducing a matrix A with entries in R, Q, C or even F2,
then the elementary matrices we need to use also have entries in R, Q, C or
F2, hence the matrix B which brings A into reduced form also has entries
in the corresponding place. Hence we may state

Proposition 3.9. For any m×n matrix A (with entries in R, Q, C or F2),
there is an m × m matrix B (with entries in R, Q, C or F2), which is a
product of elementary matrices, such that BA = Ared.

Example 3.13. Let’s compute the matrix B produced by the sequence of
row operations in Example 3.1 which puts the counting matrix C in reduced
form. Examining the sequence of row operations, we see that B is the
product




1 −2 0
0 1 0
0 0 1






1 0 0
0 −1/3 0
0 0 1






1 0 0
0 1 0
0 −2 1






1 0 0
0 1 0
−7 0 1






1 0 0
−4 1 0
0 0 1


 .

Thus

B =



−5/3 2/3 0
4/3 −1/3 0
1 −2 1


 .

Be careful to express the product in the correct order. The first row opera-
tion is the made by the matrix on the right and the last by the matrix on



62

the left. Thus

BC =



−5/3 2/3 0
4/3 −1/3 0
1 −2 1






1 2 3
4 5 6
7 8 9


 =




1 0 −1
0 1 2
0 0 0


 .

That is, BC = Cred.

In the above computation, you should not be explicitly multiplying the
elementary matrices out. Start at the right and apply the sequence of row
operations working to the left. A convenient way of doing this is to begin
with the 3 × 6 matrix (A|I3) and carry out the sequence of row operations.
The final result will be (Ared|B). Thus if we start with

(A|I3) =




1 2 3 1 0 0
4 5 6 0 1 0
7 8 9 0 0 1


 ,

we end with

(Ared|B) =




1 0 −1 −5/3 2/3 0
0 1 2 4/3 −1/3 0
0 0 0 1 −2 1


 .

3.4.1 Application to Linear Systems

How does this method apply to solving linear systems? Note that the linear
system (3.1 can be expressed in the compact matrix form

Ax = b,

where A is the coefficient matrix, x = (x1, x2, . . . , xn)
T is the column of

variables, and b = (b1, b2, . . . , bm)T is the column of constants.

Starting with a system Ax = b, where A is m × n, multiplying this
equation by any elementary matrix E gives a new linear system EAx = Eb,
which we know is equivalent to the original system. Therefore, applying
Proposition 3.9, we obtain

Proposition 3.10. Given the linear system Ax = b, there exists a square
matrix B which is a product of elementary matrices, such that the original
system is equivalent to Aredx = Bb.

What’s useful is that given E, there exists an elementary matrix F such
that FE = Im. It follows (after a little thought) that there exists a square
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matrix C such that CB = Im. We will expand on this in the following
section.

The advantage of knowing the matrix B which brings A into reduced
form is that at least symbolically one can handle an arbitrary number of
systems as easily as one. In other words, one can just as easily solve a
matrix linear equation AX = D, where X = (xij) is a matrix of variables
and D = (Djk) is a matrix of constants. If A is m×n and D has p columns,
then X is n × p and D is m × p. This matrix equation is equivalent to
AredX = BD.



64

Exercises

Exercise 3.21. Find the reduced row echelon form for each of the following
matrices, which are assumed to be over R:

A1 =




1 1 0
2 3 1
1 2 1


 , A2 =




1 2 −1 1
2 3 1 0
0 1 2 1


 , A3 =




1 0 1 0
0 1 1 0
1 1 0 0
1 0 0 1


 .

Exercise 3.22. Repeat Exercise 3.21 for the following matrices, except
assume that each matrix is defined over Z2:

C1 =




1 1 0
0 1 1
1 0 1


 , C2 =




1 0 1 1
0 1 1 0
0 1 0 1


 , C3 =




1 0 1 0
0 1 1 0
1 1 0 0
1 0 0 1


 .

Exercise 3.23. Find matrices B1, B2 and B3 which are products of elemen-
tary matrices such that BiAi is reduced, where A1, A2, A3 are the matrices
of Exercise 1.

Exercise 3.24. Find matrices D1, D2 and D3 defined over Z2 which are
products of elementary matrices such that DiCi is reduced, where C1, C2, C3

are the matrices of Exercise 2.

Exercise 3.25. Prove carefully the if E is an elementary matrix and F
is the elementary matrix that performs the inverse operation, then FE =
EF = In.

Exercise 3.26. Write down all the 3 × 3 elementary matrices E over Z2.
For each E, find the matrix F defined in the previous exercise such that
FE = EF = I3.

Exercise 3.27. Repeat Exercise 3.26 for the elementary matrices over Z3.

Exercise 3.28. List all the row reduced 2 × 3 matrices over Z2.
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3.5 Matrix Inverses

Given an elementary matrix E, we noted in the last section that there exists
another elementary matrix F such that FE = Im. A little thought will
convince you that not only is FE = Im, but EF = Im as well. Doing a row
operation then undoing it produces the same result as first undoing it and
then doing it. Either way you are back to where you started. The essential
property is pointed out in the next

Definition 3.7. Suppose two m×m matrices A and B have the property
that AB = BA = Im. Then we say A is an inverse of B (and B is an inverse
of A).

We will use A−1 to denote an inverse of A. In the 2× 2 examples above,

E1 =

(
0 1
1 0

)
⇒ E−1

1 =

(
0 1
1 0

)
,

E2 =

(
r 0
0 1

)
⇒ E−1

2 =

(
r−1 0
0 1

)
,

and

E3 =

(
1 s
0 1

)
⇒ E−1

3 =

(
1 −s
0 1

)
.

3.5.1 A Necessary and Sufficient for Existence

Recall that an n × n matrix A is called invertible if A has rank n. We
therefore have the

Proposition 3.11. If an n×n matrix A is invertible, there exists an n×n
matrix B such that BA = In.

Proof. This follows from Proposition 3.9 since Ared = In.

This relates the notion of invertibilty say for real numbers with that of
invertibilty for matrices. Thus we would like to know when A has a two
sided inverse, not just an inverse on the left.

Theorem 3.12. An n× n matrix A has an inverse B if and only if A has
rank n. Moreover, there can only be one inverse. Finally, if an n×n matrix
A has some left inverse, then A is invertible and the left inverse is the unique
inverse A−1.
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Proof. Suppose first that A has two inverses B and C. Then

B = BIn = B(AC) = (BA)C = InC = C.

Thus tB = C, so the inverse is unique. Next, suppose A has a left inverse
B. We will show that the rank of A is n. For this, we have to show that if
Ax = 0, then x = 0. But if Ax = 0, then

B(Ax) = (BA)x = Inx = 0. (3.6)

Thus indeed, A does have rank n. Now suppose A has rank n. Then we
know the system Ax = b has a solution for all b. It follows that there exists
an n×n matrix X so that AX = In. This follows from knowing the system
Ax = ei has a solution for each i, where ei is the ith column of In. Thus
there exist n× n matrices B and X so that BA = AX = In. We now show
that B = X. Repeating the above argument, we have

B = BIn = B(AX) = (BA)X = InX = X.

Thus A has an inverse if and only if it has rank n. To finish the proof,
suppose A has a left inverse B: that is B is n×n and BA = In. But we just
showed in (3.6) that A has rank n, so (as we concluded above), A−1 exists
and equals B.

This theorem explains why we call square matrices of maximal rank
invertible.

Corollary 3.13. If A invertible, then the system

Ax = b

has the unique solution x = A−1b.

Proof. We leave this as an exercise.

The product of any two invertible n×n matrices A and B is also invert-
ible. Indeed, (AB)−1 = B−1A−1. For

(B−1A−1)AB = B−1(A−1A)B = B−1InB = B−1B = In.

This is used in the proof of the following useful Proposition.

Proposition 3.14. Every invertible matrix is a product of elementary ma-
trices.

The proof is left as an exercise. Of course, by the previous Proposition,
the converse is also true: any product of elementary matrices is invertible.
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3.5.2 Methods for Finding Inverses

We have two ways of finding the matrix B so that BA = Ared. The first is
simply to multiply out the sequence of elementary matrices which reduces
A. This is not as bad as it sounds since multiplying elementary matrices
is very easy. The second method is to form the augmented matrix (A|In)
and row reduce. The final result will be in the form (In|A−1). This is the
method used in most textbooks. Let’s begin with an example.

Example 3.14. Suppose we want to find an inverse for

A =




1 2 0
1 3 1
0 1 2


 .

Since we only need to solve the matrix equation XA = I3, we can use our
previous strategy of row reducing (A|I3).

(A|I3) =




1 2 0 1 0 0
1 3 1 0 1 0
0 1 2 0 0 1


→




1 2 0 1 0 0
0 1 1 −1 1 0
0 1 2 0 0 1


→




1 2 0 1 0 0
0 1 1 −1 1 0
0 0 1 1 −1 1


→




1 2 0 1 0 0
0 1 0 −2 2 −1
0 0 1 1 −1 1


→




1 0 0 5 −4 2
0 1 0 −2 2 −1
0 0 1 1 −1 1


 .

Hence

A−1 = B =




5 −4 2
−2 2 −1
1 −1 1


 ,

since, by construction, BA = I3.

Example 3.15. To take a slightly more interesting example, let

A =




1 0 0 1
1 1 0 0
0 1 1 1
1 1 1 1


 .
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The catch is that we will assume that the entries of A are elements of
F2 = {0, 1}. Imitating the above procedure, we obtain that

A−1 =




0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 1


 .

Note that the correctness of this result should be checked by computing
directly that

I4 =




0 0 1 1
0 1 1 1
1 1 1 0
1 0 1 1







1 0 0 1
1 1 0 0
0 1 1 1
1 1 1 1


 .

There is somewhat less obvious third technique which is sometimes also
useful. If we form the augmented coefficient matrix (A | b), where b repre-
sents the column vector with components b1, b2, . . . bm and perform the row
reduction of this augmented matrix, the result will be in the form (In| c),
where the components of c are certain linear combinations of the compo-
nents of b. The coefficients in these linear combinations give us the entries
of A−1. Here is an example.

Example 3.16. Again let

A =




1 2 0
1 3 1
0 1 2


 .

Now form 


1 2 0 a
1 3 1 b
0 1 2 c




and row reduce. The result is



1 0 0 5a− 4b+ 2c
0 1 0 −2a+ 2b− c
0 0 1 a− b+ c


 .

Thus we see the inverse is



5 −4 2
−2 2 −1
1 −1 1


 .
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3.5.3 Matrix Groups

In this section, we will give some examples of what are called matrix groups.
The basic example of a matrix group is the set GL(n,R) of all invertible
elements of Rn×n. Thus,

GL(n,R) = {A ∈ Rn×n | A−1 exists}. (3.7)

Notice that, by definition, every element in GL(n,R) has an inverse. More-
over, In is an element of GL(n,R), and if A and B are elements of GL(n,R),
then so is their product AB. These three properties define what we mean
by a matrix group.

Definition 3.8. A subset G of Rn×n is called a matrix group if the following
three conditions hold:

(i) if A,B ∈ G, then AB ∈ G,

(ii) In ∈ G, and

(iii) if A ∈ G, then A−1 ∈ G.

It turns out that these three axioms are broad enough to give each ma-
trix group an extremely rich structure. Of course, as already noted above,
GL(n,R) is a matrix group. In fact, if G ⊂ Rn×n is any matrix group, then
G ⊂ GL(n,R) (why?). A subset of GL(n,R) which is also a matrix group
is called a subgroup of GL(n,R). Thus we want to consider subgroups of
GL(n,R). The simplest example of a subgroup of GL(n,R) is {In}: this is
the so called trivial subgroup.

To get some simple yet interesting examples, let us consider permutation
matrices.

Example 3.17 (Permutation Matrices). A matrix P obtained from In
by a finite sequence of row swaps is called a permutation matrix. In other
words, a permutation matrix is a matrix P ∈ Rn×n such that there are row
swap matrices S1, . . . , Sk ∈ Rn×n for which P = S1 · · ·Sk. (Recall that a row
swap matrix is by definition an elementary matrix obtained by interchanging
two rows of In.) Clearly, In is a permutation matrix (why?), and any product
of permutation matrices is also a permutation matrix. Thus we only need to
see that the inverse of a permutation matrix is also a permutation matrix.
Let P = S1 · · ·Sk be a permutation matrix. Then S−1 = S−1

k · · ·S−1
1 , so

P−1 is indeed a permutation matrix since S−1
i = Si for each index i.
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Let P (n) denote the set of n × n permutation matrices. One can also
describe P (n) as the set of all matrices obtained form In by permuting the
rows of In. Thus P (n) is the set of all n×n matrices whose only entries are
0 or 1 such that every row and every column has exactly one non-zero entry.
It follows from elementary combinatorics that P (n) has exactly n elements.

The inverse of a permutation matrix has a beautiful expression.

Proposition 3.15. If P is a permutation matrix, then P −1 = P T .

Proof. This follows from the above discussion. We leave the details for the
exercises.

To give an explicit example, let us compute P (3).

Example 3.18. P (3) consists of the following six 3× 3 permutation matri-
ces; namely I3 and




1 0 0
0 0 1
0 1 0


 ,




0 1 0
1 0 0
0 0 1


 ,




0 1 0
0 0 1
1 0 0


 ,




0 0 1
1 0 0
0 1 0


 ,




0 0 1
0 1 0
1 0 0


 .

Definition 3.9 (The orthogonal group). Let Q ∈ Rn×n. Then we say
that Q is orthogonal if and only if QQT = In. The set of all n×n orthogonal
matrices is denoted by O(n,R). We call O(n,R) the orthogonal group.

Proposition 3.16. O(n,R) is a subgroup of GL(n,R).

Proof. It follows immediately from the definition and Theorem 3.12 that
if Q is orthogonal, then QT = Q−1. Consequently, since QQT = In im-
plies QTQ = In, whenever Q is orthogonal, so is Q−1. The identity In is
clearly orthogonal, so it remains to show that the product of two orthogonal
matrices is orthogonal. Let Q and R be orthogonal. Then

QR(QR)T = QR(RTQT ) = Q(RRT )QT = QQT = In.

By Proposition 3.15, we have P (n) ⊂ O(n,R). That is, every permuta-
tion matrix is orthogonal. Hence P (n) is a subgroup of O(n,R).

The condition QTQ = In which defines an orthogonal matrix Q is equiv-
alent to the property that as a transformation of Rn to itself, Q preserves
inner products. That is, for all x,y ∈ Rn,

Qx ·Qy = x · y. (3.8)
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Indeed, since QTQ = In,

x · y = xTy = xTQTQy = (Qx)TQy = Qx ·Qy. (3.9)

Conversely, if Qx ·Qy = x ·y, then QTQ = In. (Just let x = ei and y = ej.)
In particular, we can now conclude

Proposition 3.17. Every element of the orthogonal group O(n,R) pre-
serves lengths of vectors and also distances and angles between vectors.

Proof. This follows from the identity x · y = |x||y| cos θ, for all x,y ∈ Rn,
where θ is the angle between x and y.

The preceding Proposition tells us that the orthogonal group O(n,R)
is intimately related to the geometry of Rn. If Q is orthogonal, then the
columns of Q are mutually orthogonal unit vectors, which is a fact we will
frequently use.

The orthogonal group for O(2,R) is especially interesting. It has an
important subgroup SO(2) called the rotation group which consists of the
rotation matrices

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Note that R0 = I2. The fact that SO(2) is a subgroup of O(2,R) follows from
trigonometry. For example, the sum formulas for cos(θ+ µ) and sin(θ+ µ),
are equivalent to the geometrically obvious formulas

RθRµ = RµRθ = Rθ+µ (3.10)

for all θ and µ. We will discuss this later that in more detail.

Example 3.19. There are three subgroups of GL(n,R) which we encoun-
tered in Chapter 4: the group Dn of all invertible diagonal matrices (those
diagonal matrices with no zeros on the diagonal), the group Ln of all lower
triangular matrices with only ones on the diagonal, and the group Un of
all upper triangular matrices with ones on the diagonal. In the proof of
Theorem 3.19, we actually used the fact that Ln and Un are matrix groups.
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Exercises

Exercise 3.29. Find the inverse of each of the following real matrices or
show that the inverse does not exist.

(a)

(
1 2
4 1

)
(b)




1 0 1
0 1 −1
1 1 0


 (c)




1 0 −2
0 1 1
1 1 0


 (d)




1 0 1 0
0 1 0 −1
1 0 −1 0
0 1 0 1


.

Exercise 3.30. If the field is Z2, which of the matrices in Exercise 1 are
invertible?

Exercise 3.31. Suppose A =
(
a b
c d

)
, and assume that ∆ = ad − bc 6= 0.

Show that A−1 = 1
∆

(
d −b
−c a

)
. What does the condition ∆ 6= 0 mean in terms

of the rows of A?

Exercise 3.32. Suppose A has an inverse. Find a formula for the inverse
of AT ?

Exercise 3.33. Prove Proposition 3.14.

Exercise 3.34. Suppose A is n× n and there exists a right inverse B, i.e.
AB = In. Show A invertible.

Exercise 3.35. Let C =
( 1 a b

0 1 c
0 0 1

)
. Find a general formula for C−1.

Exercise 3.36. Show that if A and B are n × n and have inverses, then
(AB)−1 = B−1A−1. What is (ABCD)−1 if all four matrices are invertible?

Exercise 3.37. Suppose A is invertible m×m and B is m× n. Solve the
equation AX = B.

Exercise 3.38. Suppose A and B are both n × n and AB is invertible.
Show that both A and B are invertible. (See what happens if Bx = 0.)

Exercise 3.39. Let A and B be two n × n matrices over R. Suppose
A3 = B3, and A2B = B2A. Show that if A2 +B2 is invertible, then A = B.
(Hint: Consider (A2 +B2)A.)

Exercise 3.40. Without computing, try to guess the inverse of the matrix

A =




1 0 1 0
0 1 0 −1
1 0 −1 0
0 1 0 1


 .

(Hint: are the columns orthogonal?)
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Exercise 3.41. Is it TRUE or FALSE that if an n× n matrix with integer
entries has an inverse, then the inverse also has integer entries?

Exercise 3.42. Consider the matrix

B =




1 0 1
0 1 1
1 2 1


 .

Find B−1, if it exists, when B is considered to be a real matrix. Is B
invertible when it is considered as a matrix over Z2?

Exercise 3.43. A real n × n matrix Q such that QTQ = In is called or-

thogonal. Find a formula for the inverse of an arbitrary orthogonal matrix
Q. Also show that the inverse of an orthogonal matrix is also orthogonal.

Exercise 3.44. Show that the product of two orthogonal matrices is or-
thogonal.

Exercise 3.45. A matrix which can be expressed as a product of row swap
matrices is called a permutation matrix. These are the matrices obtained by
rearranging the rows of In. Show that every permutation matrix is orthog-
onal. Deduce that if P is a permutation matrix, then P −1 = P T .

Exercise 3.46. Show that the following two matrices are permutation ma-
trices and find their inverses:




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0



,




0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0



.

Exercise 3.47. You are a code-breaker (more accurately, a cryptographer)
assigned to crack a secret cipher constructed as follows. The sequence 01
represents A, 02 represents B and so forth up to 26, which represents Z. A
space between words is indicated by inserting 00. A text can thus be encoded
as a sequence. For example, 1908040002090700041507 stands for ”the big
dog”. We can think of this as a vector in R22. Suppose a certain text has
been encoded as a sequence of length 14,212=44×323, and the sequence has
been broken into 323 consecutive intervals of length 44. Next, suppose each
sub-interval is multiplied by a single 44 × 44 matrix C. The new sequence
obtained by laying the products end to end is called the cipher text, because
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it has now been enciphered, and it is your job to decipher it. Discuss the
following questions.

(i) How does one produce an invertible 44×44 matrix in an efficient way,
and how does one find its inverse?

(ii) How many of the sub-intervals will you need to decipher to break
the whole cipher by deducing the matrix C?

Exercise 3.48. Prove Proposition3.15.

Exercise 3.49. Show that if Q is orthogonal, then the columns of Q are
mutually orthogonal unit vectors. Prove that this is also true for the rows
of Q.

Exercise 3.50. ∗ Show that every element H of O(2,R) that isn’t a rotation
satisfies HT = H and H2 = I2. (Note I2 is the only rotation that satisfies
these conditions.)
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3.6 The LPDU Decomposition

In this section, we will show that every n × n invertible matrix A has an
interesting factorization A = LPDU , where each of the matrices L,P,D,U
has a particular form. This factorization is frequently used in solving large
systems of linear equations by a process known as back substitution. We
will not go into back substitution here, but the reader can consult a text
on applied linear algebra, e.g. Linear Algebra and its Applications by G.
Strang. In addition to its usefulness in applied linear algebra, the LPDU
decomposition is also of theoretical interest, since each P gives a class of
matrices called a Schubert cell, which has many interesting properties.

In order to describe the necessary ingredients L,D, P , and U , we need
column operations, pivots and permutation matrices. Of these, the permu-
tation matrices are especially interesting, as we will encounter them in a
number of other contexts later.

3.6.1 The Basic Ingredients: L, P, D and U

In the LPDU decomposition, L is lower triangular and has only 1’s on its
diagonal, P is a permutation matrix, D is a diagonal matrix without any
zeros on its diagonal, and U is upper triangular and has only 1’s on its
diagonal. The notable feature of these types of matrices is that each one
can be constructed from just one kind of elementary matrix.

Let’s introduce the cast of characters starting with lower triangular ma-
trices. An n × n matrix L = (lij) is called lower triangular if all entries
of L strictly above its diagonal are zero. In other words, lij = 0 if i < j.
Similarly, a matrix is called upper triangular if all entries strictly below its
diagonal are zero. Clearly, the transpose of a lower triangular matrix is
upper triangular and vice versa. We will only be dealing with the upper or
lower triangular matrices all of whose diagonal entries are 1’s. These matri-
ces are called, respectively, upper triangular unipotent and lower triangular

unipotent matrices.

Example 3.20. Every lower triangular 3×3 unipotent matrix has the form

L =




1 0 0
a 1 0
b c 1


 .
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The transpose U = LT is

U =




1 a b
0 1 c
0 0 1


 .

We’ve already used lower triangular unipotent matrices for row reduc-
tion, namely, the elementary matrices of Type III which are also lower tri-
angular. For these matrices, exactly one of a, b, c is different from zero. Left
multiplication on A by such a matrix replaces a row of A by itself plus a
certain multiple of one the rows above it. You can check without any dif-
ficulty the basic property that the product of two or more lower triangular
elementary matrices of Type III is again lower triangular. Moreover, all the
diagonal entries of the product will be ones (why?). More generally, the
product of two or more lower triangular matrices is again lower triangular,
and the product of two or more lower triangular unipotent matrices is again
lower triangular unipotent.

Notice also that if L is lower triangular unipotent, then we can find
lower triangular elementary matrices of Type III, say E1, E2, . . . , Ek so that
Ek · · ·E2E1L = In. Since the inverse of each Ei is another lower triangular
elementary matrix of type III, we therefore see that L = E−1

1 E−1
2 · · ·E−1

k .
Thus both L and L−1 can be expressed as a product of lower triangular ele-
mentary matrices of Type III. In particular, the inverse of a lower triangular
unipotent matrix is also lower triangular unipotent.

We summarize this discussion in the following proposition:

Proposition 3.18. The product of two lower triangular unipotent matrices
is also lower triangular unipotent, and the inverse of a lower triangular
unipotent matrix is a lower triangular unipotent matrix. The corresponding
statements in the upper triangular unipotent case also hold.

What this Proposition says is that the lower (resp. upper) triangular
unipotent matrices is closed under the operations of taking products and
inverses. Hence they form a pair of matrix groups.

Recall that an n × n matrix which can be expressed as a product of
elementary matrices of Type II (row swaps for short) is called a permutation

matrix. The n × n permutation matrices are exactly those matrices which
can be obtained by rearranging the rows of In. We have already seen that
they form a subgroup of O(n,R). In particular, inverse of a permutation
matrix P is P T .



77

3.6.2 The Main Result

We now come to the main theorem.

Theorem 3.19. Let A = (aij) be an invertible matrix over R. Then A
can be expressed in the form A = LPDU , where L is lower triangular
unipotent, U is upper triangular unipotent, P is a permutation matrix, and
D is a diagonal matrix with all its diagonal entries non zero. Furthermore,
the matrices P and D are unique.

This result gives the invertible matrices an interesting structure. Each of
L,P,D,U is constructed from just one kind of elementary matrix. Note that
we need to add that every invertible diagonal matrix is a product of Type
I elementary matrices. Because of our assertion that the diagonal matrix
D is unique, its diagonal entries have quite a bit of significance. The ith
diagonal entry dii of D is usually called the ith pivot of A.

Example 3.21. Let A =
(
a b
c d

)
be invertible. If a 6= 0, then the LPDU

decomposition of A is

A =

(
1 0

−c/a 1

)(
a 0
0 (ad− bc)/a

)(
1 −b/a
0 1

)
.

However, if a = 0, then bc 6= 0 and A can be expressed either
as

LPD =

(
1 0
d/b 1

)(
0 1
1 0

)(
c 0
0 b

)

or

PDU =

(
0 1
1 0

)(
c 0
0 b

)(
1 d/c
0 1

)
.

This example tells us that L and U are not necessarily unique.

Proof of Theorem 3.19. This proof has the desirable feature that it is algo-
rithmic. That is, it gives a clear procedure for finding the LPDU factoriza-
tion. The first step in the proof is to scan down the first column of A until
we find the first non zero entry. Such an entry exists since A is invertible.
Let σ(1) denote the row this entry is in, and let dσ(1) = aσ(1),1 denote the
entry itself. Now perform a sequence of row operations to make the entries
below aσ(1),1 equal to zero. This transforms the first column of A into

(0, . . . , 0, dσ(1), 0, . . . , 0)
T . (3.11)

This reduction is performed by pre-multiplying A by a sequence of lower
triangular elementary matrices of the third kind. We therefore obtain a lower
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triangular unipotent matrix L1 so that the first column of L1A has the form
(3.11). The next step is to use the non zero entry dσ(1) in the first column
to annihilate all the entries in the σ(1)-st row to the right of dσ(1). Since
post multiplying by elementary matrices performs column operations, we
can multiply L1A on the right by a sequence of upper triangular elementary
matrices of the third kind to produce a matrix of the form (L1A)U1 whose
first column has the form (3.11) and whose σ(1)-st row is

(dσ(1), 0, . . . , 0). (3.12)

Moreover, Proposition 3.18 guarantees that U1 will be upper triangular
unipotent. We now have the first column and σ(1)-st row of A in the desired
form and from now on, they will be unchanged.

To continue, we repeat this procedure on the second column of L1AU1.
Suppose the first non zero entry of the second column sits in the k-th row.
Since we already cleared out all non zero entries of the σ(1)st row, k 6= σ(1).
Now set σ(2) = k and repeat the same procedure we carried out for the first
column and σ(1)st row. Continuing, we eventually obtain lower triangular
unipotent matrices Li and upper triangular unipotent matrices Ui and a
rearrangement σ(1), σ(2), . . . , σ(n) of 1, 2, . . . , n so that

(LnLn−1 · · ·L1)A(U1U2 · · ·Un)−1 = Q,

where Q is the matrix whose ith column has dσ(i) as its σ(i)th entry and
zeros in every other entry, where dσ(i) is the first non zero entry in the ith
column of (Li−1 · · ·L1)A. We can clearly factor Q as PD where D is the
diagonal matrix whose ith diagonal entry is dσ(i) and P is the permutation
matrix with ones exactly where Q had non zero entries. This gives us the
expression

A = (LnLn−1 · · ·L1)
−1PD(U1U2 · · ·Un)−1.

But this is the desired factorization A = LPDU . Indeed, L′ = LnLn−1 · · ·L1

is lower triangular unipotent since it is a product of lower triangular ele-
mentary matrices of type III, and hence its inverse L is also lower triangular
unipotent. The same remarks hold when we put U = (U1U2 · · ·Un)−1, so
we have established the existence of the LPDU factorization. We will leave
the proof of the uniqueness of P and D as an exercise.

Example 3.22. To illustrate the proof, let

A =




0 2 −2
0 4 −5
−1 −2 −1


 .
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Since the first non zero entry in the first column of A is a13 = −1, the
first two steps are to subtract the first column twice from the second and to
subtract it once from the third. The result is

AU1U2 =




0 2 −2
0 4 −5
−1 0 0


 .

Next we subtract twice the first row from the second, which gives

L1AU1U2 =




0 2 −2
0 0 −1
−1 0 0


 .

Finally, we add the second column to the third and then factor, getting

Q = L1AU1U2U3 =




0 2 0
0 0 −1
−1 0 0


 .

Now write

Q =




0 1 0
0 0 1
1 0 0





−1 0 0
0 2 0
0 0 −1


 .

Thus we obtain the LPDU factorization

A =




1 0 0
2 1 0
0 0 1






0 1 0
0 0 1
1 0 0





−1 0 0
0 2 0
0 0 −1






1 2 1
0 1 −1
0 0 1


 .

3.6.3 The Case P = In

In the case where P = In, A can be row reduced without using row in-
terchanges. In fact, in a sense that can be made precise, general invertible
matrices do not require a row interchange. This is because a row interchange
is only necessary when a zero shows up on a diagonal position during row
reduction.

Proposition 3.20. If an invertible matrix A admits an LDU decomposi-
tion, then the matrices L, D and U are all unique.

Proof. If A has two LDU decompositions, say A = L1D1U1 = L2D2U2,
then we can write L−1

1 L2D2U2 = D1U1. Hence L−1
1 L2D2 = D1U1U

−1
2 . But

in this equation, the matrix on the left hand side is lower triangular and
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the matrix on the right hand side is upper triangular. This tells us that
immediately that D1 = D2, and also that L−1

1 L2 = U1U
−1
2 = In (why?).

Hence L1 = L2 and U1 = U2, so the proof is completed.

Going back to the 2 × 2 case considered in Example 3.21, the LDU
decomposition for A is therefore unique when a 6= 0 . We also pointed out
in the same example that if a = 0, then L and U are not unique.

If one were only interested in solving a square system Ax = b, then
finding the LPDU factorization of A isn’t necessary. In fact, it turns out
that one can post multiply A by a permutation matrix Q which is concocted
to move zero pivots out of the way. That is, if Q is chosen carefully, there
exists a factorization AQ = LDU . The only affect on the system is to
renumber the variables, replacing x by Q−1x. The L,D,U and Q are no
longer unique.

3.6.4 The symmetric LDU decomposition

Suppose A is an invertible symmetric matrix which has an LDU decompo-
sition. Then it turns out that L and U are not only unique, but they are
related. In fact, U = LT . This makes finding the LDU decomposition very
simple. The reasoning for this goes as follows. If A = AT and A = LDU ,
then

LDU = (LDU)T = UTDTLT = UTDLT

sinceD = DT . Therefore the uniqueness of L,D and U implies that U = LT .
The upshot is that to factor A = LDU , all one needs is to do row operations
of Type III on A such that higher rows act on lower rows to bring A into
upper triangular form B. This means all we need to do is to find a lower
triangular unipotent matrix L′ so that L′A is upper triangular, i.e. L′A = B.
Then the matrices D and U can be found by inspection. In fact, D is
diagonal so dii = bii for all i, and since all the bii are all nonzero, we can
write B = DU , where U is an upper triangular unipotent matrix. This
means L′A = DU , so we have found both U and D. Hence L is also known
since, by the uniqueness result just proved,

L = UT . Of course, it’s also the case that L = (L′)−1, but this is the
hard way to go.

Example 3.23. Consider the symmetric matrix

A =




1 1 1
1 3 −1
1 1 2


 .
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The strategy is to apply Type III row operations, only allowing higher rows
to operate on lower rows, to bring A into upper triangular form, which is
our DU . Doing so, we find that A reduces to

DU =




1 1 1
0 2 −2
0 0 1


 .

Hence

D =




1 0 0
0 2 0
0 0 1


 ,

and

U =




1 1 1
0 1 −1
0 0 1


 .

Thus A = LDU where U is as above, L = U T and D = diag(1, 2, 1).

Summarizing, we state

Proposition 3.21. If A is an (invertible) n× n symmetric matrix without
zero pivots, then the LPDU decomposition of A has the form A = LDLT .

When A is invertible and symmetric but has zero pivots, then a permu-
tation matrix P 6= In is needed. Expressing A = LPDU , it turns out that
we may construct L and U so that U = LT still holds. This says that PD
is also symmetric (why?). Since P T = P−1, we see that

PD = (PD)T = DTP T = DP−1,

so PDP = D. I claim two conditions must be fulfilled in order to have this.
The first is that since P is a permutation matrix and hence PD is D with its
rows permuted, PDP cannot be a diagonal matrix unless P = P −1. Since P
is a permutation matrix, P = P−1 if and only if P = P T . We can therefore
conclude that P is a symmetric permutation matrix. Moreover, this tells
us that PD = DP , so P and D commute. Now look at PDP −1. It can
be shown that PDP−1 is always a diagonal matrix with the same diagonal
entries as D, except in a different order. In fact, let the ith diagonal entry
of PDP−1 be dσ(i). Then σ is the permutation which is determined by P .
This gives the second condition; since PDP−1 = D, the diagonal of D must
be left unchanged by the permutation σ. Thus D and P cannot be arbitrary
when A is symmetric. We therefore have
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Proposition 3.22. Let A be a symmetric invertible matrix. Then there
exists an expression A = LPDU with L,P,D,U as usual and furthermore :

(i) U = LT ,

(ii) P = P T = P−1, and

(iii) PD = DP .

Conversely, if L,P,D,U satisfy the above three conditions, then LPDU is
symmetric.

The next example shows how the disussion preceeding the last Proposi-
ton works.

Example 3.24. Let

A =




0 2 4 −4
2 4 2 −2
4 2 −8 7
−4 −2 7 −8


 .

The first step is to make the (3,1) an (4,1) entries of A zero while keeping
A symmetric. This is done by using symmetric row and column operations.
That is, we replace A by A1 = E1AE

T
1 , A2 = ET2 A1E

T
2 etc. Begin with

E1 which differs from I4 only in the (3, 2)-entry, which is −2 instead of 0.
Computing E1AE

T
1 gives




1 0 0 0
0 1 0 0
0 −2 1 0
0 0 0 1







0 2 4 −4
2 4 2 −2
4 2 −8 7
−4 −2 7 −8







1 0 0 0
0 1 −2 0
0 0 1 0
0 0 0 1


 =




0 2 0 −4
2 4 −6 −2
0 −6 0 11
−4 −2 7 −8


 .

Notice A1 is symmetric (why?). Next let A2 = E2A1E
T
2 , where E2 is ob-

tained from I4 by adding twice the second row to the fourth row. The result
is

A2 =




0 2 0 0
2 4 −6 6
0 −6 0 −1
0 6 −1 0


 .
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The next step is to remove the 4 in the (2, 2)-position of A2. This is done
by symmetric elimination. We subtract the first row from the second row
and the first column from the second column. This gives

A3 =




0 2 0 0
2 0 −6 6
0 −6 0 −1
0 6 −1 0


 .

It is easy to see how to finish. After two more eliminations, we end up with

PD =




0 2 0 0
2 0 0 0
0 0 0 −1
0 0 −1 0


 .

Hence we get

P =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,

and

D =




2 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −1


 .

We leave it as an exercise to find L and hence U .
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Exercises

Exercise 3.51. Find the LPDU decompositions of the following matrices:




0 1 1
2 0 1
1 1 0


 ,




0 0 3
0 2 1
1 1 1


 ,




1 0 1
0 2 −1
1 −1 0


 .

Exercise 3.52. Find the inverse of



1 a b c
0 1 d e
0 0 1 f
0 0 0 1


 .

Exercise 3.53. Show directly that an invertible upper triangular matrix
B can be expressed B = DU , where D is a diagonal matrix with non zero
diagonal entries and U is upper an triangular matrix all of whose diagonal
entries are ones. Is this still true if B is singular?

Exercise 3.54. Show that the product of any two lower triangular matrices
is lower triangular. Also show that the inverse of a lower triangular invertible
matrix is lower triangular. What are the diagonal entries of the inverse?

Exercise 3.55. Let A be a 3× 3 lower triangular unipotent matrix. Find a
formula expressing A as a product of lower triangular elementary matrices
of type III.

Exercise 3.56. Find the LPDU decomposition of




0 1 2 1
1 1 0 2
2 0 0 1
1 2 1 0


 .

Exercise 3.57. Find the LDU decomposition of




1 1 2 1
1 −1 0 2
2 0 0 1
1 2 1 −1


 .

Exercise 3.58. Prove that in any LPDU decomposition, P and D are
unique. (Let LPDU = L′P ′D′U ′ and consider L−1L′P ′D′ = PDUU

′−1.)
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Exercise 3.59. Find a 3 × 3 matrix A such that the matrix L in the A =
LPDU decomposition isn’t unique.

Exercise 3.60. Let A be the matrix of Example 3.24. Find the matrices L
and U . Also, show that PD = DP .
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3.7 Summary

This chapter was an introduction to linear systems and matrices. We be-
gan by introducing the general linear system of m equations in n unknowns
with real coefficients. There are two types of systems called homogeneous
and non-homogeneous according to whether the constants on the right hand
sides of the equations are all zeros or not. The solutions make up the so-
lution set. If the system is homogeneous, the solution set is a subspace of
Rn. In order to write the system in a compact form, we introduced the
coefficient matrix for homogeneous systems and the augmented coefficient
matrix for non-homogeneous systems. We then wrote down the three row
operations of Gaussian reduction. The row operations give a specific set of
rules for bringing the coefficient matrix and augmented coefficient matrix
into a normal form known as reducued form. The point is that performing
a row operation on the coefficient matrix (or augmented coefficient matrix)
gives a new coefficient matrix (or augmented coefficient matrix) whose as-
sociated linear system has exactly the same solution space (or set in the
non-homogeneous case).

After a matrix is put into reducued form, we can read off its rank (the
number of non-zero rows). We then obtained criteria which are neces-
sary and sufficient for the existence and uniqueness of solutions. A non-
homogeneous system has a solution if and only if its augmented coefficient
matrix and coefficient matrix have the same rank. A unique solution exists
if and only if the augmented coefficient matrix and coefficient matrix have
the same rank and the rank is the number of unknowns.

We next introduced matrix algebra, addition and multiplication. Ma-
trices of the same size can always be added but to form AB, the number
of rows of B must be the same as the number of columns of A. We saw
how elementary matrices perform row opertions, so that matrices can be
row reduced by multiplication. This lead to the notion of the inverse of an
n × n matrix A, a matrix B such that AB = BA = In. We saw BA = In
is enough to guarantee AB = In, and also, the invertible n×n matrices are
exactly those of rank n. A key fact is that a square linear system Ax = b
with A invertible has unique solution x = A−1b.

We then introduced matrix groups and gave several examples. After
that, we discussed a way of factoring an invertible matrix as LPDU . This is
an often used method both in applied mathematics in solving large systems
and in pure mathematics in the study of matrix groups.
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Chapter 4

Fields and vector spaces

4.1 Elementary Properties of Fields

4.1.1 The Definition of a Field

In the previous chapter, we noted unecessarily that one of the main concerns
of algebra is the business of solving equations. Beginning with the simplest,
most trivial equation, the equation ax = b, we see that there is a subtle point.
We are used to considering equations which involve integers. To divide
three apples among 4 persons, we have to consider the equation 4x = 3.
This doesn’t have an integer solution. More generally, we obviously cannot
function without all quotients p/q, where p, q are integers and q 6= 0. The
set of all such quotients is called the the set of rational numbers. We will
denote them by Q. Recall that addition and multiplication in Q is defined
by:

a

b
+
c

d
=
ad+ bc

bd
, (4.1)

and
a

b
· c
d

=
ac

bd
. (4.2)

Clearly the sum and product of two rational numbers is another rational
number.

Next suppose we have been given the less trivial job of solving two linear
equations in two unknowns, say x an y. These equations might be written
out as

ax+ by = m

cx+ dy = n.
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Assuming ad− bc 6= 0, there is a unique solution which is expressed as

x =
dm− bn

ad− bc

y =
−cm+ an

ad− bc
.

(In fact we derived this in the previous chapter.) The main point of this
is that to express the solutions of such a linear system, one needs all the
available algebraic operations: addition, subtraction, multiplication and di-
vision. A set, such as the rationals or reals, where all these operations exist
is called a field.

Before defining the notion of a field, we need to define the notion of a
binary operation on a set. Addition and multiplication on the set of integers,
Z, are two basic examples of binary operations. Let S be any set, finite or
infinite. Recall that the Cartesian product of S with itself is the set S×S of
all ordered pairs (x, y) of elements x, y ∈ S. Note, we call (x, y) an ordered
pair since (x, y) 6= (y, x) unless x = y. Thus,

S × S = {(x, y) | x, y ∈ S}.

Definition 4.1. A binary operation on S is a function F : S× S → S, that
is, a function F whose domain is S × S which takes its values F (x, y) in S.

Note: when A and B are sets, we will write F : A→ B to indicate that
F is a function with domain A and values in B. Also, we often express a
binary operation by writing something like x · y or x ∗ y for F (x, y). So,
for example, the operation of addition on Z may be thought of as being a
binary operation + on Z such that +(x, y) = x+ y.

We now define the notion of a field.

Definition 4.2. Assume given a set F with two binary operations called
addition and multiplication. The sum and product of two elements a, b ∈ F

will be denoted by a + b and ab respectively. Suppose addition and multi-
plication satisfy the following properties:

(i) a+ b = b+ a (addition is commutative);

(ii) (a+ b) + c = a+ (b+ c) (addition is associative);

(iii) ab = ba (multiplication is commutative);

(iv) a(bc) = (ab)c (multiplication is associative);
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(v) a(b+ c) = ab+ ac (multiplication is distributive);

(vi) F contains an additive identity 0 and a multiplicative identity 1 distinct
from 0; the additive and multiplicative identities have the property
that a+ 0 = a and 1a = a for every a ∈ F;

(vii) for every a ∈ F, there is an element −a called the additive inverse of
a such that a+ (−a) = 0; and

(viii) for every a 6= 0 in F, there is an element a−1, called the multiplicative

inverse of a such that aa−1 = 1.

Then F is called a field.

Note that we will often express a+(−b) as a−b. In particular, a−a = 0.
In any field F, a0 = 0 for all a. For

a0 = a(0 + 0) = a0 + a0,

so adding −a0 to both sides and using the associativity of addition, we get

0 = a0 − a0 = (a0 + a0) − a0 = a0 + (a0 − a0) = a0 + 0 = a0.

Hence a0 = 0 for all a ∈ F.

Using this fact, we next show

Proposition 4.1. In any field F, whenever ab = 0, either a or b is zero.
Put another way, if neither a nor b is zero, then ab 6= 0.

Proof. Suppose a 6= 0 and b 6= 0. If ab = 0, it follows that

0 = a−10 = a−1(ab) = (a−1a)b = 1b = b.

This is a contradiction, so ab 6= 0.

The conclusion that ab = 0 implies either a or b is zero is one of the field
properties that is used repeatedly. We also have

Proposition 4.2. In any field F, the additive and multiplicative identi-
ties are unique. Moreover, the additive and multiplicative inverses are also
unique.
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Proof. We will show 0 is unique. The proof that 1 is unique is similar. Let
0 and 0′ be two additive identities. Then

0′ = 0′ + 0 = 0

so 0 is indeed unique. We next show additive inverses are unique. Let a ∈ F

have two additive inverses b and c. Using associativity, we see that

b = b+ 0 = b+ (a+ c) = (b+ a) + c = 0 + c = c.

Thus b = c. The rest of the proof is similar.

4.1.2 Examples

We now give some examples.

First of all, it’s easy to see that the rational numbers satisfy all the field
axioms, so Q is a field. In fact, verifying the field axioms for Q simply
boils down to the basic arithmetic properties of the integers: associativity,
commutativity and distributivity and the existence of 0 and 1. Indeed, all
one needs to do is to use (4.1) and (4.2) to prove the field axioms for Q from
these properties of the integers.

The integers Z are not a field, since field axiom (viii) isn’t satisfied by
Z. Indeed, the only integers which have multiplicative inverses are ±1.

The second example of a field is the set of real numbers R. The con-
struction of the real numbers is actually somewhat technical, so we will skip
it. For most purposes, it suffices to think of R as being the set of all decimal
expansions

a1a2 · · · ar.b1b2 · · · ,

where all ai and bj are integers between 0 and 9. Note that there can be
infinitely many bj to the right of the decimal point. We also have to make
appropriate identifications for repeating decimals such as 1 = .999999 . . . .
A very useful fact is that R is ordered; that is, any real number x is either
positive , negative or 0, and the product of two numbers with the same sign
is positive. This makes it possible to solve systems of linear inequalities such
as a1x1 + a2x2 + · · · + anxn > c. In addition, the reals have what is called
the Archimedian property: if a, b > 0, then there exists an x > 0 so that
ax > b.

The third basic field is C, the field of complex numbers. This is a very
important field. We will discuss it in the next section.
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4.1.3 An Algebraic Number Field

Many examples of fields arise by extending an already given field. We will
now give an example of a field called an algebraic number field which is
obtained by adjoining the square root of an integer to the rationals Q. Let
us first recall the

Theorem 4.3 (Fundamental Theorem of Arithmetic). Let m be an
integer greater than 1. Then m can be factored m = p1p2 · · · pk, where
p1, p2, . . . , pk are primes. Moreover, this factorization is unique up to the
order of the factors.

Recall that a positive integer p is called prime if p > 1 and its only
positive factors are 1 and itself. For a proof of the Fundamental Theorem
of Arithmetic, the reader is referred to a text on elementary number theory.
We say that a positive integer m is square free if its prime factorization has
no repeated factors. For example, 10 = 2 · 5 is square free while 12 = 4 · 3
isn’t.

Let m ∈ Z be positive and square free, and let Q(
√
m) denote the set of

all real numbers of the form a+ b
√
m, where a and b are arbitrary rational

numbers. It is easy to see that sums and products of elements of Q(
√
m)

give elements of Q(
√
m). Clearly 0 and 1 are elements of Q(

√
m). Hence,

assuming the field axioms for R allows us to conclude without any effort
that all but one of the field axioms are satisfied in Q(

√
m). We still have to

prove that any non zero element of Q(
√
m) has a multiplicative inverse.

So assume a + b
√
m 6= 0. Thus at least one of a or b is non zero. By

clearing away the denominators, we can assume the a and b are integers
(why?). Furthermore, we can assume they don’t have any common prime
factors; that is, a and b are relatively prime. (This will also mean that both
a and b are non zero.) The trick is to notice that

(a+ b
√
m)(a− b

√
m) = a2 −mb2.

Hence
1

a+ b
√
m

=
a− b

√
m

a2 −mb2
.

Thus, if a2 −mb2 6= 0, then (a + b
√
m)−1 exists in R and is an element of

Q(
√
m).

To see that indeed a2 −mb2 6= 0, suppose to the contrary. Then

a2 = mb2.
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But this implies that m divides a2, hence any prime factor pi of m has to
divide a itself. In other words, m divides a. Given that, we may cancel m
on both sides and get an equation

cm = b2,

where c is an integer. Repeating the argument, any prime factor of m has to
divide b2, hence b. The upshot of this is that the original assumption that
a and b had no common factor has been violated, so the equation a2 = mb2

is impossible. Therefore we have proven

Proposition 4.4. If m is a square free positive integer, then Q(
√
m) is a

field.

The field Q(
√
m) is in fact the smallest field containing both the rationals

Q and
√
m.

4.1.4 The Integers Modulo p

The integers modulo p form a class of fields which you may find surprising.
Start with any prime number p > 1, and let

Fp = {0, 1, 2, . . . p− 1}.

Using modular arithmetic, we will make Fp into a field in a natural way.
Modular arithmetic can succinctly be described as adding and multiplying
using only remainders.

Before that, however, let’s look at he most important and simple ex-
ample, the case p = 2. Recall that we already considered this field in the
previous chapter. The field F2 = {0, 1} consists simply of the additive and
multiplicative identities. Addition and multiplication for F2 are determined
for us by the field axioms. I claim we have to have the following:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0, 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

Indeed, since 0 6= 1, 1 + 1 6= 1, so 1 + 1 = 0.

Proposition 4.5. F2 is a field.

Proof. One would have to check by going through all possible cases, that the
8 field axioms are true. But we can also obtain F2 via arithmetic modulo 2,
as we will see below.

The reason F2 is so useful is that 0 and 1 represent the states on and off
and adding 1 causes a change of the state. It also plays an important role
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in coding theory and information theory, two disciplines that have arisen
because of the electronic revolution. We will study linear coding theory in
some detail later.

Now suppose p is any prime number greater than one. Let us see how
to make Fp = {0, 1, 2, . . . , p − 1} into a field. We have to define addition
and multiplication so that all eight field axioms are satisfied. To add two
elements a and b in Fp, first take their sum in the usual way to get the
integer a + b. If a + b < p, then we define their sum in Fp to be a + b.
However, if a + b ≥ p, we need to use division with remainder. This is the
principle which says that if a and p are non-negative integers with p 6= 0,
then one can uniquely express a as a = qp + r, where q is a non-negative
integer and 0 ≤ r < p. (For division with remainder, we don’t need that p
is prime.)

Thus, if a+ b ≥ p, write

a+ b = qp+ r,

where q is a nonnegative integer and r is an integer such that 0 ≤ r < p.
Then the sum of a and b in Fp is defined to be r. This operation is called
modular addition. To multiply a and b in Fp, we use, in an entirely similar
fashion, the remainder upon dividing ab by p. You should check that the
construction of F2 forced upon us above agrees with our definition here.

The next example we look at is F3, which has three elements.

Example 4.1. Let us construct F3. Of course, 0 and 1 are always the
identities. Now F3 = {0, 1, 2}, so to completely determine the addition, we
only have to define 1 + 1, 1 + 2 and 2 + 2. First of all, 1 + 1 = 2. To find
2+2, first take the ordinary sum 4, then divide 4 by 3. Since the remainder
is 1, 2 + 2 = 1 in F3. Similarly, 1 + 2 = 0 in F3. Thus −2 = 1 and −1 = 2.
To find all products, it is actually sufficient to just find 2 · 2 (why?). But
2 · 2 = 4 in usual arithmetic, so 2 · 2 = 1 in F3. Thus 2−1 = 2. A good way
to describe addition and multiplication in F3 (or more generally any Fp) is
to construct addition and multiplication tables. The addition table for F3

will be
+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

We will skip the proofs that addition and multiplication defined on Fp
using modular arithmetic satisfy the field axioms (i) through (v).
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For arbitrary primes, the existence of additive inverses is easy to see (the
inverse of a is p − a), but it is not so obvious that multiplicative inverses
always exist. To prove that they do, let us first prove that Fp satisfies the
property of Proposition 4.1:

Proposition 4.6. Let p be a prime number. If ab = 0 in Fp, then either
a = 0 or b = 0 (or both).

Proof. Since ab = 0 in Fp is the same thing as saying that p divides the usual
product ab, the Propositionfollows from the following fact about prime num-
bers: if the prime number p divides ab, then it divides a or it divides b. (This
latter fact follows easily from the Fundamental Theorem of Arithmetic.)

Put another way, we can say that a fixed non-zero element a ∈ Fp induces
a one-to-one map

φa : Fp \ {0} −→ Fp \ {0}
x 7−→ ax

by multiplication. Here Fp\{0} is the set Fp without 0. To see that φa is one-
to-one, note that φa(x) = φa(y) implies ax = ay, which implies a(x−y) = 0,
which implies x−y = 0 (by Proposition 4.6) and hence x = y. Since Fp \{0}
is a finite set, this one-to-one map has to be onto. In particular, there exists
an x ∈ Fp \ {0}, such that ax = 1, which is the required inverse of a.

Putting the above facts together, we get

Proposition 4.7. If p is a prime, then Fp, as defined above, is a field.

If the requirement of having multiplicative inverses is taken out of the
definition of a field, the resulting system is called a ring. For example, Z4

is a ring, but not a field since 2 · 2 = 0. In fact, if q is a composite number,
then Zq (defined exactly as above) is a ring but not a field. Note that the
integers Z also form a ring.

We now make some definitions from elementary number theory. For any
integers a and b which are not both 0, let d > 0 be the largest integer which
divides both a and b. We call d the greatest common divisor of a and b. The
greatest common divisor, or simply, gcd of a and b is traditionally denoted
(a, b). For example, (4, 10) = 2.

Definition 4.3. Let a, b, c be integers. Then we say a is congruent to b
modulo c if a− b is divisible by c. If a is congruent to b modulo c, we write
a ≡ b mod c.

Proposition 4.8. Let a, b, q be positive integers. Then the congruence
equation ax ≡ 1 mod q has a solution if and only if (a, q) = 1.
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This proposition again implies that non-zero elements of Fp have multi-
plicative inverses. It can also me used to prove that Fp is not a field, unless
p is prime.

The following amusing result of Fermat gives a formula for finding the
inverse of any element in Fp.

Fermat’s Little Theorem: Suppose p is a prime greater than 1. Then for

any integer a 6≡ 0 mod p, a(p−1) ≡ 1 mod p.

We will give a group theoretic proof of Fermat’s Little Theorem later.
From this, we get

Proposition 4.9. If p is a prime and a 6= 0 in Fp, then the reduction modulo
p of a(p−2) is the inverse of a in Fp.

For example, suppose we want to compute the inverse of 5 in F23. Since
521 = 476837158203125, we simply reduce 476837158203125 modulo 23,
which gives 14. If you weren’t able to do this calculation in your head, it is
useful to have a math package such as Maple or Mathematica. Of course,
5 · 14 = 70 = 3 · 23 + 1, which is easier to see than the above value of 521.

Note that Fermat’s Little Theorem is not Fermat’s Last Theorem that
Fermat is famous for having stated (without proof): namely, there are no
integer solutions m > 2 of am + bm = cm where a, b, c ∈ Z are all non zero.

Amusingly, Fermat’s Last Theorem is false in Fp. Indeed, the Binomial
Theorem implies that the following identity holds for all a, b ∈ Fp:

(a+ b)p = ap + bp. (4.3)

Hence the sum of two pth powers is a pth power.

4.1.5 The characteristic of a field

If F is a finite field, then some multiple r of the identity 1 ∈ F has to be
0. The reason for this is that since F is finite, the multiples r1 of 1 can’t
all be different. Hence there have to be m > n such that m1 = n1 in F.
But this implies (m−n)1 = 0. Now I claim that the least positive integer r
such that r1 = 0 is a prime. For if r can be expressed as a product r = st,
where s, t are positive integers, then, r1 = (st)1 = (s1)(t1) = 0. But, by the
minimality of r, s1 6= 0 and t1 6= 0, so a factorization r = st is impossible
unless either s or t is 1. Therefore r is prime. One calls this prime p the
characteristic of F. In general, we make the following definition:

Definition 4.4. Let F be an arbitrary field. If some multiple q1 of 1 equals 0,
we say that F has positive characteristic, and, in that case, the characteristic
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of F is defined to be the least positive integer q such that q1 = 0. If all
multiples q1 are nonzero, we say F has characteristic 0.

Proposition 4.10. If a field F has positive characteristic, then its charac-
teristic is a prime. Otherwise, its characteristic is 0.

Clearly the characteristics of Q and R are both 0.

4.1.6 Polynomials

Let F be a field and suppose x denotes a variable. We will assume it makes
sense to talk about the powers xi, where i is any positive integer. Define
F[x] to be the set of all polynomials

p(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0

with coefficients ai ∈ F for each i, where n is an arbitrary non-negative
integer. If an 6= 0, we say that f has degree n. Of course, if ai = 0, we
interpret aix

i as being zero also. Addition of polynomials is defined by
adding the coefficients of each xi. We may also multiply two polynomials in
the natural way using xixj = xi+j and the distributive law.

Note that by definition, two polynomials p(x) = anx
n+an−1x

n−1 + · · ·+
a1x+ a0 and q(x) = bkx

k + bk−1x
k−1 + · · · + b1x+ b0 are equal if and only

if ai = bi for each index i.
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Exercises

Exercise 4.1. Prove that in any field (−1)a = −a.

Exercise 4.2. Prove Fermat’s Little Theorem. (Note: it is alright to consult
an elementary number theory book.

Exercise 4.3. Verify the identity (4.3), and use it to conclude that if ap = bp

in Fp, then a = b.

Exercise 4.4. Prove that the characteristic of the field Fp.

Exercise 4.5. Show that Fp is perfect. That is, every element in Fp is a pth
power.

Exercise 4.6. Show directly that F = {a + b
√

2 | a, b ∈ Q} is a field
under the usual operations of addition and multiplication in R. Also, find
(1 −

√
2)−1 and (3 − 4

√
2)−1.

Exercise 4.7. Describe addition and multiplication for the field Fp having p
elements for p = 5. That is, construct addition and multiplication tables for
F5 as in Example 1.1. Check that every element a 6= 0 has a multiplicative
inverse.

Exercise 4.8. Use Fermat’s Theorem to find 9−1 in F13. Use this to solve
the equation 9x ≡ 15 mod 13.

Exercise 4.9. Find at least one primitive element β for F13? (Calculators
should be used here.) Also, express 9−1 using this primitive element instead
of Fermat’s Theorem.

Exercise 4.10. Let Z denote the integers. Consider the set Q of all pairs
(a, b) where a, b ∈ Z and b 6= 0. Consider two pairs (a, b) and (c, d) to be
the same if ad = bc. Now define operations of addition and multiplication
on Q as follows:

(a, b) + (c, d) = (ad+ bc, bd) and (a, b)(c, d) = (ac, bd).

Show that Q is a field. Can you identify Q?.

Exercise 4.11. Write out the addition and multiplication tables for F6. Is
F6 is a field? If not, why not?

Exercise 4.12. Find both −(6 + 6) and (6 + 6)−1 in F7.
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Exercise 4.13. Let F be a field and suppose that F′ ⊂ F is a subfield, that
is, F′ is a field for the operations of F. Show that F and F′ have the same
characteristic.
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4.2 The Field of Complex Numbers

We will now introduce the field C of complex numbers. The complex num-
bers are incredibly rich. Without them, mathematics would be a far less
interesting discipline. From our standpoint, the most notable fact about the
complex numbers is that they form an algebraically closed field. That is, C

contains all roots of any polynomial

xn + a1x
n−1 + . . . an−1x+ an = 0

with complex coefficients. This statement, which is due to C. F. Gauss, is
called the Fundamental Theorem of Algebra.

4.2.1 The Definition

The starting point for considering complex numbers is the problem that if a
is a positive real number, then x2 +a = 0 apparently doesn’t have any roots.
In order to give it roots, we have to make sense of an expression such as

√−a.
The solution turns turns out to be extremely natural. The real xy-plane R2

with its usual component-wise addition also has a multiplication such that
certain points (namely points on the y-axis), when squared, give points on
the negative x-axis. If we interpret the points on the x-axis as real numbers,
this solves our problem. It also turns out that under this multiplication on
R2, every nonzero pair (a, b)T has a multiplicative inverse. The upshot is
that we obtain the field C of complex numbers. The marvelous and deep
consequence of this definition is that C contains not only numbers such as√−a, it contains the roots of all polynomial equations with real coefficients.

Let us now give the details. The definition of multiplication on R2 is
easy to state and has a natural geometric meaning discussed below. First
of all, we will call the x-axis the real axis, and identify a point of the form
(a, 0)T with the real number a. That is, (a, 0)T = a. Hence multiplication
on R can be reformulated as ab = (a, 0)T · (b, 0)T = (ab, 0)T . We extend this
multiplication to all of R2 by putting

(a, b)T · (c, d)T = (ac− bd, ad+ bc)T . (4.4)

(Note: do not confuse this with the dot product on R2.)

We now make the following definition.

Definition 4.5. Define C to be R2 with the usual component-wise addition
(vector addition) and with the multiplication defined by (4.4).
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Addition and multiplication are clearly binary operations. Notice that
(0, a)T · (0, a)T = (−a2, 0)T , so that (0, a)T is a square root of −a2. It is
customary to denote (0, 1)T by i so

i =
√
−1.

Since any point of R2 can be uniquely represented

(a, b)T = a(1, 0)T + b(0, 1)T , (4.5)

we can therefore write

(a, b)T = a+ ib.

In other words, by identifying the real number a with the vector a(1, 0)T on
the real axis, we can express any element of C as a sum of a real number, its
real part, and a multiple of i, its imaginary part. Thus multiplication takes
the form

(a+ ib)(c + id) = (ac− bd) + i(ad + bc).

Of course, R is explicitly given as a subset of C, namely the real axis.

The Fundamental Theorem of Algebra is formally stated as follows:

Theorem 4.11. A polynomial equation

p(z) = zn + an−1z
n−1 + · · · + a1z + a0 = 0

with complex (but possibly real) coefficients has n complex roots.

There are many proofs of this theorem, but unfortunately, none of them
are elementary enough to repeat here. Every known proof draws on some
deep result from another field, such as complex analysis or topology.

An easy consequence is that given any polynomial p(z) with complex
coefficients, there exist r1, . . . , rn ∈ C which are not necessarily all distinct
such that

p(z) = (z − r1)(z − r2) . . . (z − rn).

We now prove

Theorem 4.12. C is a field containing R as a subfield.

Proof. By saying R is a subfield, we mean that addition and multiplication
in C extend the addition and multiplication in R (after identifying R and
the real axis). The verification of this theorem is simply a computation.
The real number 1 is the identity for multiplication in C, and 0 = (0, 0)T
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is the identity for addition. If a + ib 6= 0, then a + ib has a multiplicative
inverse, namely

(a+ ib)−1 =
a− ib

a2 + b2
. (4.6)

The other properties of a field follow easily from the fact that R is a field.

4.2.2 The Geometry of C

We now make some more definitions which lead to some beautiful geometric
properties of C. First of all, the conjugate z of z = a + ib is defined by
z = a− ib. It is easy to check the following identities:

w + z = w + z and (4.7)

wz = w z. (4.8)

The real numbers are obviously the numbers which are equal to their con-
jugates. Complex conjugation is the transformation from R2 to itself which
sends a point to its reflection through the real axis.

Formula (4.6) for (a + ib)−1 above can now be expressed in a new way.
Let z = a+ ib 6= 0. Since zz = a2 + b2, we get

z−1 =
z

a2 + b2
.

Notice that the denominator of the above formula is the square of the length
of z. The length of a complex number z = a + ib is called its modulus and
is denoted by |z|. Thus

|z| = (zz)1/2 = (a2 + b2)1/2.

Since wz = w z, we obtain the nice formula for the modulus of a product,
namely

|wz| = |w||z|. (4.9)

In particular, the product of two unit length complex numbers also has
length one. Now the complex numbers of unit length are just those on the
unit circle C={x2 + y2 = 1}. Every point of C can be represented in the
form (cos θ, sin θ) for a unique angle θ such that 0 ≤ θ < 2π. It is convenient
to use a complex valued function of θ ∈ R to express this. We define the
complex exponential to be the function

eiθ := cos θ + i sin θ. (4.10)

The following proposition is geometrically clear.
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Proposition 4.13. Any z ∈ C can be represented as z = |z|eiθ for some
θ ∈ R. θ is unique up to a multiple of 2π.

The value of θ in [0, 2π) such that z = |z|eiθ is called the argument of z.
The key property of the complex exponential is the identity

ei(θ+µ) = eiθeiµ, (4.11)

which follows from the standard trigonometric formulas for the sine and
cosine of the sum of two angles. (We will give a simple proof of this when we
study rotations in the plane.) This gives complex multiplication a geometric
interpretation. Writing w = |w|eiµ, we see that

wz = (|w|eiµ)(|z|eiθ) = (|w||z|)(eiµeiθ) = |wz|ei(µ+θ).

In other words, the product wz is obtained by multiplying the lengths of w
and z and adding their arguments.
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Exercises

Exercise 4.14. Find all solutions of the equation z3 + 1 = 0 and interpret
them as complex numbers. Do the same for z4 − 1 = 0.

Exercise 4.15. Find all solutions of the linear system

ix1 + 2x2 + (1 − i)x3 = 0

−x1 + ix2 − (2 + i)x3 = 0

Exercise 4.16. Suppose p(x) ∈ R[x]. Show that the roots of p(x) = 0 occur
in conjugate pairs, that is λ, µ ∈ C where λ = µ.
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4.3 Vector spaces

4.3.1 The notion of a vector space

In mathematics, there many situations in which one deals with sets of objects
which can be added and multiplied by scalars, so that these two operations
behave like vector addition and scalar multiplication in Rn. A fundamental
example of this is the set of all real valued functions whose domain is a
closed interval [a, b] in R, which one frequently denotes as R[a,b]. Addition
and scalar multiplication of functions is defined pointwise, as in calculus.
That is, if f and g are functions on [a, b], then f + g is the function whose
value at x ∈ [a, b] is

(f + g)(x) = f(x) + g(x),

and if r is any real number, then rf is the function whose value at x ∈ [a, b]
is

(rf)(x) = rf(x).

The key point is that we have defined sums and scalar multiples so
that the sum of f, g ∈ R[a,b] and all scalar multiples of a single f ∈ R[a,b]

are also elements of R[a,b]. When a set S admits an addition (resp. scalar
multiplication) with this property, we will say that S is closed under addition
(resp. scalar multiplication).

A more familiar example is the set C(a, b) of all continuous real valued
functions on [a, b]. Since C(a, b) ⊂ R[a,b], we will of course use the definitions
of addition and scalar multiplication already given for R[a,b]. In order to
know that C(a, b) is closed under addition and scalar multiplication, we
need to know that sums and scalar multiples of continuous functions are
continuous. But this is guaranteed by a basic theorem usually discussed in
calculus: the sum of two continuous functions is continuous and any scalar
multiple of a continuous function is continuous. Hence

f + g and rf belong to C(a, b) for all f and g in C(a, b) and any real
scalar r.

We now give the definition of a vector space over a field F. It will be
clear that, under the definitions of addition and scalar multiplication given
above, R[a,b] is a vector space over R.

Definition 4.6. Let F be a field and V a set. Assume that there is an op-
eration on V called addition which assigns to each pair of elements elements
a and b of V a unique sum a + b ∈ V . Assume also that there is a second
operation, called scalar multiplication, which assigns to any r ∈ F and any
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a ∈ V a unique scalar multiple ra ∈ V . Suppose that addition and scalar
multiplication satisfy the following axioms.

(1) Vector addition is commutative. That is, a+b = b+a for all a,b ∈ V .

(2) Vector addition is also associative. That is, (a + b) + c = a + (b + c)
for all a,b, c ∈ V .

(3) There is an additive identity 0 ∈ V so that 0 + a = a for all a ∈ V .

(4) Every element of V has an additive inverse. That is, given a ∈ V ,
there is an element denoted −a ∈ V so that a + (−a) = 0.

(5) 1a = a, for all a ∈ V .

(6) Scalar multiplication is associative. If r, s ∈ F and a ∈ V , then (rs)a =
r(s(a)).

(7) Scalar multiplication is distributive. If r, s ∈ F and a,b ∈ V , then
r(a + b) = ra + rb, and (r + s)a = ra + sa.

Then V is called a vector space over F.

You will eventually come to realize that all of the above conditions are
needed. Just as for fields, the additive identity 0 and additive inverses
unique: each vector has exactly one negative. We usually call 0 the zero

vector.

Let’s look at some more examples.

Example 4.2. The first example is the obvious one: if n ≥ 1, then Rn with
the usual component-wise addition and scalar multiplication is a real vector
space, that is a vector space over R. We usually call Rn real n-space.

Example 4.3. More generally, for any field F and 4 ≥ 1, the set Fn of all
n-tuples (a1, a2, . . . , an)

T of elements of F can be made into a vector space
over F in exactly the same way. That is,

(a1, a2, . . . , an)
T + (b1, b2, . . . , bn)

T = (a1 + b1, a2 + b2, . . . , an + bn)
T

and, for all r ∈ F,

r(a1, a2, . . . , an)
T = (ra1, ra2, . . . , ran)

T .
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Example 4.4. When F = F2, the elements of Fn are called n-bit strings.
For example, if n = 4, we have 4-bit strings such as 0000, 1000, 0100, 1100
and so forth. Since there are 4 places to put either a 0 or a 1, there are
24 = 16 4-bit strings. Binary strings have the nice property that each string
is its own additive inverse. Also, the string 1111 changes the parity of each
component. That is, 0101 +1111 = 1010. The space of n-bit strings are the
fundamental objects of coding theory.

Example 4.5. Similarly, if F = Zp, we can consider the space of all p-ary
strings a1a2 . . . an of elements of Fp. Note that when we consider strings,
we often, for simplicity, drop the commas. However, you have to remember
that a string a1a2 . . . an can also be confused with a product in F. The space
(Fp)

n is frequently denoted as V (n, p).

Example 4.6. This example generalizes R[a,b]. Let S be any set and define
RS to be the set of all real valued functions whose domain is S. We define
addition and scalar multiplication pointwise, exactly as for R[a,b]. Then RS

is a vector space over R. Notice that Rn is nothing but RS, where S =
{1, 2, . . . , n}. This is because specifying the n-tuple a = (a1, a2, . . . an)

T ∈
Rn is the same as defining a function fa : S → R by setting fa(i) = ai.

Example 4.7. The set Pn of all polynomials

p(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0

with real coefficients having degree at most n is a real vector space under
pointwise addition and scalar multiplication defined as above. Pointwise
addition of two polynomials amounts to adding the coefficients of xi in each
polynomial, for every i. Scalar multiplication by r is multiplying each term
aix

i by r. Notice the similarity between these operations on polynomials
and component-wise addition and scalar multiplication on Rn+1.

(anx
n + an−1x

n−1 + · · · + a1x+ a0) + (bnx
n + bn−1x

n−1 + · · · + b1x+ b0) =

(an + bn)x
n + (an−1 + bn−1)x

n−1 + · · · + (a1 + b1)x+ (a0 + b0),

while

a + b = (a0, a1, a2, . . . an)
T + (b0, b1, b2, . . . bn)

T

= (a0 + b0, a1 + b1, a2 + b2, . . . an + bn)
T .

In this sense, Pn and Rn+1 are indistinguishable as vector spaces.
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Example 4.8. Consider the differential equation

y′′ + ay′ + by = 0, (4.12)

where a and b are real constants. This is an example of a homogeneous
linear second order differential equation with constant coefficients. The set
of twice differentiable functions on R which satisfy (4.12) is a real vector
space.

4.3.2 Inner product spaces

The set C(a, b) of continuous real valued functions on the interval [a, b]
defined in the previous subsection is one of the most basic vector spaces in
mathematics. Although C(a, b) is much more complicated than Rn, it has
an important structure in common with Rn which lets us partially extend
our intuition about Rn to C(a, b). Namely, we can define an inner product
(f, g) of f, g ∈ C(a, b) by

(f, g) =

∫ b

a
f(t)g(t)dt.

The first three axioms for the Euclidean inner product (dot product) on
Rn are verified by applying standard facts about integration proved (or at
least stated) in any calculus book. Recall that the last axiom requires that
(f, f) ≥ 0 and (f, f) = 0 only if f = 0. The verification of this requires
some argument, and we leave it as an exercise in elementary real analysis.

If a real vector space admits an inner product, then the notions of length
and distance can be introduced by just copying the definitions used for Rn

in Chapter 1. The length ||f || of any f ∈ C(a, b) is defined to be

||f || := (f, f)1/2 =
( ∫ b

a
f(t)2dt

)1/2
,

and the distance between f, g ∈ C(a, b) is defined to be

d(f, g) = ||f − g|| =
( ∫ b

a
(f(t) − g(t))2dt

)1/2
.

Just as for the Euclidean inner product on Rn, we can say two functions
f, g ∈ C(a, b) are orthogonal if (f, g) =

∫ b
a f(t)g(t)dt = 0. Then the tools

we developed from the Euclidean inner product on Rn such as projections
and orthogonal decompositions extend word by word to C(a, b). For ex-
ample, cos t and sin t are orthogonal on [0, 2π] because

∫ 2π
0 cos t sin tdt = 0.
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Although the notion of orthogonality for C(a, b) doesn’t have any obvious
geometric meaning, it nevertheless enables us to extend our intuitive concept
of orthogonality into a new situation. In fact, this extension turns out to
be extremely important since it leads to the idea of expanding a function in
terms of possibly infinitely many mutually orthogonal functions. These in-
finite series expansions are called Fourier series. For example, the functions
cosmx, m = 0, 1, 2, . . . are orthogonal on [0, 2π], and the Fourier cosine
series for f ∈ C(0, 2π) has the form

f(x) =
∞∑

m=0

am cosmx,

where

am =

∫ 2π

0
f(t) cosmtdt/

∫ π

0
cos2mtdt.

We call am the Fourier coefficient of f with respect to cosmt. Notice that
am cosmx is the projection of f on cosmx. This series is an infinite version
of the formula in Proposition 2.3.

If we only take finitely many terms of the above Fourier series, we obtain
a least squares approximation to f .

Example 4.9. Suppose [a, b] = [−1, 1]. Then the functions 1 and x are
orthogonal. In fact, xk and xm are orthogonal if k is even and m is odd, or
vice versa. Indeed,

(xk, xm) =

∫ 1

−1
xk · xmdx =

∫ 1

−1
xk+mdx = 0,

since k+m is odd. On the other hand, the projection of x2 on the constant
function 1 is r1, where r = 1

2

∫ 1
−1 1·x2dx = 1

3 . Thus, x2−1/3 is orthogonal to

the constant function 1 on [−1, 1], and x2 = (x2−1/3)+1/3 is an orthogonal
decomposition of x2 on [−1, 1].

Similarly, by arguing exactly as in §2, we immediately obtain a Cauchy-
Schwartz inequality on C(a, b).
Cauchy-Schwartz Inequality for C(a, b). For any f, g ∈ C(a, b), the

inequality

|
∫ b

a
f(t)g(t)dt| ≤

(∫ b

a
f(t)2dt

)1/2(
∫ b

a
g(t)2dt

)1/2

holds. Equality holds if and only if one of the functions is a constant multiple

of the other.
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4.3.3 Subspaces and Spanning Sets

We next consider the extremely important notion of a subspace.

Definition 4.7. Let V be vector space over a field F. A non-empty subset
W of V is called a linear subspace of V , or simply a subspace, provided
a + b ∈W and ra are in W whenever a,b ∈W and r ∈ F.

The following Proposition is immediate.

Proposition 4.14. Every subspace W of V is a vector space over F in its
own right.

Proof. This is left as an exercise.

Notice that every subspace of a vector space contains the zero vector 0
(why?). In fact, {0} is itself a subspace, called the trivial subspace. Hence, if
the constant term of a homogeneous linear equation ax+ by+ cz = d above
is nonzero, then the solution set cannot be a subspace.

Here is a fundamental example of a subspace of R3.

Example 4.10. The solutions (x, y, z)T ∈ R3 of a homogeneous linear equa-
tion ax + by + cz = 0, with a, b, c ∈ R make up the plane consisting of all
vectors orthogonal to (a, b, c)T . By the properties of the dot product, the
sum of any two solutions is another solution, and any scalar multiple of a
solution is a solution. Hence the solution set of a homogeneous linear equa-
tion in three variables is a subspace of R3. More generally, the solution set
of a homogeneous linear equation in n variables with real coefficients is a
subspace of Rn. If the coefficients are in the field F, then the solutions in
Fn make up a subspace of Fn.

The subspaces of R2 and R3 can be easily described. For R2, they are
{0}, any line through 0 and R2 itself. We will consider the subspaces of R3

below. Try to guess what they are before reading further.
A basic method for constructing subspaces of a given vector space is to

take linear combinations.

Definition 4.8. Let v1, . . . ,vk be vectors in V , and let r1, . . . , rk be any
elements of F. Then the vector

w =
k∑

i=1

rivi

is called a linear combination of v1, . . . ,vk. A subspace W which consists
of all linear combinations of a collection of vectors in V , say v1, . . . ,vk, is
said to be spanned by v1, . . . ,vk.



110

Proposition 4.14 says that subspaces are closed under taking linear com-
binations. It also asserts the converse. The set of all linear combinations of
a collection of vectors in V is a subspace of V . We will denote the subspace
spanned by v1, . . . ,vk by span{v1, . . . ,vk}.

As previously noted, lines L and planes P in R3 containing 0 are sub-
spaces of R3. Every line L is by definition span{a} for some (in fact, any)
nonzero a ∈ L. Is every plane P the span of a set of vectors? Well, if a and b
are two non-collinear vectors in P , then W := span{a,b} is contained in P .
The question remains as to whether W = P . To see why the answer is yes,
as expected, you can argue as follows. Let n denote any non-zero normal to
P , and take any c ∈ P . The line through a and 0 and the line through b
and 0 both lie on P . Now any vector of the form c + tb is orthogonal to n,
so the line through c parallel to b also lies on P . This line meets the line
through a and 0 at some ra (why?). Next construct sb in the same way by
interchanging the roles of a and b. Then clearly, c = ra + sb, because c is
the intersection of the line through ra parallel to b and the line through sb
parallel to a. Hence c ∈ span{a,b}, so P = span{a,b}.

On the other hand, if a and b are two non-collinear vectors in R3, then
n = a × b is orthogonal to any linear combination of a and b. Thus we
obtain a homogeneous equation satisfied by exactly those vectors in P =
span{a,b}. (We just showed above that every vector orthogonal to n is on
P .) If n = (r, s, t)T , then an equation is rx+ sy + tz = 0.

Example 4.11. Let P be the plane spanned by (1, 1, 2)T and (−1, 0, 1)T .
Then (1, 1, 2)T × (−1, 0, 1)T = (1,−3, 1)T is a normal to P , so an equation
for P is x− 3y + z = 0.

4.3.4 Linear Systems and Matrices Over an Arbitrary Field

Although we developed the theory of linear systems over the reals, the only
reason we didn’t use an arbitrary field is that the definition hadn’t yet
been made. In fact, the material covered in Chapter 3 pertaining to linear
systems and matrices goes through word for word when we use an arbitrary
field F. Thus we have m × n matrices over F, which will be denoted by
Fm×n, and linear systems Ax = b, where A ∈ Fm×n, x ∈ Fn and b ∈ Fm.
Row reduction, matrix inversion etc. all go through as for R. We will not
bother to restate all the results, but we will use them when needed. The
matrix group GL(n,R) is replaced by its counterpart GL(n,F), which is
also a matrix group. One thing to be careful of, however, is that in Rn, if
xTx = 0, then x = 0. This is false for most other fields such as Fp. It is
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even false for C since (1 i)

(
1
i

)
= 1 + i2 = 0.
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Exercises

Exercise 4.17. Let V be a vector space. Show that 0a = 0.

Exercise 4.18. Let V be a vector space. Show that for any a ∈ V , the
vector (−1)a is an additive inverse of V . In other words, prove the formula
(−1)a = −a.

Exercise 4.19. Describe all subspaces of R3.

Exercise 4.20. Which of the following subsets of R2 is not a subspace?

(a) The line x = y;

(b) The unit circle;

(c) The line 2x+ y = 1;

s(d) The first octant x, y ≥ 0.

Exercise 4.21. Prove that every line through the origin and plane through
the origin in R3 are subspaces.

Exercise 4.22. Find all the subspaces of the vector space V (n, p) = (Fp)
n

in the following cases:

(i) n = p = 2;

(ii) n = 2, p = 3; and

(iii) n = 3, p = 2.

Exercise 4.23. How many points lie on a line in V (n, p)? On a plane?

Exercise 4.24. Let F = F2. Find all solutions in F4 of the equation w+x+
y + z = 0. Compare the number of solutions with the number of elements
F4 itself has?

Exercise 4.25. Consider the real vector space V = C(0, 2π) with the inner
product defined in §4.3.2.
(a) Find the length of sin2 t in V .

(b) Compute the inner product (cos t, sin2 t).

(c) Find the projection of sin2 t on each of the functions 1, cos t, and sin t in
V .

(d) Are 1, cos t and sin t mutually orthogonal as elements of V ?
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(e) How would you define the orthogonal projection of sin2 t onto the sub-
space W of V spanned by 1, cos t, and sin t?

(f) Describe the subspace W of part (e).

Exercise 4.26. Assume f ∈ C(a, b). Recall that the average value of f over
[a, b] is defined to be

1

b− a

∫ b

a
f(t)dt.

Show that the average value of f over [a, b] is the projection of f on 1. Does
this suggest an interpretation of the average value?

Exercise 4.27. Let f, g ∈ C(a, b). Give a formula for the scalar t which
minimizes

||f − tg||2 =

∫ b

a
(f(x) − tg(x))2dx.

Exercise 4.28. Find a spanning set for the plane 3x− y + 2z = 0 in R3.

Exercise 4.29. Find an equation for the plane in R3 through the origin
containing both (1, 2,−1)T and (3, 0, 1)T .

Exercise 4.30. Let L be the line obtained by intersecting the two planes
in the previous two exercises. Express L as span{a} for some a.

Exercise 4.31. Describe all subspaces of R4 and R5.
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4.4 Summary

The purpose of this chapter was to introduce two fundamental notions: fields
and vector spaces. Fields are the number systems where we can add, sub-
tract, multiply and divide in the usual sense. The basic examples were the
rationals Q, which form the smallest field containing the integers, the reals
(which are hard to define, so we didn’t), the prime fields Fp, which are the
systems which support modular arithmetic, and the queen of all fields, the
complex numbers C. The basic property of C is that it contains R and is
algebraically closed. A vector space is what happens when a field is cloned.
That is, we get the space Fn of n-tuples of elements in F. In a vector space,
we can add elements and operate on them by scalars. General vector spaces
do not have a multiplication, although some specific examples do. Vector
spaces V have subspaces, the most common example of a subspace being the
set of all linear combinations of a subcollection of the vectors in V . We men-
tioned a special class of vector spaces over R, namely inner product spaces.
These spaces are just like Rn except for the fact that they are frequently
not spanned by finite sets as Rn is. However, some of the properties we
developed for Rn, such as orthogonal projection and the Cauchy-Schwartz
Inequalty, go through in the general case just as they did in Rn.

For example, C(a, b) is an inner product space that doesn’t have this
property. We also pointed out that the theory of linear systems and matrix
theory, two themes that were carried out over R in Chapter 3, have identical
versions over an arbitrary field.



August 29, 2003 115

Chapter 5

The Theory of Finite
Dimensional Vector Spaces

5.1 Some Basic concepts

Vector spaces which are spanned by a finite number of vectors are said to
be finite dimensional. The purpose of this chapter is explain the elementary
theory of such vector spaces, including linear independence and notion of
the dimension. Indeed, the development of a workable definition for this
notion was one of the first important achievements in basic algebra. We will
also explain the construction of a number basic vector spaces such as direct
sums, duals and quotients.

5.1.1 The Intuitive Notion of Dimension

Roughly speaking, the dimension of a vector space should describe the num-
ber of degrees of freedom an inhabitant of the space has. It is clear what
this means for for subsets of Rn provided n = 1, 2 or 3. For example, the
path traced out by a point moving smoothly through R3 is intuitively one
dimensional. A smooth surface without any thickness is a two dimensional
object. (On the other hand, the notion of the dimension of non-smooth
paths and surfaces can be very hard to formulate. In fact, such dimensions
may turn out to real, that is non-integral.) The objects we will be treating
here, however, are linear, and we will see that their dimensions are defined
in a natural way.

In particular, we will see that any subspace of Fn is finite dimensional.
Since our intuition tells us that R1, R2 and R3 should have dimensions one,
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two and three respectively, we should expect that our final definition will
have the property that the dimension of Rn is n. Thus, the dimension of Fn

should also be n.

5.1.2 Linear Independence

Let V denote a vector space over a field F. Before defining the notion of
the dimension of V , we need to discuss the concept of linear independence.
One way of putting the definition is to say that a set of vectors is linearly
independent if no one of them can be expressed as a linear combination
of the others. This means that if you have two vectors, they are linearly
independent when they don’t lie on the same line through the origin (i.e.
they aren’t collinear), and three vectors are linearly independent when they
don’t all lie on a plane through the origin. (Of course, any three vectors lie
on a plane, but the plane will not necessarily contain the origin.) Thus the
situation of two, three or any finite number of vectors failing to be linearly
independent will involve a constraint. Let us now formulate a definition.

Definition 5.1. Let w1, . . . ,wk in V . Then we say that w1, . . . ,wk are
linearly independent (or, simply, independent) if and only if the vector equa-
tion

x1w1 + x2w2 + · · · + xkwk = 0 (5.1)

has only the trivial solution x1 = x2 = · · · = xk = 0. If a non trivial solution
exists, we will call the vectors linearly dependent (or, simply, dependent).

One of the first things to notice is any set of vectors in V that includes
0 is dependent (why?). We begin with a reformulation of the concept of
indepedence.

Proposition 5.1. A set of vectors is linearly dependent if and only if one
of them can be expressed as a linear combination of the others.

Proof. Suppose first that one of the vectors, say w1, is a linear combination
of the others. That is

w1 = a2w2 + · · · + akwk.

Thus
w1 − a2w2 − · · · − akwk = 0,

so (5.1) has a solution with x1 = 1, thus a non trivial solution. Therefore
w1, . . . ,wk are dependent. Conversely, suppose w1, . . . ,wk are dependent.
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This means that there is a solution x1, x2, . . . , xk of (5.1), where some xi 6= 0.
We can assume (just by reordering the vectors) that the nonzero coefficient
is x1. Then we can write

w1 = a2w2 + . . . akwk,

where ai = −xi/x1, so the proof is done.

FIGURE
(LINEARLY DEPENDENT, INDEPENDENT)

The following fact gives one of the important properties of linearly inde-
pendent sets.

Proposition 5.2. Assume that w1, . . . ,wk are linearly independent vec-
tors in V and suppose v is in their span. Then there is exactly one linear
combination of w1, . . . ,wk which gives v.

Proof. Suppose v can be expressed in two ways, say

v = r1w1 + r2w2 + · · · + rkwk

and

v = s1w1 + s2w2 + · · · + skwk

where the ri and si are all elements of F. By subtracting and doing a bit of
algebraic manipulation, we get that

0 = v − v = (r1 − s1)w1 + (r2 − s2)w2 + · · · + (rk − sk)wk.

Since the wi are independent, every coefficient ri− si = 0, which proves the
Proposition.

When V = Fn, the definition of linear independence involves considering
a linear system. Recalling that vectors in Fn are viewed as column vectors,
consider the n×k matrix A = (w1 . . . wk). By the theory of linear systems
(Chapter 2), we have

Proposition 5.3. The vectors w1, . . . ,wk in Fn are linearly independent
exactly when the system Ax = 0 has no non trivial solution which is the
case exactly when the rank of A is k. In particular, more than n vectors in
Fn are linearly dependent.
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5.1.3 The Definition of a Basis

As usual let V be a vector space over a field F.

Definition 5.2. A collection of vectors in V which is both linearly inde-
pendent and spans V is called a basis of V .

Notice that we have not required that a basis be a finite set. Usually,
however, we will deal with vector spaces that have a finite basis. One of the
questions we will investigate is whether a finite dimensional vector space has
a basis. Of course, Fn has a basis, namely the standard basis vectors, or,
in other words, the columns of the identity matrix In over F. A non zero
vector in Rn spans a line, and clearly a single non zero vector is linearly
independent. Hence a line has a basis consisting of a single element. A
plane P through the origin is spanned by any two non collinear vectors
on P , and two any two non collinear vectors on P are linearly independent.
Thus P has a basis consisting of two vectors. It should noted that the trivial
vector space {0} does not have a basis, since in order to contain a linearly
independent subset it has to contain a nonzero vector.

Proposition 5.2 allow us to deduce an elementary property of bases.

Proposition 5.4. The vectors v1, . . . ,vr in V form a basis of W if and only
if every vector v in V admits a unique expression

v = a1v1 + a2v2 + · · · + arvr,

where a1, a2, . . . ar are elements of F.

Proof. We leave this as an exercise.

Example 5.1. Suppose A is an m × n matrix over F. The column space
col(A) of A is a subspace of Fm which we have already considered. Using
our new terminology, if A has rank n, then its columns are independent
and hence form a basis of the column space. This gives a useful criterion
for determining whether or not a given set of vectors in Fm is a basis of
the subspace they span. If the rank of A is less than n, the columns are
dependent, so there is still the problem of finding a basis. More generally,
this is the problem of extracting a basis from a spanning set that may be
dependent. We will solve this for Fm below.

Example 5.2. Let A be an m×n matrix over F. As pointed out in Chapter
3, the theory of linear systems, which was developed in Chapter 3 for the
case F = R, extends over word for word to a linear equation (or system)
Ax = b over any field F and any A ∈ Fm×n. For example, the fundamental
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solutions of Ax = 0 are a basis of the null space N (A), which is a subspace
of Fn, and we still have the identity

dimN (A) = n− rank(A),

which was originally stated in (3.4).
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Exercises

Exercise 5.1. Are the vectors (0, 2, 1, 0)T , (1, 0, 0, 1)T and (1, 0, 1, 1)T in
R4 are independent? Can they form a basis of R4?

Exercise 5.2. Are (0, 0, 1, 0)T , (1, 0, 0, 1)T and (1, 0, 1, 1)T independent in
F4

2?

Exercise 5.3. Show that any subset of a linearly independent set is linearly
independent.

Exercise 5.4. Suppose u1,u2, . . . ,uk are mutually orthogonal unit vectors
in Rm. Show u1,u2, . . . ,uk are independent.

Exercise 5.5. Show that m independent vectors in Fm are a basis.

Exercise 5.6. Find a basis for the space R[x] of all polynomials with real
coefficients.

Exercise 5.7. True or False: Four vectors in R3 are dependent. (Supply
reasoning.)

Exercise 5.8. Prove the assertions made in Example 5.2 that the funda-
mental solutions are a basis of N (A) and dimN (A) = n− rank(A).

Exercise 5.9. Use the theory of linear systems to show the following:

(i) More than m vectors in Fm are dependent.

(ii) Fewer than m vectors in Fm cannot span Fm.

Exercise 5.10. Let u, v and w be a basis of R3.

(a) Determine whether or not 3u + 2v + w, u + v + 0w, and −u + 2v− 3w
are independent.

(b) Find a general necessary and sufficient condition for the vectors a1u +
a2v + a3w, b1u + b2v + b3w and c1u + c2v + c3w to be independent, where
a1, a2, . . . , c3 are arbitrary scalars.

Exercise 5.11. Find a basis for the set of invertible 3 × 3 real matrices.
(Be careful.)
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5.2 Bases and Dimension

We will now (finally) define the notion of dimension and prove the basic
results about bases. As we already noted above (see Exercise 5.9) Fn can’t
contain more than n independent vectors. Our definition of dimension will
in fact amount to saying that the dimension of an F-vector space V is the
maximal number of independent vectors. This definition gives the right
answer for the dimension of a line (one), a plane (two) and more generally
Fn (n).

5.2.1 The Definition of Dimension

We start with the following definition.

Definition 5.3. Let V be a vector space over an arbitrary field F. Then
we say that V is finite dimensional if it is spanned by a finite set of vectors.

For the remainder of this section, we will only consider finite dimensional
vector spaces.

Definition 5.4. The dimension of a finite dimensional vector space V is
the number of elements in a basis of V . For convenience, we will define the
dimension of the trivial vector space {0} to be 0, even though {0} doesn’t
have a basis. The dimension of V will be denoted by dimV or by dimF V
in case there is a chance of confusion about which field is being considered.

This definition obviously assumes that a finite dimensional vector space
(different from {0}) has a basis. Less obviously, it also assumes that any
two bases have the same number of elements. Hence, we have to prove these
two facts before we can use the definition. Thses assertions will be part of
the Dimension Theorem, which will be proved below.

In order to get some feeling for the definition, let’s consider Fn as a
special case. I claim that if n > 0, any basis of Fn has n elements. In
fact, this is just the result of Exercise 5.9, since it says that a basis, being
independent, cannot have more than n elements and, being a spanning set,
has to have at least n elements. In fact, we can even say more.

Proposition 5.5. Every basis of Fn contains exactly n vectors. Moreover, n
linearly independent vectors in Fn span Fn and hence are a basis. Similarly
n vectors in Fn that span Fn are also linearly independent and hence are
also a basis.
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Proof. We already verified the first statement. Now if w1, . . . ,wn are inde-
pendent and A = (w1 . . . wn), then N (A) = {0}, so A has rank n. Since
A is n× n, we know A has an inverse, so the system Ax = b is solvable for
any b ∈ Fn. Thus w1, . . . ,wn span Fn. Similarly, if w1, . . . ,wn span Fn,
they have to be independent for the same reason: A is n× n of rank n.

There is a slight sublety, however, which is illustrated by what happens
when F = C. Since C = R2, Cn is in some sense the same as R2n. Thus, if we
ask what is the dimension of Cn, we see that the answer could be either n or
2n and still be consistent with having the dimension of Fn be n. Hence when
we speak of the dimension of Cn = R2n, we need to differentiate between
whether we are speaking of the real dimension (which is 2n) or the complex
dimension (which is n). In other words, dimR Cn = 2n while dimC Cn = n.

5.2.2 Some Examples

We now consider some examples.

Example 5.3. Let ei denote the ith column of In. As mentioned above, the
vectors e1, . . . , en are the so called standard basis of Rn. In fact, e1, . . . , en
make sense for any field F and, by the same reasoning, are a basis of Fn.

Example 5.4. The dimension of a line is 1 and that of a plane is 2. The
dimension of the hyperplane a1x1 + · · · + anxn = 0 in Rn is n− 1, provided
some ai 6= 0. Note that the n− 1 fundamental solutions form a basis of the
hyperplane.

Example 5.5. Let A = (w1 w2 . . . wn) be n × n over F, and suppose A
has rank n. Then the columns of A are a basis of Fn. Indeed, the columns
span Fn since we can express an arbitrary b ∈ Fn as a linear combinations of
the columns due to the fact that the system Ax = b is consistent for all b.
We are also guaranteed that 0 is the unique solution of the system Ax = 0.
Hence the columns of A are independent. Thus, the columns of an n × n
matrix over Fn of rank n are a basis of Fn. (Note that we have essentially
just repeated part of the proof of Proposition5.5.)

Example 5.6. For any positive integer n, let Pn denote the space of poly-
nomials with real coefficients of degree at most n (cf. Example 4.7). Let’s
determine a basis of P3. Consider the polynomials 1, x, x2, x3. I claim they
are linearly independent. To see this, we have to show that if

y =
3∑

i=0

aix
i = 0
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for every x, then each ai = 0. Now if y = 0, then

y(0) = a0 = 0, y′(0) = a1 = 0, y′′(0) = a2 = 0, y′′′(0) = a3 = 0.

Hence we have the asserted linear independence. It is obvious that 1, x, x2, x3

span P3, so our job is done.

Example 5.7. Let a1, . . . , am be real constants. Then the solution space of
the homogeneous linear differential equation

y(m) + a1y
(m−1) + · · · + am−1y

′ + amy = 0

is a vector space over R. It turns out, by a theorem on differential equations,
that the dimension of this space is m. For example, when m = 4 and ai = 0
for 1 ≤ i ≤ 4, then we are dealing with the vector space P3 of the last
example. The solution space of the equation y ′′ + y = 0 consists of all linear
combinations of the functions sinx and cos x.

5.2.3 The Dimension Theorem

We will next establish the basic result needed to show that the definition of
dimension makes sense.

Theorem 5.6 (The Dimension Theorem). Assume V is a finite dimen-
sional vector space over a field F containing a non zero vector. Then V has
a basis. In fact, any spanning set for V contains a basis, and any linearly
independent subset of V is contained in a basis. Moreover, any two bases of
V have the same number of elements.

Proof. We first show every spanning set contains a basis. Let w1, . . . ,wk

span V . Of course, we may certainly assume that every wi 6= 0. Now
consider the set of all subsets of {w1, . . . ,wk} which also span V , and let
{v1, . . . ,vr} be any such subset where r is minimal. There is no problem
showing this subset exists, since {w1, . . . ,wk} has only 2k subsets.

I claim that v1, . . . ,vr are independent. For, if

a1v1 + · · · + arvr = 0,

and some ai 6= 0, then

vi =
−1

ai

∑

j 6=i
ajvj ,

so if vi is deleted from {v1, . . . ,vr}, we still have a spanning set, which
contradicts the minimality of r. Thus v1, . . . ,vr are independent, so every
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spanning set contains a basis. In particular, since V has a finite spanning
set, it has a basis.

We next show that any linearly independent set in V can be extended to
a basis. Let w1, . . . ,wm be independent, and put W = span{w1, . . . ,wm}.
I claim that if v /∈ W , then w1, . . . ,wm,v are independent. To see this,
suppose

a1w1 + · · · + amwm + bv = 0.

If b 6= 0, it follows (as in the last argument) that v ∈ W , contrary to the
choice of v. Thus b = 0. But then each ak = 0 also since the wk are
independent. This proves the claim.

Now suppose W 6= V . We will use the basis v1, . . . ,vr obtained above.
If each vi ∈ W , then W = V and we are done. Otherwise, let i be the
first index such that vi 6∈ W. By the previous claim, w1, . . . ,wm,vi are
independent. Hence they form a basis for W1 = span{w1, . . . ,wm,vi}.
Clearly we may continue, at each step adding one of the vj, if necessary,
always maintaining an independent subset of V . Eventually we have to
obtain a subspace containing v1, . . . ,vr, so our original independent vectors
w1, . . . ,wm are contained in a basis.

It remains to show that two bases of V have the same number of ele-
ments. This is proved by the so called the replacement principle. Suppose
u1, . . . ,um and v1, . . . ,vn are two bases of V with m 6= n. Without any loss
of generality, suppose m ≤ n. We can then write

v1 = r1u1 + r2u2 · · · + rmum.

Since v1 6= 0, some ri 6= 0, so we may suppose, by renumbering indices if
necessary, that r1 6= 0. I claim that this implies that v1,u2, . . . ,um is also
a basis of V . To see this, we must show v1,u2, . . . ,um are independent and
span. Suppose that

x1v1 + x2u2 · · · + xmum = 0.

If x1 6= 0, then

v1 = y2u2 + · · · + yjum,

where yi = −xi/x1. Since r1 6= 0, this gives two distinct ways of expanding
v1 in terms of the first basis, which contradicts Proposition 5.4. Hence
x1 = 0. It follows immediately that all xi = 0 (why?), so v1,u2, . . . ,um are
independent. I leave the proof that v1,u2, . . . ,um span V as an exercise,
hence we have produced a new basis of V where v1 replaces u1. I claim that
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u2, . . . ,um can be renumbered so that u2 can be replaced by v2, giving a
new basis v1,v2,u3 . . . ,um of V . To be explicit, we can write

v2 = r1v1 + r2u2 · · · + rmum.

Then there exists an i > 1 such that ri 6= 0 (why?). Renumbering so that
i = 2 and applying the same reasoning as in the previous argument, we get
the claim. Continuing this process, we will eventually replace all the ui’s,
which implies that v1, . . . ,vm must be a basis of V . But if m < n, it then
follows that vm+1 is a linear combination of v1, . . . ,vm, which contradicts
the linear independence of v1, . . . ,vn. This is a contradiction, so we conclude
m = n, and the Dimension Theorem is proven.

5.2.4 Some Applications and Further Properties

Let’s begin with an application. Let p be a prime and consider a finite di-
mensional vector space V over F = Fp. Then the dimension of V determines
the number of elements of V .

Proposition 5.7. The number of elements of V is exactly pdimFp V .

The proof goes as follows. Let k = dimV and choose a basis w1, . . . ,wk

of V , which we know is possible. Then every v ∈W has a unique expression

v = a1w1 + a2w2 + · · · + akwk

where a1, a2, . . . , ak are scalars, that is, elements of Fp. Now it is simply
a matter of counting such expressions. In fact, since Fp has p elements,
there are p choices for each ai, and, since different choices of the ai give
different elements of V (Proposition5.2), it follows that V contains exactly
p · p · · · p = pk elements.

Thus, for example, a line in Fn has p elements, a plane has p2 and so
forth.

Example 5.8. Consider for example a matrix over F2, for example

A =




1 0 1 1
0 0 1 1
1 1 1 1
0 1 0 1


 .

Let V denote the row space of A, that is the subspace of F4 spanned by A’s
rows. Using row operations, A row reduces to the 4 × 4 identity matrix I4.
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We will see below that row operations leave the row space of A unchanged.
Hence we conclude that the row space of A is F4. The original rows are a
basis as are the rows of Ared = I4.

We next establish some more properties of finite dimensional vector
spaces. First of all, we prove a fact that is obvious for Fk.

Proposition 5.8. Let V be a finite dimensional vector space, say dimV =
n. Then any subset of V containing more that n elements is dependent.

Proof. It suffices to show that any subset of n+ 1 elements of V is depen-
dent. Let v1, . . . ,vn+1 be independent and suppose u1, . . . ,un give a basis
of V . Applying the replacement principle as in the proof of the Dimension
Theorem (Theorem 5.6), we get that v1, . . . ,vn give a basis, so v1, . . . ,vn+1

can’t be independent.

We also need to show the not surprising fact that every subspace of a
finite dimensional vector space is also finite dimensional.

Proposition 5.9. Every subspace W of a finite dimensional vector space
V is finite dimensional. In particular, for any subspace W of V , dimW is
defined and dimW ≤ dimV .

Proof. We have to show that W is finite dimensional. Consider any set of
independent vectors in W , say w1, . . . ,wm. If these vectors don’t span W ,
then w1, . . . ,wm,wm+1 are independent for any choice of wm+1 ∈W not in
the span of w1, . . . ,wm. If dimV = n, then by Proposition 5.8, more than
n elements of V are dependent, so it follows that W has to have a finite
spanning set with at most n elements. The assertion that dimW ≤ dimV
also follows immediately from Proposition 5.8.

5.2.5 Extracting a Basis Constructively

Theorem 5.6 guarantees that any spanning set of a finite dimensional vector
space contains a basis. In fact, the subsets which give bases are exactly the
minimal spanning subsets. Frequently, however, we need an explicit method
for actually extracting one of these subsets. There is an explicit method for
subspaces of Fn which is based on row reduction. Suppose w1, . . . ,wk ∈ Fn,
and let W be the subspace they span. Let us construct a subset of these
vectors which spans W . Consider the n× k matrix A = (w1 . . . wk). We
must find columns of A which are a basis of the column space W = col(A).
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Proposition 5.10. The columns of A that correspond to a corner entry in
Ared are a basis of the column space col(A) of A. Therefore, the dimension
of col(A) of A is the rank of A.

Proof. The key observation is that Ax = 0 if and only if Aredx = 0 (why?).
This says any expression of linear dependence among the columns of Ared

is also an expression of linear dependence among the columns of A. The
converse statement is also true. For example, if column five of Ared is the
sum of the first four columns of Ared, this also holds for the first five columns
of A. But it is obvious that the columns of Ared containing a corner entry are
a basis of the column space of Ared (of course, this says nothing about the
column space of A). Hence the corner columns are also linearly independent
in W . But we just saw that every non corner column in Ared is a linear
combination of the corner columns of Ared, so the same is true for A from
what we said above. Therefore, the corner columns in A span W , and the
proof is complete.

This result may seem a little surprising since it involves row reducing A
which of course changes col(A).

Example 5.9. To consider a simple example, let

A =




1 2 2
4 5 8
7 8 14


 .

Then

Ared =




1 0 1
0 1 0
0 0 0


 .

Proposition 5.10 implies the first two columns are a basis of col(A). Notice
that the first and third columns are dependent in both A and Ared as the
Proposition guarantees. The Proposition says that the first two columns are
a basis of the column space, but makes no assertion about the second and
third columns, which in fact are also a basis.

5.2.6 The Row Space of A and the Rank of AT

We now consider the row space of a matrix. The goal of this subsection is
to relate the row space to row operations and then to derive a somewhat
surprising result: namely that A and AT have the same rank.
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Definition 5.5. The row space of an m×n matrix A over F is the subspace
row(A) ⊂ Fn of A spanned by the rows of A.

The first fact about the row space of a matrix is about how row opera-
tions affect the row space (not!). Actually, we already let the cat out of the
bag in Example 5.8.

Proposition 5.11. Elementary row operations leave the row space of A
unchanged. Consequently A and Ared always have the same row space.
Moreover, the non-zero rows of Ared are a basis of row(A). Hence the di-
mension of the row space of A is the rank of A, that is

dim row(A) = rank(A).

Proof. The first assertion is equivalent to the statement that for any m×m
elementary matrix E, row(EA) = row(A). If E is a row swap or a row
dilation, this is clear. So we only have to worry about what happens if E
is an elementary row operation of the type III. Suppose E replaces the ith
row ri by r′i = ri+krj, where k 6= 0 and j 6= i. Since the rows of EA and A
are the same except that ri is replaced by r′i, and since r′i is itself a linear
combination of two rows of A, every row of EA is a linear combination of
some rows of A. Hence row(EA) ⊂ row(A). But since E−1 is also of type
III,

row(A) = row((E−1E)A) = row(E−1(EA)) ⊂ row(EA),

so row(EA) = row(A). Therefore row operations do not change the row
space, and the first claim of the proposition is proved.

It follows that the non zero rows of Ared span row(A). We will be done
if the non zero rows of Ared are independent. But this holds for the same
reason the rows of In are independent. Every non zero row of Ared has a
1 in the component corresponding to its corner entry, and in this column,
all the other rows have a zero. Therefore the only linear combination of
the non zero rows which can give the zero vector is the one where every
coefficient is zero. Hence the non zero rows of Ared are also independent,
so they form a basis of row(A). Thus dim row(A) is the number of non
zero rows of Ared, which is also the number of corners in Ared. Therefore,
dim row(A) = rank(A), and this completes the proof.

Here is a surprising corollary.

Corollary 5.12. For any m× n matrix A over a field F,

dim row(A) = dimcol(A).

Put another way, the ranks of A and AT are the same.
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Proof. We just saw that dim row(A) equals rank(A). But in Proposition
5.10, we also saw that dimcol(A) also equals rank(A). Finally, rank(AT ) =
dimcol(AT ) = dim row(A), so we are done.

This result is unexpected. There would seem to be no connection what-
soever between row(A) and col(A). But now we see they have the same
dimensions. Let us cap off the discussion with some examples.

Example 5.10. The 3 × 3 counting matrix C of Example 3.1 has reduced
form

Cred =




1 0 −1
0 1 2
0 0 0


 .

The first two rows are a basis of row(C) since they span row(C) and are
clearly independent (why?).

Example 5.11. Suppose F = F2 and

A =




1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1


 .

A is already reduced so its rows are a basis of row(A), which is thus a three
dimensional subspace of F6. A little combinatorial reasoning will allow us to
compute the number of elements in row(A). In fact, the answer was already
given by Proposition 5.7. Repeating the argument, there are 3 basis vectors
and each has 2 possible coefficients, 0 and 1. Thus there are 2 · 2 · 2 = 23

vectors in all. The 7 non zero vectors are

(100111), (010101), (001011), (110010), (101100), (011110), (1111001).

Note that all combinations of 0’s and 1’s occur in the first three components,
since the corners are in these columns. In fact, the first three components
tell you which linear combination is involved. Examples of this type will
come up again in linear coding theory.
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Exercises

Exercise 5.12. Find a basis for the subspace of R4 spanned by

(1, 0,−2, 1), (2,−1, 2, 1), (1, 1, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)

containing the first and fifth vectors.

Exercise 5.13. Consider the matrix A =




1 2 0 1 2
2 0 1 −1 2
1 1 −1 1 0


 as an ele-

ment of R3×5.

(i) Show that the fundamental solutions are a basis of N (A).

(ii) Find a basis of col(A).

(iii) Repeat (i) and (ii) when A is considered as a matrix over F3.

Exercise 5.14. Suppose V is a finite dimensional vector space over a field
F, and let W be a subspace of V .

(i) Show that if dimW = dimV , then W = V .

(ii) Show that if w1, w2, . . . , wk is a basis of W and v ∈ V but v 6∈ W ,
then w1, w2, . . . , wk, v are independent.

Exercise 5.15. Let F be any field, and suppose V and W are subspaces of
Fn.

(i) Show that V ∩W is a subspace of Fn.

(ii) Let V +W = {u ∈ Fn | u = v+w ∃v ∈ V,w ∈W}. Show that V +W
is a subspace of Fn.

Exercise 5.16. Consider the subspace W of F4
2 spanned by 1011, 0110, and

1001.

(i) Find a basis of W and compute |W |.

(ii) Extend your basis to a basis of F4
2.

Exercise 5.17. Find a basis of the vector space Rn×n of real n×n matrices.
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Exercise 5.18. A square matrix A over R is called symmetric if AT = A
and called skew symmetric if AT = −A.
(a) Show that the n× n symmetric matrices form a subspace of Rn×n, and
compute its dimension.
(b) Show that the n× n skew symmetric matrices form a subspace of Rn×n

and compute its dimension.
(c) Find a basis of R3×3 using only symmetric and skew symmetric matrices.

Exercise 5.19. Show that the set of n × n upper triangular real matrices
is a subspace of Rn×n. Find a basis and its dimension.

Exercise 5.20. If A and B are n× n matrices so that B is invertible (but
not necessarily A), show that the ranks of A, AB and BA are all the same.

Exercise 5.21. True or False: rank(A) ≥ rank(A2). Explain your answer.

Exercise 5.22. Let W and X be subspaces of a finite dimensional vector
space V of dimension n. What are the minimum and maximum dimensions
that W ∩ X can have? Discuss the case where W is a hyperplane (i.e.
dimW = n− 1) and X is a plane (i.e. dimX = 2).

Exercise 5.23. Let u1,u2, . . . ,un be mutually orthogonal unit vectors in
Rn. Are u1,u2, . . . ,un a basis of Rn?

Exercise 5.24. Given a subspace W of Rn, define W⊥ to be the set of
vectors in Rn orthogonal to every vector in W . Show that W⊥ is a subspace
of Rn and describe a method for constructing a basis of W ⊥.

Exercise 5.25. Let W is a subspace of Rn. Show that

dim(W ) + dim(W⊥) = n.

Exercise 5.26. Suppose W is a subspace of Fn of dimension k. Show the
following:

(i) Any k linearly independent vectors in W span W , hence are a basis
of W .

(ii) Any k vectors in W that span W are linearly independent, hence are
a basis of W .

Exercise 5.27. Show that the functions

1, x, x2, x3, . . . , xn, . . .

are linearly independent on any open interval (a, b).

Exercise 5.28. Is R a vector space over Q? If so, is dimQ R finite or infinite?
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5.3 Some General Constructions of Vector Spaces

In this section, we consider some of the standard ways of producing new
vector spaces: intersections, internal and external sums and quotients. We
also will derive an interesting formula (the Hausdorff Intersection Formula)
relating the dimensions of some of these spaces.

5.3.1 Intersections

Let V be a vector space over a field F with subspaces W and Y .
The most obvious way of building a new subspace is by taking the in-

tersection W ∩ Y .

Proposition 5.13. The intersection W ∩ Y of the subspaces W and Y of
V is also a subspace of V . More generally, the intersection of any number
of subspaces of V is also a subspace.

Proof. This is a simple exercise.

Proposition 5.13 is simply a generalization of the fact that the solution
space of a homogeneous linear system is a subspace of Fn, the solution
space is the intersection of a finite number of hyperplanes in Fn, where each
hyperplane is given by a homogeneous linear equation.

5.3.2 External and Internal Sums

First of all, let V and W be arbitrary vector spaces over the same field F.

Definition 5.6. The external direct sum of V and W is the vector space
denoted by V ×W consisting of all pairs (v,w), where v ∈ V and w ∈W .
Addition is defined by

(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2),

and scalar multiplicatyion is defined by

r(v,w) = (rv, rw).

Of course, the wide awake reader will note that F×F is nothing else than
F2. Thus the external direct sum is a generalization of the construction of
Fn. Hence, it can immediately be extended (inductively) to any number
of vector spaces over F. Once this is understood, Fn becomes the n-fold
external direct sum of F. It is also frequently called the n-fold Cartesian
product of F.
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Note also that V and W can both be considered (in a natural way) as
subspaces of V ×W (why?).

Proposition 5.14. If V and W are finite dimensional vector spaces over F,
then so is their external direct sum, and dim(V ×W ) = dimV + dimW .

Proof. We leave this as an exercise.

Now suppose W and Y are subspaces of the same vector space V . Then
we can form the internal sum of W and Y .

Definition 5.7. The internal sum or simply sum of W and Y is the set

W + Y = {w + y | w ∈W,y ∈ Y }.

More generally, we can in the same way form the sum of an arbitrary
(finite) number of subspaces V1, V2, · · · , Vk of V . The sum V1 + · · · + Vk is
usually abbreviated as

∑k
i=1 Vi or more simply as

∑
Vi.

Proposition 5.15. The sum W =
∑k

i=1 Vi of the subspaces V1, V2, · · · , Vk
of V is also a subspace of V . In fact, W is the smallest subspace of V
containing each Vi.

Proof. We leave the proof as an exercise.

5.3.3 The Hausdorff Interesction Formula

We now ask a more interesting question: what are the dimensions of the
sum W + Y and the intersection W ∩ Y of two subspaces W and Y of V ?
It turns out that each depends on the other. The relation between them is
called the Hausdoff Intersection Formula.

Theorem 5.16. If W and Y are subspaces of a finite dimensional vector
space V , then

dim(W + Y ) = dimW + dimY − dim(W ∩ Y ). (5.2)

Proof. We know W ∩Y is a subspace of V , so, since V is finite dimensional,
Proposition 5.8 and the Dimension Theorem tells us that W ∩Y has a basis,
say x1, . . . ,xk. We also know, by the Dimension Theorem again, that we
can extend this basis to a basis of W , say x1, . . . ,xk,wk+1, . . . ,wk+r, and
we can do likewise for Y , getting say x1, . . . ,xk,yk+1, . . . ,yk+s. I claim

B = {x1, . . . ,xk,wk+1, . . . ,wk+r,yk+1, . . . ,yk+s}
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is a basis of W + Y . It is not hard to see that B spans, so we leave this to
the reader. To see B is independent, suppose

k∑

i=1

αixi +

k+r∑

j=k+1

βjwj +

k+s∑

m=k+1

γmym = 0. (5.3)

Thus ∑
γmym = −

(∑
αixi +

∑
βjwj

)
∈ V.

In other words, ∑
γmym ∈ Y ∩W.

Thus ∑
γmym =

∑
δixi

for some δi ∈ F. Substituting this into (5.3) gives the expression
∑

α′
ixi +

∑
βjvj = 0,

where α′
i = αi + δi. From this we infer that all the α′

i and βj are 0 since the
xi and wj are independent. Referring back to (5.3), and applying the same
reasoning, we see that

∑
αixi +

∑
γmym = 0,

hence all αi and γm are 0 too. This proves B is independent. It’s clear that
B spans W +Y , so it forms a basis of W +Y . Consequently dim(W +Y ) =
k + r + s. To finish the proof, we need to count dimensions. Now

dim(W + Y ) = k + r + s = (k + r) + (k + s) − k,

which is exactly dimW + dimY − dim(W ∩ Y ).

This leads to a deeper understanding of how subspaces intersect.

Corollary 5.17. If W and Y are subspaces of V , then

dim(W ∩ Y ) ≥ dimW + dimY − dimV. (5.4)

Proof. Since W and Y are both subspaces of V , dim(W +Y ) ≤ dimV . Now
substitute this into the Hausdorff Formula (5.2).

Example 5.12. Let us illustrate a typical application of (5.4). I claim
that the intersection P1 ∩ P2 of two planes in R3 has to contain a line. For
dim(P1 + P2) ≥ 2 + 2 − 3 = 1. More generally, the intersection H1 ∩ H2

of two hyperplanes in Rn has dimension at least 2(n − 1) − n = n − 2,
hence it contains an (n − 2)-dimensional subspace. On the other hand,
the intersection of two planes in R4 does not have to contain a line since
2 + 2 − 4 = 0.



135

5.3.4 Internal Direct Sums

The final concept in this section is the notion of an internal direct sum. As
usual, let V be a vector space over F with subspaces W and Y .

Definition 5.8. We say that V is the internal direct sum (or simply the
direct sum) of W and Y if V = W + Y and for any v ∈ V , the expression
v = w + y with w ∈ W and y ∈ Y is unique. If V is the internal direct
sum of W and Y , we write V = W ⊕ Y . More generally, we say V is the
direct sum of a collection of subspaces V1, . . . , Vk if V =

∑
Vi and for any

v ∈ V , the expression v =
∑

vi, where each vi ∈ Vi, is unique. In this case,
we write V =

⊕k
i=1 Vi.

Proposition 5.18. Suppose V is finite dimensional. Then a necessary and
sufficient condition that V = W ⊕ Y is that V = W + Y and W ∩ Y = {0}.
Equivalently, V = W ⊕ Y if and only if dimV = dimW + dimY and
dim(W ∩ Y ) = 0.

Proof. First, assume V = W +Y and W ∩Y = {0}. To see V = W ⊕Y , let
v have two expressions v = w + y = w′ + y′. Then w − w′ = y′ − y is an
element of W ∩Y = {0}, so w = w′ and y′ = y. Hence V = W ⊕Y . On the
other hand, if V = W ⊕Y and W ∩Y 6= {0}, then any non-zero w ∈W ∩Y
has two expressions w = w + 0 = 0 + w. This violates the definition of a
direct sum, so W ∩ Y = {0}.

Next, suppose dimV = dimW + dimY and dim(W ∩ Y ) = 0. Then, by
the Hausdorff Intersection Formula, dim(W + Y ) = dimW + dimY . Thus
W + Y is a subspace of V having the same dimension as V . Therefore
V = W + Y . Since dim(W ∩ Y ) = 0, we have V = W ⊕ Y . The converse is
proved by reversing this argument.

We can extend Proposition5.18 to any number of subspaces as follows.

Proposition 5.19. Suppose V is finite dimensional and V1, . . . , Vk are sub-
spaces. Then V =

⊕k
i=1 Vi if and only if V =

∑
Vi and for every index

i,

Vi ∩
(∑

j 6=i
Vj
)

= {0}.

If
∑
Vi = V and

∑k
i=1 dimVi = dimV , then V =

⊕k
i=1 Vi.

Proof. We leave this as an exercise.
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Example 5.13. In the last section, we defined the orthogonal complement
V ⊥ of a subspace V of Rn. Recall,

V ⊥ = {w ∈ Rn | w · v = 0 for all v ∈ V }.

Orthogonal complements in Rn provide examples of direct sums, since as
we saw in Exercise 5.24, dimV + dimV ⊥ = n and V ∩ V ⊥ = {0} (why?).
Thus, for any V ,

Rn = V ⊕ V ⊥. (5.5)
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5.4 Vector Space Quotients

The final topic in this chapter is the construction of the quotient of a vector
space V by a subspace W . This is a new vector space denoted as V/W . In a
certain sense (despite the notation), V/W can be thought of as subtracting
W from V . Not too much should be read into this claim. The meaning
become clearer later.

5.4.1 Equivalence Relations

The notion of a quotient occurs in many different contexts in algebra. It
is surely one of the most fundamental ideas in the area. The basis for this
notion is the idea of an equivalence relation on a set. First, recall that if S
and T are sets, the product S × T (as defined in the previous section) is the
set of all pairs (s, t), where s ∈ S and t ∈ T .

Definition 5.9. Let S be a non-empty set. A subset E of S × S is called
a relation on S. If E is a relation on S, and a and b are elements of S, we
will say a and b are related by E and write aEb if and only if (a, b) ∈ E.
A relation E on S is called an equivalence relation on S when the following
three conditions hold for all a, b, c ∈ S:

(i) (reflexivity) aEa,

(ii) (symmetry) if aEb, then bEa, and

(iii) (transitivity) if aEb and bEc, then aEc.

If E is an equivalence relation on S and a ∈ S, then the equivalence class of

a is defined to be the set of all elements b ∈ S such that bEa.

Proposition 5.20. If E is an equivalence relation on S, every element a ∈ S
is in an equivalence class, and two equivalence classes are either disjoint or
equal. Therefore S is the disjoint union of the equivalence classes of E.

Proof. Every element is equivalent to itself, so S is the union of its equiv-
alence classes. We have to show that if two equivalence classes C and C ′

contain a common element a, then C = C ′. Let C and C ′ be two equivalence
classes. If a ∈ C ∩ C ′, then for any c ∈ C and c′ ∈ C ′, we have aEc and
aEc′. By (ii) and (iii), it follows that cEc′. Hence every element equivalent
to c is equivalent c′, and conversely. Thus C = C ′.
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5.4.2 Cosets

Now let V be a vector space over F and let W be a subspace. We are going to
use W to define an equivalence relation on V . The elements of V/W will be
the equivalence classes. The definition is given in the following Proposition.

Proposition 5.21. Let V be a vector space over F and let W be a subspace.
Given v and y in V , let us say that vEWy if and only if v − y ∈W . Then
EW is an equivalence relation on V .

Proof. Clearly vEWv since v − v = 0 ∈ W . If vEWy, then yEWv since
W is closed under scalar multiplication. Finally, if vEWy and yEW z, then
vEW z since v − z = (v − y) + (y − z) and W is closed under sums. Hence
EW is an equivalence relation on V .

Definition 5.10. Let v ∈ V be fixed. Then the coset of W containing v is
defined to be the set

v +W = {v + w | w ∈W}. (5.6)

The notion of a coset is nothing complicated. For example, if V = R3

and W is a plane through 0, then the coset v + W is simply the plane
through v parallel to W .

Proposition 5.22. The equivalence classes of the equivalence relation EW

on V are precisely the cosets of W . In particular, v +W = y +W if and
only if v − y ∈W .

Proof. Let C denote the equivalence class of v and consider the coset v+W .
If yEWv, then y−v = w ∈W . Hence y = v+w, so y ∈ v+W . Therefore
C ⊂ v +W . Arguing in reverse, we also conclude that v +W ⊂ C.

We now define the quotient space V/W to be the set of all cosets of W .
We want to show that cosets can be added. Given two cosets (v +W ) and
(y +W ), define their sum by

(v +W ) + (y +W ) = (v + y) +W. (5.7)

In order that this addition be a binary operation on V/W , we have to show
that the rule (5.7) is independent of the way we write each coset. That is,
suppose we have v +W = v′ +W and y +W = y′ +W . Then we have to
show that (v + y) +W = (v′ + y′) +W . But this is so if and only if

(v + y) − (v′ + y′) ∈W,
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which indeed holds since

(v + y) − (v′ + y′) = (v − v′) + (y − y′).

Therefore, addition is well defined. Scalar multiplication on cosets is defined
by

a(v +W ) = av +W. (5.8)

A similar argument shows that this scalar multiplication is well defined.
We can now define the quotient vector space V/W and prove one of its

main properties.

Theorem 5.23. Let V be a vector space over a field F and suppose W is a
subspce of V . Define V/W to be the set of cosets of W in V with addition
and scalar multiplication defined as in (5.7) and (5.8). Then V/W is a vector
space over F. If V is finite dimensional, then

dimV/W = dimV − dimW.

Proof. The fact that V/W satisfies the vector space axioms is straightfor-
ward, so we will omit most of the details. The zero element is 0+W , and the
additive inverse −(v +W ) of v +W is −v+W . Properties such as associa-
tivity and commutativity of addition follow from corresponding properties
in V .

To check the dimension formula, first choose a basis w1, . . . ,wk of W ,
and extend this to a basis

w1, . . . ,wk,v1, . . . ,vn−k

of V . Then I claim the cosets v1 + W, . . . ,vn−k + W are a basis of V/W .
To see they are independent, put vi+W = αi if 1 ≤ i ≤ n− k, and suppose
there exist a1, . . . , an−k ∈ F such that

∑
aiαi = 0 + W . This means that∑n−k

i=1 aivi ∈W . Hence there exist b1, . . . , bk ∈ F such that

n−k∑

i=1

aivi =
k∑

j=1

bjwj.

But the fact that the vi and wj comprise a basis of V implies that all ai and
bj are zero. Therefore we have the independence. We leave the fact that
α1, . . . , αn−k span V/W as an exercise.
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Exercises

Exercise 5.29. Prove that the cosets α1, . . . , αn−k defined in the proof of
Theorem 5.23 span V/W .
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5.5 Summary

In the previous chapter, we introduced the notion of a vector space V over
an arbitrary field. The purpose of this chapter was to learn some of the
basic theory of vector spaces. The main topics we considered were the twin
concepts of bases and dimension. A basis of V is a subset B of V such
that every vector in V can be uniquely expressed as a linear combination
of elements of B. That is, B spans and is linearly independent. The main
fact is that if V is finite dimensional (it is spanned by a finite subset), then
any two bases have the same number of vectors. Thus the dimension of a
finite dimensional V can be defined as the number of elements in a basis
of V . There are two other ways of thinking about a basis. It is a minimal
spanning set and a maximal linearly independent subset of V .

After we covered dimension theory, we considered several examples such
as the row and column spaces of a matrix. These turned out to have the
same dimension, a very surprising fact. We also constructed some new
vector spaces and computed their dimensions. For example, if U and W
are subspaces of V , we defined the sum U + W which is a new subspace
of V and computed dim(U + W ). The answer is given by the Hausdorff
Intersection Formula. We also defined what it means to say V is the direct
sum of subspaces U and W and gave examples.

If W is a subspace of V , we may also form the quotient space V/W
whose elements are called the cosets of W . Its dimension is dimV − dimW .
The notion of a quotient vector space uses the important fundamental idea
of an equivalence relation. The idea of constructing a quotient vector space
is a fundamental one, which is under constant use. Finally, we still need
to derive some simple but messy formulas for changing basis. This will be
done with great care in the next chapter.
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Chapter 6

Linear Coding Theory

6.1 Introduction

The purpose of this chapter is to give an introduction to linear coding theory.
This is a topic that is not usually treated in linear algebra, but perhaps it
should be. The point is that coding theory is based on elemnetary linear
algebra, but it uses the finite fields Fp instead of the reals R. Coding theory
is an extremely important topic because without it, we wouldn’t have PCs,
modems, compact discs, DVDs and many other of the daily necessities.

Before starting, let’s give a little history one of the contributions coding
theory has made. In the 1960’s and 70’s, NASA launched several of the
Mariner space probes in order to gather information about our planetary
system. One of main the problems the NASA engineers faced was how to
send the data which was gathered back to earth. Data which has to be
sent electronically is encoded as binary strings, that is, strings of 0’s and
1’s. Since the space probes carried only a tiny, weak transmitter, there
was a high probability that the transmitted data could be scrampled or
entirely lost, due to the fact that there is a lot of radiation in space capable
of disrupting commumications. Solar flares, for example, routinely make
communications even here on earth an impossibility.

To compensate for the possible damage to the transmitted binary strings,
NASA used what are called error-correcting codes. In an error-correcting
code, only certain of the strings 0’s and 1’s, called codewords, are used, so
that for any received string which isn’t a codeword, there may be a good
choice as to which codeword should be substituted to restore the integrity of
the transmission. For example, the Mariner probe to Venus used an error-
correcting code consisting of 64 codewords. Each codeword was a string of
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32 0’s and 1’s (thus the codewords are elements of (F2)
32). This code had

the remarkably good property that it was able to correct an errant reception
with to 7 errors. In other words, almost 25% of the digits could be off and
the correct codeword would still be deducible.

For the reader who wishes to pursue coding theory more deeply, there
are several elementary texts, such as Introduction to Coding Theory by R.
Hill and Introduction to the Theory of Error-Correcting Codes by V. Pless.
A more advanced book is Applied Abstract Algebra by R. Lidl and G. Pilz.
Though more demanding, this book discusses many interesting applications
of linear algebra besides coding theory. The web is also an excellent source
of information. Just type your search topic into www.google.com.

6.2 Linear Codes

6.2.1 The Notion of a Code

The purpose of this section is to introduce the notion of a code. Recall that
V (n, p) denotes Fn, where F is the prime field Fp.

Definition 6.1. A p-ary code of length n is defined to be a subset of C of
V (n, p). The elements of C are called codewords. We will denote the number
of elements of C by |C|.

Since |V (n, p) = pn, every code C ⊂ V (n, p) is finite.

Proposition 6.1. The number of codes C ⊂ V (n, p) is 2p
n

.

Proof. The number of subsets of a set with k elements is 2k, while |V (np)| =
pn.

Definition 6.2. A linear subspace C ⊂ V (n, p) is called a linear code. (or
more precisely, a p-ary linear code of length n).

Thus a code C ⊂ V (n, p) with the property that the sum of any two
codewords is a codeword, which also contains the null word (i.e. zero vector)
is a p-ary linear code. (Note that when the field is Fp, a subset containing
the null word which is closed under addition is a subspace.)

An important advantage of linear codes is that a linear code is deter-
mined by giving a set of codewords which span it.

Definition 6.3. If C ⊂ V (n, p) is linear, then any set of codewords which
gives a basis of C is called a set of basic codewords. If dimC = k, we call C
a p-ary [n, k]-code.
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Proposition 6.2. If C is a p-ary [n, k]-code, then |C| = pk.

Proof. This is a special case of Proposition 5.7, but let’s repeat the proof
anyway. Since dimC = k, C has a basis consisting of k codewords, say
c1, . . . ck.

Now every codeword can be expressed in exactly one way as a linear
combination

a1c1 + a2c2 + · · · akck,

where a1, a2, . . . , ak vary over all elements of Fp. Hence there are at most pk

possible linear combinations. But different linear combinations give different
vectors, so in fact |C| = pk.

The most frequently used codes are binary codes, that is codes where
F = F2, so we will concentrate on these. The elements of V (n, 2) will be
represented simply as strings of n 0’s and 1’s. We will frequently refer to
these as n-bit strings. For example, the two-bit strings are 00, 01, 10, and
11.

Example 6.1. The equation x1+x2+x3+x4 = 0 defines a 4-bit linear code
of dimension 3. Hence there are 8 codewords. Rewriting this equation as
x1+x2+x3 = x4, we see that x4 can be viewed as a check digit for x1, x2, x3.
In this code, the codewords are the 4 bit strings with an even number of 1’s.
A particular set of basic codewords is {1001, 0101, 0011}, although there are
other possibly more natural choices.

Example 6.2. Let

A =




1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1


 ,

and let C be the binary 6-bit linear code spanned by the rows of A. That
is, C = row(A). Since A is in row reduced form, its rows are independent,
hence form a set of basic codewords for C. Thus C is a three dimensional
subspace of V (6, 2), so |C| = 8. The 7 non zero codewords are

(100111), (010101), (001011), (110010), (101100), (011110), (1111001).

Note that all possible combinations of 0’s and 1’s occur in the first three
positions. These three letters tell you which linear combination of the basic
codewords is involved. The last three letters are again check digits.
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6.2.2 The International Standard Book Number

The International Standard Book Number (ISBN) is a reference number
that is issued to books published by the mainstream publishing companies.
Its purpose is to assist bookstores in making orders and to help librarians
in cataloguing. The system has been in place since 1969. Each ISBN is a 10
digit string a1 · · · a9 a10. The digits a1, . . . , a9 are allowed to take any value
between 0 and 9, but the last digit a10 can also take the value X, which is
the Roman numeral denoting 10.

For example, the book Fermat’s Enigma by Simon Singh, published in
1997 by Penguin Books, has ISBN 0-14-026869-3. The first digit 0 indicates
that the book is in English, the digits between the first and second hyphens
give the number assigned to the publisher, and the next set of digits indicates
the title. The last digit is the check digit, which we will explain below.
Major publishing companies like Penguin have small numbers (Penguin’s is
14), while small publishers are given a larger number. Whitecap Books in
Vancouver and Toronto has the 6 digit number 921061. Thus Penguin can
publish 999,999 titles (in English), but Whitecap is restricted to 99.

ISBN’s are based on a linear 11-ary [10,9] code, that is, a 9-dimensional
linear subspace C of V (10, 11). The code C is defined to be the solution
space of the homogeneous linear equation in a1, . . . , a10 given by

a1 + 2a2 + 3a3 + · · · + 9a9 + 10a10 = 0.

Clearly, C can also be described as the null space of the rank one matrix
(1 2 3 4 5 6 7 8 9 10) over F11. Since 10+1 = 0 in F11, the defining equation
can also be expressed as

a10 =
9∑

i=1

iai.

The ISBN’s are the codewords

a1 a2 a3 a4 . . . a9 a10

described above (with hyphens inserted in appropriate places). Of course,
not all 119 possible codewords can be used because of the restriction ai 6= 10
except for a10.

Example 6.3. For example, 0-15-551005-3 is an ISBN since 0 + 2 + 15 +
20 + 25 + 6 + 0 + 0 + 453 ≡ 3mod(11), as is 0-14-026869-3 from the above
example.
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Example 6.4. Suppose that an ISBN is entered as 0-19-432323-1. With
a minimum amount of technology, the machine in which the numbers are
being entered will warn the librarian that 0-19-432323-1 is not an ISBN: that
is, (0, 1, 9, 4, 3, 2, 3, 2, 3) doesn’t satisfy

∑10
i=1 iai = 0 in F11. Thus an error

has been detected. But the type of error isn’t. For example, there may be
a single incorrect digit, or two digits might have been transposed. In fact,
these two possibilities are the most common types of error. The next result
says something about them.

Proposition 6.3. A vector a = (a1, . . . , a10) ∈ V (10, 11) that differs from
an element of C in exactly one place cannot belong to C; in particular it can-
not be an ISBN. Similarly, an element of V (10, 11) obtained by transposing
two unequal letters of an ISBN cannot be an ISBN.

Proof. We will prove the first assertion but leave the second as an exercise.
Suppose c = (c1, . . . , c10) is a codeword which differs from a ∈ V (10, 11) in
one exactly component, say ci = ai if i 6= j, but cj 6= aj. Then

v := a− c = (0, . . . , 0, aj − cj , 0, . . . , 0).

If a ∈ C, then v ∈ C too, hence j(aj − cj) = 0 in F11. But since neither j
nor aj − cj is zero in Z11, this contradicts the fact that F11 is a field. Hence
v 6∈ C, so a 6∈ C also. This proves the first assertion.

Suppose you know all but the kth digit of an ISBN. Can you find the
missing digit? Try this with an example, say 0-13-832x44-3. This is a sure
way to astound your friends and relatives and maybe win a few bets. But
don’t bet with a librarian.

Exercises

Exercise 6.1. Determine all x such that 0-13-832x4-4 is an ISBN.

Exercise 6.2. Determine all x and y such that both 1-2-3832xy4-4 and
3-33-x2y377-6 are ISBNs.

Exercise 6.3. Prove the second assertion of Proposition 6.3.

6.3 Error detecting and correcting codes

6.3.1 Hamming Distance

In Rn, the distance between two vectors is the square root of the sum of
the squares of the differences of their components. This could never be used
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to measure the distance between two elements of V (n, p) since a sum of
squares in Fp may well be 0. It turns out however that there is another
way of measuring distances and lengths which works extremely well in the
V (n, p) setting.

Definition 6.4. Suppose v = (v1, . . . , vn) ∈ V (n, p). Define the weight

ω(v) of v to be the number of i such that vi 6= 0. That is,

ω(v1, . . . , vn) = |{i | vi 6= 0}|.

The Hamming distance (or simply the distance) d(u,v) between u and v in
V (n, p) is defined by

d(u,v) = ω(u− v).

For example, ω(1010111) = 5. Note that the only vector of weight zero
is the zero vector. Therefore u = v exactly when ω(u − v) = 0. In fact
what makes the Hamming distance function d so useful is that it satisfies
the three properties which are used to characterize (or define) a distance
function in general.

Proposition 6.4. Suppose u,v,w ∈ V (n, p). Then:

(i) d(u,v) ≥ 0, and d(u,v) = 0 if and only if u 6= v;

(ii) d(u,v) = d(v,u); and

(iii) d(u,w) ≤ d(u,v) + d(v,w).

These properties clearly hold for the usual distance function on Rn.
Property (iii) is the triangle inequality, so named because in Rn it says
that the length of any side of a triangle can’t exceed the sum of the lengths
of the other two sides. The first two properties of the Hamming distance
are easy to see, but the triangle inequality requires proof.

Proof. First consider the case where u and v differ in every component.
Thus d(u,v) = n. Let w be any vector in V (n, p), and suppose d(u,w) = k.
Then u and w agree in n − k components, which tells us that v and w
cannot agree in those n− k components, so d(v,w) ≥ n− k. Thus

d(u,v) = n = k + (n− k) ≤ d(u,w) + d(v,w).

In the general case, let u,v,w be given. Now let u′,v′ and w′ denote the
vectors obtained by dropping the components where u and v agree. Then
we are in the previous case, so

d(u,v) = d(u′,v′) ≤ d(u′,w′) + d(u,w′).
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But d(u′,w′) ≤ d(u,w) and d(v′,w′) ≤ d(v,w). Therefore,

d(u,v) ≤ d(u,w) + d(v,w),

and the triangle inequality is established.

One of the most desirable features for a (not necessarily linear) code C is
that the minimum distance between two any codewords as large as possible.
Let d(C) denote this minimum distance. For a code which isn’t linear, d(C)
has to be computed in the old fashioned way, that is the distance between
every pair of codewords has to be taken into account. In general, if there
are m codewords, then this means doing

(
m
2

)
=
m(m− 1)

2

calculations (check this). But if C is linear, finding d(C) takes much less.

Proposition 6.5. If C ⊂ V (n, 2) is linear, then d(C) is the minimum of
the weights of all the non zero codewords.

We will leave the proof as an exercise.

6.3.2 The Main Result

An code C ⊂ V (n, p) of length n such that |C| = M and d(C) = d is often
called an (n,M, d)-code. If C is also linear, M = pk for some positive integer
k. In that case, we say that C is a p-ary [n, k, d]-code. In general, one wants
to maximize d(C). The reason for this is given in the next result.

Proposition 6.6. A (not necessarily linear) (n,M, d)-code C can detect
up to d − 1 errors, i.e. if d(v, c) ≤ d − 1 for some c ∈ C, then v 6∈ C.
Moreoever, C corrects up to e = (d − 1)/2 errors. That is, if d(v, c) ≤ e,
for some codeword c, then this c is the unique codeword with this property,
and thus c corrects the errors in the non-codeword v.

The error-correcting assertion can be succinctly phrased by saying that
any v within Hamming distance e = (d − 1)/2 of C is within e of a unique
codeword. So if you know all but e digits of a codeword, you know them all.

Example 6.5. Suppose C is a 6-bit code with d = 3. Then e = 1. If
c = 100110 is a codeword, then v = 000110 can’t be one, but 100110 is the
unique codeword within Hamming distance 1 of the non-codeword 000110.
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We will leave the first assertion of Proposition6.6 as an exercise and
prove the harder second assertion. Assume d(v, c) ≤ (d−1)/2, and suppose
there exists an c′ ∈ C such that d(v, c′) ≤ d(v, c). Thus,

d(v, c′) ≤ d(c,v) ≤ (d− 1)/2.

The idea is to use the triangle identity to estimate d(c, c′), which we know
is at least d(C) = d if c 6= c′. But by the triangle inequality,

d(c, c′) ≤ d(c,v) + d(v, c′) ≤ (d− 1)/2 + (d− 1)/2 = d− 1,

so indeed we have, we have c = c′.

For the binary [4,3]-code given by x1 + x2 + x3 + x3 + x4 = 0, one sees
easily that d(C) = 2. Thus C detects a single error, but can’t correct an
error because (d− 1)/2 = 1/2 < 1. However, if some additional information
is known, such as the component where the error occurs, it can be corrected
using the linear equation defining the code.

6.3.3 Perfect Codes

We can also interpret Proposition 6.6 geometrically. If r > 0, define the ball

of radius r centred at v ∈ V (n, p) to be

Be(v) = {w ∈ V (n, p) | d(w,v) ≤ e}. (6.1)

Extending Proposition6.6, we show

Proposition 6.7. Let C ⊂ V (n, p) satisfy d(C) = d, and let e = (d− 1)/2.
For any c ∈ C,

Be(c) ∩ C = {c}.
Hence, an element v ∈ V (n, p) which lies in one of the balls Be(c) lies in
exactly one of them.

Proof. This follows immediately from Proposition6.6.

Of course, the Propositiondoesn’t say much unless d(C) > 2. Thus the
union of the balls Be(c) as c varies over C is the set of elements of V (n, p)
which are within e of a unique codeword. The nicest situation is that these
balls cover V (n, p), that is

V (n, p) =
⋃

c∈C
Be(c). (6.2)
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Definition 6.5. A code C ⊂ V (n, p) with d(C) = d > 2 is said to be perfect

if (6.2) holds. That is, C is perfect if and only if every element of V (n, p) is
within e of a (unique) codeword.

We will consider perfect codes in more detail in §6.14. It turns out that
perfect codes are not so abundant. There are infinitely many perfect binary
linear codes C with d(C) = 3, hence e = 1. These single error correcting
codes are known as Hamming codes. A result of Pless says that there are
only two perfect linear codes with e > 1. One is a binary [23, 12]-code with
d = 7 and the other is a ternary [11, 6]-code with d = 5.

6.3.4 A Basic Problem

One of the basic problems in coding theory is to design codes C ⊂ V (n, p)
such that both |C| and d(C) are large. More precisely, the problem is to
maximize |C| among all length codes C for which d(C) ≥ m for some given
integer m. The maximum will then depend on n and m. If we also impose
the condition that C is linear, then we are actually seeking to maximize
dim(C), since |C| = pdim(C). An example which has this property is the
binary (8, 16, 4) code C8 defined in the next example.

Example 6.6. Consider the following matrix

A =




1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1


 .

The row space C8 of A is called the extended Hamming code. Notice that
every row of A has weight 4, so the minimum distance of C8 is at most 4. In
fact, it can be shown that d(C8) = 4. Hence C8 is an (8, 16, 4)-linear code.

Proposition 6.8. The code C8 maximizes |C| among all 8-bit binary linear
codes with d(C) ≥ 4.

Proof. Since dimC8 = 4, we have to show that there are no 8-bit binary
linear codes C with d(C) ≥ 4 and |C| > 16. Suppose C is in fact one such
code. Then by taking a spanning set for C as the rows of a k × 8 matrix
A, we can use row operations to put A into reduced row echelon form Ared

without changing C. For simplicity, suppose that Ared has the form (Ir|M).
It follows that |C| = 2r, so since |C| > 16, we see that r ≥ 5. Hence M has
at most three columns. Now the only way d(C) ≥ 4 is if all entries of M
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are 1. But then subtracting the second row of Ared from the first gives an
element of C of weight 2, which contradicts d(C) ≥ 4. Thus r ≤ 4.

In fact, by a similar argument, we can show the singleton bound for d(C).

Proposition 6.9. If C is a linear [n, k]-code, then

d(C) ≤ n− k + 1.

Put another way, a linear code C of length n satisfies

dimC + d(C) ≤ n+ 1.

We leave the proof as an exercise. In the next section, we will consider a
class of non-linear binary where both |C| and d(C) are large. Let us a make
a final definition.

Definition 6.6. A linear [n, k]-code C with d(C) = n− k + 1 is said to be
maximal distance separating.

6.3.5 Linear Codes Defined by Generating Matrices

The purpose of this subsection is to consider linear codes C given as the
row space of a so called generating matrix. We already considered some
examples of generating matrices in the last subsection.

Definition 6.7. A generating matrix for a linear [n, k]-code C is a k × n
matrix over Fp of the form M = (Ik | A) such that C = row(M).

Example 6.7. Let C be the binary [4,2]-code with generating matrix

M =

(
1 0 1 1
0 1 0 1

)
.

Taking all the linear combinations of the rows, we find that

C = {0000, 1011, 0101, 1110}.

A check to make sure that we have found all of C is to note that since
dimC = 2 and p = 2, C has 4 = 22 elements.

Example 6.8. Let

M =




1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1


 .
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One checks easily that besides the rows of M , the elements of C are

(000000), (110010), (101100), (011110), (111001).

Clearly d(C) = 3, so C is one error-correcting .

The reader should also recall the code C8 considered in Example 6.6.
Every element of C = row(M) can be expressed as a matrix product of the
form (x1 . . . xk)M . (To see this, transpose the fact that the column space
of MT consists of all vectors of the form M T (y1 . . . yn)

T .) Now, to any
x = (x1 . . . xk) ∈ Fk, there is a unique codeword c(x) = (x1 . . . xk)M ∈ C.
For a generating matrix M as above,

c(x) = x1 . . . xk

k∑

i=1

ai1xi · · ·
k∑

i=1

ai(n−k)xi.

Since x1, . . . , xk are completely arbitrary, the first k entries x1 . . . xk are
called the message digits and the last n−k digits are called the check digits.

Exercises

Exercise 6.4. Prove the second assertion of Proposition 6.3.

Exercise 6.5. Prove the first two parts of Proposition6.5.

Exercise 6.6. Consider the binary code C ⊂ V (6, 2) which consists of
000000 and the following nonzero codewords:

(100111), (010101), (001011), (110010), (101100), (011110), (111001).

(i) Determine whether or not C is linear.

(ii) Compute d(C).

(iii) How many elements of C are nearest to (011111)?

(iv) Determine whether or not 111111 is a codeword. If not, is there a
codeword nearest 111111?

Exercise 6.7. Prove the first part of Proposition 6.6.

Exercise 6.8. Compute d(C) for the code C of Example 6.2.
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Exercise 6.9. Consider the binary code C7 defined as the row space of the
matrix

A =




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


 .

in V (7, 2).

(i) Compute d(C) and e.

(ii) Find the unique element of C that is nearest to 1010010. Do the same
for 1110001.

Exercise 6.10. Let r be a positive integer and consider the ball Br(x) ⊂
V (n, 2) about x ∈ V (n, 2). Show that

|Br(x)| =
r∑

i=0

(
n

i

)
.

Exercise 6.11. Generalize Exercise 6.10 from V (n, 2) to V (n, p).

Exercise 6.12. * Show that if C is a linear [2, k]-code and C is e-error-
correcting , then

e∑

i=0

(
n
i

)
≤ 2(n−k).

In particular, if C is 1-error-correcting , then |C| ≤ 2(n−k)/(1 + n).

Exercise 6.13. Show that if P is a permutation matrix, then P defines
a transformation T : V (n, p) → V (n, p) which preserves the Hamming dis-
tance.

Exercise 6.14. Show that if C is a linear code, then

d(C) = min{ω(x) | x ∈ C,x 6= 0}.

That is, d(C) is the minimum weight among the non zero vectors in C. Use
the result to find d(C) for the code C used to define ISBN’s? Is this code
error-correcting ?

Exercise 6.15. Prove Proposition6.9. (Note,

Exercise 6.16. Taking F = F11, compute the generating matrix for the
ISBN code.
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6.4 Hadamard matrices (optional)

We will next consider an interesting class of binary codes based on Hadamard
matrices, which are named after the French mathematician J. Hadamard.
As mentioned above, these so called Hadamard codes have the property
that both |C| and d(C) have a large values (as opposed to what we saw
in Proposition6.9 for linear codes). Hadamard matrices are themselves of
interest, since their properties are not that well understood. As Hadamard
codes are nonlinear, we consider this topic to be a sightseeing trip.

6.4.1 Hadamard Matrices

A Hadamard matrix is an n × n matrix H such that hij = ±1 for all 1 ≤
i, j ≤ n and

HHT = nIn.

Proposition 6.10. If H is an n× n Hadamard matrix, then:

(i) HTH = nIn,

(ii) any two distinct rows or any two distinct columns are orthogonal;

(iii) n is either 1, 2 or a multiple of 4; and

(iv) if n > 1, then any two rows of H agree in exactly n/2 places.

The only assertion that isn’t clear is (iii), although it isn’t hard to see
that that n is even. It’s still an open problem as to whether there is a 4k×4k
Hadamard matrix for every k > 0. This is known for k ≤ 106, but it doesn’t
seem to be known whether there is a 428 × 428 Hadamard matrix.

Example 6.9. Examples of n× n Hadamard matrices for n = 2, 4, 8 are

H2 =

(
1 1
1 −1

)
, H4 =




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


 ,
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and

H8 =




1 1 1 1 1 1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1




.

After this point, it is no longer instructive to write them down. One can
produce other Hadamard matrices from these by the transformation H 7→
PHQ, where P and Q are permutation matrices.

6.4.2 Hadamard Codes

We will now define a Hadamard code. Let H be any n × n Hadamard
matrix. Consider the n × 2n matrix (H| − H), and let H be the binary
matrix obtained by replacing all −1’s by 0’s.

Definition 6.8. The Hadamard code C associated to H is by definition the
set of columns of H. It is a binary n-bit code with 2n-codewords.

Proposition 6.11. Let C be an n-bit Hadamard code. Then d(C) = n/2.
Thus C is a binary (n, 2n, n/2)-code.

Proof. Recall that n is a multiple of 4, so n/2 is an even integer. The fact
that the ith and jth columns of H are orthogonal if i 6= j implies they must
differ in exactly n/2 components since all the components are ±1. But the
ith and jth columns of H and −H are also orthogonal if i 6= j, so they
differ in n/2 places too. Moreover, the ith columns of H and −H differ in
n places. This proves d(C) = n/2, as asserted.

For example, the Hadamard matrix H2 gives the (2, 4, 1)-code

(
1 1 0 0
1 0 0 1

)
.

The code that was used in the transmission of data from the Mariner space
probes to Venus in the 1970’s was a binary (32, 64, 16) Hadamard code.
Since (16 − 1)/2 = 7.5, this code corrects 7 errors. An interesting footnote
is that the Mariner space probes, now billions of miles from earth, are still
transmitting data.
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6.5 The Standard Decoding Table, Cosets and

Syndromes

6.5.1 The Nearest Neighbour Decoding Scheme

Suppose that C ⊂ V (n, p) is a p-ary linear n-bit code used in transmitting
data from a satellite. Assume a codeword c = c1 . . . cn has been transmitted
and received as d = d1 . . . dn. Due to atmospheric interference and a number
of other possible sources of noise, the received word d is not a codeword.
The people manning the communication center therefore have to consider
the error E := d− c, which of course is unknown to them. The object is to
make an intelligent guess as to what c is.

One popular scheme is the nearest neighbour decoding scheme, which
uses a standard decoding table for C (SDT for short). The idea is to organize
the elements of V (n, p), into the cosets of C, which were defined in Definition
5.6. For the convenience of readers who skipped §5.4, we will recall the basic
properties of cosets below. The cosets of C are disjoint subsets of V (n, p)
whose union is all of V (n, p), such that any elements of the same coset have
the same error. Cosets will turn out to be analogous to the set of all parallel
planes in R3. This is illustrated in the following example.

Example 6.10. Let C ⊂ V (4, 2) be the linear code of Example 6.7. We will
now construct an SDT for C. The SDT is a rectangular array listing all 24

elements of V (4, 2) as follows. The first row consists of the elements of C,
putting 0 = 0000 in the first column. To construct the second row, choose
an element E1 not in C, and put E1 directly below 0000. Now add E1 to
each element c in the first row to the right of 0000 and write the result E1+c
directly below c. Thus the first row is the coset 0 +C of 0, and the second
row is the coset E1 + C of E1. Next, select a E2 ∈ V (4, 2) which isn’t in
either of the first two rows, assuming one exists, and repeat the previous step
with E2. Continuing this construction will eventually exhaust V (4, 2), and
the final result is the standard decoding table . This construction, however,
may lead to many different standard decoding tables since there aren’t any
canonical choices for the error vectors that appear in the first column. Below
is an example of a standard decoding table for C.

0000 1011 0101 1110
1000 0011 1101 0110
0100 1111 0001 1010
0010 1001 0111 1100

.
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Every row of an standard decoding table for a subspace C ⊂ V (n, p) has
the form E + C for some E ∈ V (n, p). The first row is C = 0 + C, and
the potential errors Ei we’ve selected vary through the first column. One
obvious comment is that it makes sense to choose errors of minimal weight.
If a codeword c has been transmitted but a non-codeword such as 0111 is
received, then scan the standard decoding table until 0111 is located. In the
example, 0111 occurs in the last row directly below the codeword 0101. The
nearest neighbour decoding scheme assumes that the error is the leading
element 0010 of the last row, so the correct codeword is 0101 = 0111−0010.

Notice that it can happen that a row of a standard decoding table con-
tains more than one element of minimal weight. This happens in the third
row of the above table, where there are two elements of weight one. There
is no reason to prefer decoding 1111 as 1011 rather than 1110. The non zero
elements of least nonzero weight in V (n, 2) are standard basis vectors. If
dimC = k, then at most k of the standard basis vectors can lie in C. These
vectors are therefore natural candidates for the leading column. In fact, it
seems desirable to seek codes C so that there is a standard decoding table
such that in each row, there is a unique vector of minimal length. We will
see presently that this objective is achieved by perfect linear codes.

6.5.2 Cosets

From an inspection of the above standard decoding table, three properties
are apparent:

(a) different rows don’t share any common elements;

(b) any two rows have the same number of elements; and

(c) every element of V (4, 2) is in some row.

These properties follow from the fact that the rows of a standard decoding
table are the cosets of C.

Definition 6.9. Let V be a vector space over F, and suppose A and B are
subsets of V . We define A + B to be the subset consisting of all vectors of
the form a + b, where a ∈ A and b ∈ B. If C is a subspace of V , then a
subset of V of the form {v} + C is called a coset of C.

To simplify the notation, we will denote {v}+C by v+C. For example,
each row of a standard decoding table is a coset of the linear code C, since it
has the form E +C. The properties (a), (b) and (c) stated above all follow
from
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Proposition 6.12. Let V be a vector space over Fp of dimension n, and
let C be a linear subspace of V of dimension k. Every element of V lies in a
coset of C, and two cosets are either disjoint or equal. In fact, v+C = w+C
if and only if w − v ∈ C. Finally, there are p(n−k) cosets of C, every coset
contains pk elements.

Proof. Certainly v ∈ v + C, so the first claim is true. If w + C and v + C
contain an element y, then y = w + c = v + d for some c,d ∈ C. Thus
w = v + c − d. Since c − d ∈ C, it follows that w + C = v + (c − d) + C.
But since C is a subspace, (c−d) +C = C, so w+C = v +C. This proves
the second claim. If v + C = w + C, then w − v ∈ C, and conversely. To
prove the last assertion, recall that |C| = pk. Hence |v + C| = pk too. For
v → v + c is a bijection from C to v + C. It follows that there are p(n−k)

cosets, which completes the proof.

In coding theory, the error elements E in the first column of a particular
standard decoding table are sometimes called coset leaders, although in other
contexts, they are known as coset representatives..

6.5.3 Syndromes

One can modifying the construction of an standard decoding table so that
it isn’t necessary to scan the whole table to find a given entry. This is
important since scanning is an inefficient process in terms of computer time.
The amount of scanning can be greatly reduced by using syndromes. The
simplification come about by introducing the notion of a parity check matrix.

Definition 6.10. Let C ⊂ V (n, p) be a linear code given by a generating
matrix M = (Ik | A). A parity check matrix for C is an (n−k)×n matrix H
such that C is the null space of H after identifying row and column vectors.

One of the advantages of using a generating matrix in the form M =
(Ik | A) is that the parity check matrix H is simple to write down.

Proposition 6.13. Suppose C ⊂ V (n, p) is the code obtained as the row
space of a generating matrix M = (Ik | A). Then c ∈ C if and only if
(−AT | In−k)cT = 0. Thus, H = (−AT | In−k) is a parity check matrix for
C. Furthermore, two vectors d1 and d2 in V (n, p) are in the same coset of
C if and only if HdT1 = HdT2 .

We will leave the proof that H is a parity check matrix as an exercise.
When C is a binary code, the parity check matrix H = (AT | In−k), since
−AT = AT .
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We now give the proof of the second assertion. Note that d1 and d2 are in
the same coset of C if and only if d1−d2 ∈ C if and only if H(d1−d2)

T = 0
if and only if HdT1 = HdT2 .

Definition 6.11. We call dHT = (HdT )T the syndrome of d ∈ V (n, p)
with respect to C.

To incorporate syndromes in a standard decoding table , we insert an
extra column consisting of the syndromes of the cosets. Thus each row
consists of a coset and the syndrome of that coset. The different syndromes
identify the different cosets, so instead of having to scan the whole decoding
table to find d, it suffices to first scan the column of syndromes to find the
syndrome of d and then scan that row.

Example 6.11. Let M be the generating matrix of Example 6.7. Recall

M =

(
1 0 1 1
0 1 0 1

)
.

Thus

HT =




1 1
0 1
1 0
0 1


 .

The syndromes are found by taking the matrix product




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0







1 1
0 1
1 0
0 1


 =




0 0
1 1
0 1
1 0


 .

Thus the standard decoding table with syndromes is

0000 1011 0101 1110 00
1000 0011 1101 0110 11
0100 1111 0001 1010 01
0010 10001 0111 1100 10
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Exercises

Exercise 6.17. Prove Proposition 6.12.

Exercise 6.18. Prove Proposition ??.

Exercise 6.19. Construct the standard decoding table with syndromes for
the binary code C with generating matrix




1 0 0 1 1 1
0 1 0 0 1 0
0 0 1 1 0 1


 .

(Note, this is rather complicated since C has 8 elements. Thus the standard
decoding table with syndromes is a 8 × 9 table (counting the syndromes
as one column) since V (6, 2) has 64 elements. Perhaps you can write a
program.)

Exercise 6.20. Let C be the code of the previous problem.

(a) How many errors does C detect?

(b) How many errors does it correct?

(c) Use the standard decoding table with syndromes you constructed in
Exercise 6.20 to decode 101111 and 010011.

Exercise 6.21. Show that, indeed, C = {c ∈ V (n, 2) | cHT = 0}. (Sugges-
tion: begin by showing that MHT = O. Hence every row of M lies in the
left null space of H. Now compute the dimension of the left null space of
H, using the fact that H and HT have the same rank.)

Exercise 6.22. Construct the standard decoding table for the binary code
with generating matrix (

1 0 1 0
0 1 0 1

)
.

Exercise 6.23. Let C be a binary linear n-bit code with n ≥ 3 with parity
check matrix H. Show that if no two columns of H are dependent (i.e.
equal), then d(C) ≥ 3.

Exercise 6.24. Generalize Exercise 6.23 by showing that if C ⊂ V (n, p) is
a linear code with a parity check matrix H having the property that no m
columns of H are linearly dependent, then d(C) ≥ m+ 1.
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Exercise 6.25. Show that any coset of the ISBN contains a unique standard
basis vector. In particular, any 10 digit number differs form an ISBN in one
digit. Can you determine in general when it is possible, for a given C, to
have a standard decoding table where the coset leaders are the standard
basis vectors?

Exercise 6.26. Find an upper bound on the number of operations required
to scan the standard decoding table (with syndromes) associated to an p-ary

[n, k] code to find any d ∈ V (n, 2). Compare this result to the number of
operations needed to find d before adding the syndromes.
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6.6 Perfect linear codes

Recall from Definition 6.5 that a code C ⊂ V (n, p) with d(C) = d > 2 such
that the balls Be(c) cover V (n, p) as c ranges through C is called perfect.
The first thing we will do in this section is to reformulate this definition
for linear codes. It turns out that each coset of a perfect linear code has a
unique element of weight less than e = (d − 1)/2. As we mentioned in the
previous section, since the coset leaders of the rows of a standard decoding
table represent the common error for its entire coset (i.e. row), one would
like the standard decoding table to have the property that the weight of each
coset leader is strictly less than the weight of all other elements of its row.
This property can’t always be arranged, since there can be several minimal
weight vectors in a coset, as we saw in Example 6.10.

Proposition 6.14. A linear code C ⊂ V (n, p) with d > 2 is perfect if and
only if every coset x + C of C contains a unique element of Be(0).

Proof. Suppose C is perfect. Then by definition, every coset x+C contains
an element of Be(c). We need to show that a coset x +C can’t contain two
elements of Be(0). That is, we have to show that if x,y ∈ Be(0) and x 6= y,
then x + C 6= y + C. But if x,y ∈ Be(0), the triangle inequality gives

d(x,y) ≤ d(x,0) + d(y,0) ≤ 2e < d.

It follows that x 6= y, then x + C 6= y +C. Indeed, if x + C = y + C, then
x− y ∈ C, so

d(x,y) = ω(x − y) ≥ d.

Therefore distinct elements of Be(0) give distinct cosets, so each coset con-
tains a unique element of Be(0). To prove the converse, let x ∈ V (n, p) be
arbitrary, and consider its coset x +C. By assumption, x +C meets Be(0)
in a unique element, say x + c. It follows that x ∈ Be(−c), so since x is
arbitrary, (6.2) holds. Thus C is perfect, and the proof is finished.

Example 6.12. The binary code C3 = {000, 111} is perfect. Note d = 3 so
e = 1. Thus the perfection is clear since any element of V (3, 2) is one unit
away from a codeword (namley 000 if it has two 0’s and 111 if it has two 1’s.
The generating matrix of C3 is M = (I1|1 1). Thus the parity check matrix
is

H =

(
1 1 0
1 0 1

)
.
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The syndromes are given by the product




0 0 0
1 0 0
0 1 0
0 0 1







1 1
1 0
0 1


 =




0 0
1 1
1 0
0 1


 ,

which gives the standard decoding table with syndromes as

000 111 00
100 011 11
010 101 10
011 110 01

We will give a less trivial example in the next subsection. Let’s also make
a couple of useful observations. For example, perfect codes C ⊂ V (n, p) with
d = 3 or 4 and hence e = 1 have the property that every vector is of distance
one from a unique codeword, which is the minimal possible distance. In
particular, if C is also linear, there exists an obvious choice for the standard
decoding table , the one for which the coset leaders lie in Be(0). But the
elements of Be(0) of weight 1 are the p− 1 multiples (using Fp \ {0}) of the
standard basis vectors of V (n, p). This fact has the consequence that for any
standard decoding table for C with syndromes, the coset of any v ∈ V (n, p)
can be immediately located by comparing its syndrome with the syndromes
of the standard basis vectors and their multiples.

6.6.1 Testing for perfection

It turns out that there is a simple way of testing when a binary linear code
is perfect.

Proposition 6.15. Suppose C ⊂ V (n, 2) is a linear code with dimC = k.
Then C is perfect if and only if |Be(0)| = 2(n−k). Put another way, C is
perfect if and only if

e∑

i=0

(
n
i

)
= 2(n−k).

In particular, if e = 1, then C is perfect if and only if

(1 + n)2k = 2n.

Proof. The first statement follows from the fact that 2(n−k) is the number
of cosets of C. But we already saw that the number of elements in Be(0) is
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given by

|Be(x)| =

e∑

i=0

(
n
i

)
,

so the second statement follows. Applying this formula to the case e = 1
gives the second assertion.

Notice that |Be(0)| has nothing to do with C. The problem of finding
a perfect code is to determine n and k so that |Be(0)| = 2(n−k) and there
exists a k-dimensional subspace C of V (n, 2) with d(C) = 2e + 1. If a
perfect linear n-bit code C with e = 1 exists, then n = 2k − 1 for some m
and n−m = dimC. Some possible solutions for these conditions are n = 3,
k = 2 and n = 7, k = 3. We saw an example of the first case. The next
example shows that a perfect code in the latter case (with n = 7 and k = 3)
can be realized.

Example 6.13. Consider the 7-bit code C7 defined as the row space of the
matrix

A =




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


 .

By enumerating the 16 elements of C7, one sees that d(C7) = 3, so e = 1.
Since (7 + 1)24 = 27, C7 is perfect.

6.6.2 The hat problem

The hat problem is an example of an instance where the existence of a
particular mathematical structure, in this case, perfect codes with e = 1
has a surprising application. Beginning with a simple case, let us describe
the hat game. Suppose there are three players each wearing either a white
hat or a black hat. Each player can see the hats of the other two players,
but cannot see what color her own hat is. Furthermore the players are
in sound proof booths and cannot communicate with each other. Each
booth has three buttons marked B,W and P (for pass or no guess). At the
sound of the buzzer, each player presses one of her three buttons. If nobody
guesses incorrectly, and at least one player guesses correctly, then they share
a $1,000,000 prize. The problem is this: assuming the players are allowed to
formulate their strategy beforehand, how should they proceed to maximize
their chances of winning?
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Clearly, a pretty good strategy would be to have two players abstain
and to have the third make a random guess. Their probability of winning
with this strategy is a not bad 1/2. But this strategy doesn’t make any
use of fact that each player can see the hats of her two teamates. Suppose
the following strategy is adopted: if a player sees that the other two players
have the same colored hat, she guesses the opposite color. A player who
sees different colored hats passes. With this strategy, the only losing hat
configurations are BBB or WWW, so they win six out of eight times. Hence
the probability of winning is at least a fantastic 3/4.

What does this have to do with perfect codes such that e = 1? If
we represent Black by 0 and White by 1, then the various hat arrays are
represented by the 23 = 8 3-bit strings. Let C be the 3-bit code {000, 111}.
Thus C is a perfect code with e = 1. The above strategy amounts to the
following. The three contestants agree ahead of time to assume that the hat
configuration isn’t in C. The probabilty of this happening is 3/4 since 6
out of 8 configurations aren’t in C. Suppose that this assumption is correct.
Then two players will see a 0 and a 1. They should automatically pass since
there is no way of telling what their hat colors are. The third will see either
two 0’s or two 1’s. If she sees two 0’s, then (by assumption) she knows her
hat is white and she hits the button marked W (for white). If she sees two
1’s, then (by assumption) she knows her hat is black, and she hits the button
marked B. This strategy fails only when the configuration lies in C.

Next, let’s suppose there are 7 players imaginatively labelled 1, . . . , 7. If
we still represent Black by 0 and White by 1, then the various hat arrays are
represented by the 27 7-bit strings. Let’s see if the strategy for three hats
still works with seven hats. First, all seven players need to memorize the
16 codewords of C7. The players assume before the game starts to assume
that the hat array isn’t in C7. Since |C7| = 24, the probability that the
hat array is in C7 is 24/27 = 1/8. Suppose (as for three hats) that their
assumption is correct. Then the hat array x1 . . . x7 differs in one place from
a codeword c1 . . . c7. Suppose this occurs at x1. Then x2 = c2, . . . , x7 = c7.
So player #1 sees c2 . . . c7 and recognizes that her hat color must be c1 + 1
and guesses accordingly. Player #2 sees x1c3 . . . c7. But since d(C7) = 3,
she knows that whatever x2 is, x1x2c3 . . . c7 6∈ C. Therefore, she has to pass,
as do the other five contestants. the chances that they win the million bucks
are pretty good (7/8).

Can you devise a strategy for how to proceed if there are 4,5 or 6 players?
What about 8 or 9? More information about this problem and other related
(and more serious) problems can be found in the article The hat problem

and Hamming codes by M. Bernstein in Focus Magazine, November 2001.
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Exercises

Exercise 6.27. Construct the parity check matrix and syndromes for C7.

Exercise 6.28. Consider the code C = {00000, 11111} ⊂ V (5, 2).

(i) Determine e.

(ii) Show that C is perfect.

(iii) Does C present any possibilities for a five player hat game?

Exercise 6.29. Show that any binary [23, 12]-code with d = 7 is perfect.

Exercise 6.30. Show that any binary [2k − 1, 2k − 1 − k]-code with d = 3
is perfect. Notice C7 is of this type.
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Chapter 7

Linear Transformations

In this Chapter, we will define the notion of a linear transformation between
two vector spaces V and W which are defined over the same field and prove
the most basic properties about them, such as the fact that in the finite
dimensional case is that the theory of linear transformations is equivalent
to matrix theory. We will also study the geometric properties of linear
transformations.

7.1 Definitions and examples

Let V and W be two vector spaces defined over the same field F. To define
the notion of a linear transformation T : V → W , we first of all, need to
define what a transformation is. A transformation F : V → W is a rule
which assigns to every element v of V (the domain of F ) a unique element
w = F (v) in W . We will call W the target of F . We often call F a mapping
or a vector valued function. If V = Fn and W = Fm, then a transformation
F : Fn → Fm is completely determined by component functions f1, . . . , fm
which satisfy

F (x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . .

. . . , fm(x1, x2, . . . , xn)).

The same is true if V and W are finite dimensional vector spaces, since
we can choose finite bases of V and W and imitate the above construction
where the bases are the standard ones.

169
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7.1.1 The Definition of a Linear Transformation

From the algebraic viewpoint, the most interesting transformations are those
which preserve linear combinations. These are called linear transformations.
We will also, on occasion, call linear transformations linear maps.

Definition 7.1. Suppose V and W are vector spaces over a field F. Then
a transformation T : V →W is said to be linear if

(1) for all x,y ∈ V , T (x + y) = T (x) + T (y), and

(2) for all r ∈ F and all x ∈ V , T (rx) = rT (x).

It’s obvious that a linear transformation T preserves linear combinations:
i.e. for all r, s ∈ F and all x,y ∈ V

T (rx + sy) = rT (x) + sT (y).

Another obvious property is that for any linear transformation T : V →W ,
T (0) = 0. This follows, for example, from the fact that

T (x) = T (x + 0) = T (x) + T (0)

for any x ∈ V . This can only happen if T (0) = 0.

7.1.2 Some Examples

Example 7.1. Let V be any vector space. Then the identity transformation

is the transformation Id : V → V defined by Id(x) = x. The identity
transformation is obviously linear.

Example 7.2. If a ∈ Rn, the dot product with a defines a linear trans-
formation Ta : Rn → R by Ta(x) = a · x. It turns out that any linear
transformation T : Rn → R has the form Ta for some a.

Example 7.3. A linear transformation T : R2 → R2 of the form

T

(
x
y

)
=

(
λx
µy

)
,

where λ and µ are scalars, will be called a diagonal transformation. Since
T (e1) = λe1 and T (e2) = µe2, whenever both λ and µ are nonzero, T maps a
rectangle with sides parallel to e1 and e2 onto another such rectangle whose
sides have been dilated by λ and µ and whose area has been changed by
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the factor |λµ|. Such diagonal transformations also map circles to ellipses.
For example, let C denote the unit circle x2 + y2 = 1, and put w = λx and
z = µy. Then if λ 6= µ, the image of T is the ellipse

(
w

λ
)2 + (

z

µ
)2 = 1.

More generally, we will call a linear transformation T : V → V diagonalizable

if there exist a basis v1, . . . ,vn of V such that T (vi) = λivi for each index
i, where λi ∈ F. Diagonalizable linear transformations will also be called
semi-simple. It turns out that one of the main problems in the theory of
linear transformations is how to determine when a linear transformation is
diagonalizable. This question will be taken up when we study eigentheory.

FIGURE
(DIAGONAL TRANSFORMATION)

Example 7.4. The cross product gives a pretty example of a linear trans-
formation on R3. Let a ∈ R3 and define Ca : R3 → R3 by

Ca(v) = a× v.

Notice that Ca(a) = 0, and that Ca(x) is orthogonal to a for any x. The
transformation Ca is used in mechanics to express angular momentum.

Example 7.5. Suppose V = C(a, b), the space of continuous real valued
functions on the closed interval [a, b]. Then the definite integral over [a, b]
defines a linear transformation

∫ b

a
: V → R

by the rule f 7→
∫ b
a f(t)dt. The assertion that

∫ b
a is a linear transformation

is just the fact that for all r, s ∈ R and f, g ∈ V ,

∫ b

a
(rf + sg)(t)dt = r

∫ b

a
f(t)dt+ s

∫ b

a
g(t)dt.

This example is the analogue for C(a, b) of the linear transformation Ta on
Rn defined in Example 7.3, where a is the constant function 1, since, by
definition, ∫ b

a
f(t)dt = (f, 1).
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Example 7.6. Let V be a vector space over F, and let W be a subspace of
V . Let π : V → V/W be the map defined by

π(v) = v +W.

We call π the quotient map. Then π is a linear map. We leave the details
as an exercise.

7.1.3 The Algebra of Linear Transformations

Linear transformations may be added using pointwise addition, and they
can be multiplied by scalars in a similar way. That is, if F,G : V → W are
two linear transformations, we form their sum F +G by setting

(F +G)(v) = F (v) +G(v).

If a ∈ F, we put
(aF )(v) = aF (v).

Thus, we can take linear combinations of linear transformations, where the
domain and target are two F vector spaces V and W respectively.

Proposition 7.1. Let V and W be vector spaces over F. Then any linear
combination of linear transformations with domain V and target W is also
linear. In fact, the set L(V,W ) of all linear transformations T : V → W is
a vector space over F.

Proposition 7.2. Suppose dimV = n and dimW = m. Then L(V,W ) has
finite dimension mn.
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Exercises

Exercise 7.1. Show that every linear function T : R → R has the form
T (x) = ax for some a ∈ R.

Exercise 7.2. Determine whether the following are linear or not:
(i) f(x1, x2) = x2 − x2.

(ii) g(x1, x2) = x1 − x2.

(iii) f(x) = ex.

Exercise 7.3. Prove the following:

Proposition 7.3. Suppose T : Fn → Fm is an arbitrary transformation and
write

T (v) = (f1(v), f2(v), . . . , fm(v)).

Then T is linear if and only if each component fi is a linear function. In
particular, T is linear if and only if there exist a1,a2, . . . ,am in Fn such that
for all v ∈ Fn,

T (v) = (a1 · v,a2 · v, . . . ,am · v).

Exercise 7.4. Prove Proposition 7.2.

Exercise 7.5. Let V be a vector space over F, and let W be a subspace of
V . Let π : V → V/W be the quotient map defined by π(v) = v +W. Show
that π is linear.

Exercise 7.6. Let T : R2 → R2 be a linear map with matrix

(
a b
c d

)
.

The purpose of this exercise is to determine when T is linear over C. That
is, since, by definition, C = R2 (with complex multiplication), we may ask
when T (αβ) = αT (β) for all α, β ∈ C. Show that a necessary and sufficient
condition is that a = d and b = −c.
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7.2 Matrix Transformations and Multiplication

7.2.1 Matrix Linear Transformations

Every m×nmatrix A over F defines linear transformation TA : Fn → Fm via
matrix multiplication. We define TA by the rule TA(x) = Ax. If we express
A in terms of its columns as A = (a1 a2 · · · an), then

TA(x) = Ax =

n∑

i=1

xiai.

Hence the value of TA at x is the linear combination of the columns of A
which is the ith component xi of x as the coefficient of the ith column ai of
A. The distributive and scalar multiplication laws for matrix multiplication
imply that TA is indeed a linear transformation.

In fact, we will now show that every linear transformations from Fn to
Fm is a matrix linear transformation.

Proposition 7.4. Every linear transformation T : Fn → Fm is of the form
TA for a unique m× n matrix A. The ith column of A is T (ei), where ei is
the ith standard basis vector, i.e. the ith column of In.

Proof. The point is that any x ∈ Fn has the unique expansion

x =

n∑

i=1

xiei,

so,

T (x) = T
( n∑

i=1

xiei
)

=

n∑

i=1

xiT (ei) = Ax,

where A is the m× n matrix
(
T (e1) . . . T (en)

)
. If A and B are m× n and

A 6= B, then Aei 6= Bei for some i, so TA(ei) 6= TB(ei). Hence different
matrices define different linear transformations, so the proof is done. qed

Example 7.7. For example, the matrix of the identity transformation Id :
Fn → Fn is the identity matrix In.

A linear transformation T : Fn → F is called a linear function. If a ∈ F,
then the function Ta(x) := ax is a linear function T : F → F; in fact, every
such linear function has this form. If a ∈ Fn, set Ta(x) = a ·x = aTx. Then
we have
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Proposition 7.5. Every linear function T : Fn → F has Ta for some a ∈ Fn.
That is, there exist a1, a2, . . . , an ∈ F such that

T




x1

x2
...
xn


 = a · x =

n∑

i=1

aixi.

Proof. Just set ai = T (ei).

Example 7.8. Let a = (1, 2, 0, 1)T . Then the linear function Ta : F4 → F

has the explicit form

Ta




x1

x2

x3

x4


 = x1 + 2x2 + x4.

7.2.2 Composition and Multiplication

So far, matrix multiplication has been a convenient tool, but we have never
given it a natural interpretation. For just such an interpretation, we need to
consider the operation of composing transformations. Suppose S : Fp → Fn

and T : Fn → Fm. Since the target of S is the domain of T , one can compose
S and T to get a transformation T ◦ S : Fp → Fm which is defined by

T ◦ S(x) = T
(
S(x)

)
.

The following Proposition describes the composition.

Proposition 7.6. Suppose S : Fp → Fn and T : Fn → Fm are linear
transformations with matrices A = MS and B = MB respectively. Then the
composition T ◦ S : Fp → Fm is also linear, and the matrix of T ◦ S is BA.
In other words,

T ◦ S = TB ◦ TA = TBA.

Furthermore, letting MT denote the matrix of T ,

M.T◦S = MTMS .

Proof. To prove T ◦ S is linear, note that

T ◦ S(rx + sy) = T
(
S(rx + sy)

)

= T
(
rS(x) + sS(y)

)

= rT
(
S(x)

)
+ sT

(
S(y)

)
.
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In other words, T ◦ S(rx + sy) = rT ◦ S(x) + sT ◦ S(y), so T ◦ S is linear
as claimed. To find the matrix of T ◦ S, we observe that

T ◦ S(x) = T (Ax) = B(Ax) = (BA)x.

This implies that the matrix of T ◦ S is the product BA as asserted. The
rest of the proof now follows easily.

Note that the key fact in this proof is that matrix multiplication is
associative. In fact, the main observation is that T ◦S(x) = T (Ax) = B(Ax).
Given this, it is immediate that T ◦ S is linear, so the first step in the proof
was actually unnecessary.

7.2.3 An Example: Rotations of R2

A nice way of illustrating the previous discussion is by considering rotations
of the plane. Let Rθ : R2 → R2 stand for the counter-clockwise rotation of
R2 through θ. Computing the images of R(e1) and R(e2), we have

Rθ(e1) = cos θe1 + sin θe2,

and
Rθ(e2) = − sin θe1 + cos θe2.

FIGURE

I claim that rotations are linear. This can be seen as follows. Suppose x
and y are any two non collinear vectors in R2, and let P be the parallelogram
they span. Then Rθ rotates the whole parallelogram P about 0 to a new
parallelogram Rθ(P ). The edges of Rθ(P ) at 0 are Rθ(x) and Rθ(y). Hence,
the diagonal x + y of P is rotated to the diagonal of Rθ(P ). Thus

Rθ(x + y) = Rθ(x) + Rθ(y).

Similarly, for any scalar r,

Rθ(rx) = rRθ(x).

Therefore Rθ is linear, as claimed. Putting our rotation into the form of a
matrix transformation gives

Rθ

(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)

=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
.
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Thus the matrix of Rθ is Let’s now illustrate a consequence of Proposition
7.6. If one first applies the rotation Rψ and follows that by the rotation Rθ,
the outcome is the rotation Rθ+ψ through θ + ψ (why?). In other words,

Rθ+ψ = Rθ ◦ Rψ.

Therefore, by Proposition 7.6, we see that

(
cos(θ + ψ) − sin(θ + ψ)
sin(θ + ψ) cos(θ + ψ)

)
=

(
cos θ − sin θ
sin θ cos θ

)(
cosψ − sinψ
sinψ cosψ

)
.

Expanding the product gives the angle sum formulas for cos(θ + ψ) and
sin(θ + ψ). Namely,

cos(θ + ψ) = cos θ cosψ − sin θ sinψ,

and
sin(θ + ψ) = sin θ cosψ + cos θ sinψ.

Thus the angle sum formulas for cosine and sine can be seen via matrix
algebra and the fact that rotations are linear.
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Exercises

Exercise 7.7. Find the matrix of the following transformations:

(i) F (x1, x2, x3) = (2x1 − 3x3, x1 + x2 − x3, x1, x2 − x3)
T .

(ii) G(x1, x2, x3, x4) = (x1 − x2 + x3 + x4, x2 + 2x3 − 3x4)
T .

(iii) The matrix of G ◦ F .

Exercise 7.8. Find the matrix of

(i) The rotation R−π/4 of R2 through −π/4.
(ii) The reflection H of R2 through the line x = y.

(iii) The matrices of H ◦R−π/4 and R−π/4 ◦H, where H is the reflection of
part (ii).

(iv) The rotation of R3 through π/3 about the z-axis.

Exercise 7.9. Let V = C, and consider the transformation R : V → V
defined by R(z) = eiθz. Interpret R as a transformation from R2 to R2.
Compare your answer with the result of Exercise 7.6.

Exercise 7.10. Suppose T : Fn → Fn is linear. When does the inverse
transformation T−1 exist?
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7.3 Some Geometry of Linear Transformations on

Rn

As illustrated by the last section, linear transformations T : Rn → Rn have
a very rich geometry. In this section we will discuss some these geometric
aspects.

7.3.1 Transformations on the Plane

We know that a linear transformation T : R2 → R2 is determined by T (e1)
and T (e2), and so if T (e1) and T (e2) are non-collinear, then T sends each one
of the coordinate axes Rei to the line RT (ei). Furthermore, T transforms
the square S spanned by e1 and e2 onto the parallelogram P with edges
T (e1) and T (e2). Indeed,

P = {rT (e1) + sT (e2) | 0 ≤ r, s ≤ 1},
and since T (re1 + se2) = rT (e1) + sT (e2), T (S) = P. More generally, T
sends the parallelogram with sides x and y to the parallelogram with sides
T (x) and T (y). Note that we implicitly already used this fact in the last
section.

We next consider a slightly different phenomenon.

Example 7.9 (Projections). Let a ∈ R2 be non-zero. Recall that the
transformation

Pa(x) =
a · x
a · aa

is called the projection on the line Ra spanned by a. In an exercise in the
first chapter, you actually showed Pa is linear. If you skipped this, it is
proved as follows.

Pa(x + y) =
a · (x + y)

a · a a =
(a · x + a · y

a · a
)
a = Pa(x) + Pa(y).

In addition, for any scalar r,

Pa(rx) =
a · (rx)

a · a a = r
(a · x
a · a

)
a = rPa(x).

This verifies the linearity of any projection. Using the formula, we get the
explicit expression

Pa

(
x1

x2

)
=




(
a1x1 + a2x2

a2
1 + a2

2

)a1

(
a1x1 + a2x2

a2
1 + a2

2

)a2


 ,
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where a = (a1, a2)
T and x = (x1, x2)

T .

Hence

Pa

(
x1

x2

)
=

1

a2
1 + a2

2

(
a2

1 a1a2

a1a2 a2
2

)(
x1

x2

)
.

Thus the matrix of Pa is

1

a2
1 + a2

2

(
a2

1 a1a2

a1a2 a2
2

)
.

Of course, projections don’t send parallelograms to parallelograms, since
any two values Pb(x) and Pb(y) are collinear. Nevertheless, projections
have another interesting geometric property. Namely, each vector on the
line spanned by b is preserved by Pb, and every vector orthogonal to b is
mapped by Pb to 0.

7.3.2 Orthogonal Transformations

Orthogonal transformations are the linear transformations associated with
orthogonal matrices (see §3.5.3). They are closely related with Euclidean
geometry. Orthogonal transformations are characterized by the property
that they preserve angles and lengths. Rotations are specific examples.
Reflections are another class of examples. Your reflection is the image you
see when you look in a mirror. The reflection is through the plane of the
mirror.

Let us analyze reflections carefully, starting with the case of the plane
R2. Consider a line ` in R2 through the origin. The reflection of R2 through
` acts as follows: every point on ` is left fixed, and the points on the line `⊥

through the origin orthogonal to ` are sent to their negatives.

FIGURE FOR REFLECTIONS

Perhaps somewhat surprisingly, reflections are linear. We will show this
by deriving a formula. Let b be any non-zero vector on `⊥, and let Hb

denote the reflection through `. Choose an arbitrary v ∈ R2, and consider
its orthogonal decomposition (see Chapter 1)

v = Pb(v) + c

with c on `. By the parallelogram law,

Hb(v) = c − Pb(v).
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Replacing c by v − Pb(v) gives the formula

Hb(v) = v − 2Pb(v)

= v − 2
(v · b
b · b

)
b.

Expressing this in terms of the unit vector b̂ determined by b̂ gives us the
simpler expression

Hb(v) = v − 2(v · b̂)b̂. (7.1)

Certainly Hb has the properties we sought: Hb(v) = v if b · v = 0, and
Hb(b) = −b. Moreover, Hb can be expressed as I2 − 2Pb, so it is linear
since any linear combination of linear transformations is linear.

The above expression of a reflection goes through not just for R2, but
for Rn for any n ≥ 3 as well. Let b be any nonzero vector in Rn, and let W
be the hyperplane in Rn consisting of all vectors orthogonal to b. Then the
transformation H : Rn → Rn defined by (7.1) is the reflection of Rn through
W .

Example 7.10. Let b = (1, 1)T , so b̂ = ( 1√
2
, 1√

2
)T . Then Hb is the reflec-

tion through the line x = −y. We have

Hb

(
a
b

)
=

(
a
b

)
− 2(

(
a
b

)
·
(

1√
2

1√
2

)
)

(
1√
2

1√
2

)

=

(
a− (a+ b)
b− (a+ b)

)

=

(
−b
−a

)
.

There are several worthwhile consequences of formula (7.1). All reflec-
tions are linear, and reflecting v twice returns v to itself, i.e. Hb ◦Hb = I2.
Furthermore, reflections preserve inner products. That is, for all v,w ∈ R2,

Hb(v) ·Hb(w) = v ·w.

We will leave these properties as an exercise.
A consequence of the last property is that since lengths, distances and

angles between vectors are expressed in terms of the dot product, reflections
preserve all these quantites. In other words, a vector and its reflection
have the same length, and the angle (measured with respect to the origin)
between a vector and the reflecting line is the same as the angle between
the reflection and the reflecting line. This motivates the following



182

Definition 7.2. A linear transformation T : Rn → Rn is said to be orthog-

onal if it preserves the dot product. That is, T is orthogonal if and only
if

T (v) · T (w) = v · w
for all v,w ∈ Rn.

Proposition 7.7. If a linear transformation T : Rn → Rn is orthogonal,
then for any v ∈ Rn, |T (v)| = |v|. In particular, if v 6= 0, then T (v) 6= 0.
Moreover, the angle between any two nonzero vectors v,w ∈ Rn is the same
as the angle between the vectors T (v) and T (w), which are both nonzero
by the last assertion.

We also have

Proposition 7.8. A linear transformation T : Rn → Rn is orthogonal if
and only if its matrix MT is orthogonal.

We leave the proofs of the previous two propositions as exercises. By
Proposition7.8, every rotation of R2 is orthogonal, since a rotation matrix
is clearly orthogonal. Recall that O(2,R) is the matrix group consisting of
all 2 × 2 orthogonal matrices. We can now prove the following pretty fact.

Proposition 7.9. Every orthogonal transformation of R2 is a reflection or
a rotation. In fact, the reflections are those orthogonal transformations T
for which MT is symmetric but MT 6= I2. The rotations Rθ are those such
that MR = I2 or MR is not symmetric.

Proof. It is not hard to check that any 2×2 orthogonal matrix has the form

Rθ =

(
cos θ − sin θ
sin θ cos θ

)

or

Hθ =

(
cos θ sin θ
sin θ − cos θ

)
.

The former are rotations (including I2) and the latter are symmetric, but do
not include I2. The transformations Hθ are in fact reflections. We leave it
as an exercise to check that Hθ is the reflection through the line spanned by
(cos(θ/2), sin(θ/2))T . In Chapter 8, we will give a simple geometric proof
using eigentheory that Hθ is a reflection.

The structure of orthogonal transformations in higher dimensions is more
complicated. For example, the rotations and reflections of R3 do not give
all the possible orthogonal linear transformations of R3.
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7.3.3 Gradients and differentials

Since arbitrary transformations can be very complicated, we should view
linear transformations as one of the simplest are types of transformations.
In fact, we can make a much more precise statement about this. One of the
most useful principals about smooth transformations is that no matter how
complicated such transformations are, they admit linear approximations,
which means that one certain information may be obtained by constructing
a taking partial derivatives. Suppose we consider a transformation F : Rn →
Rm such that each component function fi of F has continuous first partial
derivatives throughout Rn, that is F is smooth. Then it turns out that in
a sense which can be made precise, the differentials of the components fi
are the best linear approximations to the fi. Recall that if f : Rn → R

is a smooth function, the differential df(x) of f at x is the linear function
df(x) : Rn → R whose value at v ∈ Rn is

df(x)v = ∇f(x) · v.

Here,

∇f(x) = (
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)) ∈ Rn

is the called the gradient of f at x. In other words,

df(x)v =

n∑

i=1

∂f

∂xi
(x)vi,

so the differential is the linear transformation induced by the gradient and
the dot product. Note that in the above formula, x is not a variable. It
represents the point at which the differential of f is being computed.

The differential of the transformation F at x is the linear function
DF (x) : Rn → Rn defined by DF (x) = (df1(x), df2(x), . . . , dfm(x)). The
components of DF at x are the differentials of the components of F at x.

We will have to leave further discussion of the differential for a course in
vector analysis.
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Exercises

Exercise 7.11. Verify from the formula that the projection Pb fixes every
vector on the line spanned by b and sends every vector orthogonal to b to
0.

Exercise 7.12. Let Hb : R2 → R2 be the reflection of R2 through the line
orthogonal to b. Recall that Hb(v) = v − 2

(
v·b
b·b
)
b.

(i) Use this formula to show that every reflection is linear.

(ii) Show also that Hb(Hb(x)) = x.

(iii) Find formulas for Hb((1, 0)) and Hb((0, 1)).

Exercise 7.13. Consider the transformation Ca : R3 → R3 defined by

Ca(v) = a× v.

(i) Show that Ca is linear.

(ii) Descibe the set of vectors x such that Ca(x) = 0.

Exercise 7.14. Let u and v be two orthogonal unit length vectors in R2.
Show that the following formulas hold for all x ∈ R2:

(a) Pu(x) + Pv(x) = x, and

(b) Pu(Pv(x)) = Pv(Pu(x)) = 0.

Conclude from (a) that x = (x · u)u + (x · v)v.

Exercise 7.15. Suppose T : R2 → R2 is a linear transformation which
sends any two non collinear vectors to non collinear vectors. Suppose x and
y in R2 are non collinear. Show that T sends any parallelogram with sides
parallel to x and y to another parallelogram with sides parallel to T (x) and
T (y).

Exercise 7.16. Show that all reflections are orthogonal linear transforma-
tions. In other words, show that for all x and y in Rn,

Hb(x) ·Hb(y) = x · y.

Exercise 7.17. Show that rotations Rθ of R2 also give orthogonal linear
transformations.
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Exercise 7.18. Show that every orthogonal linear transformation not only
preserves dot products, but also lengths of vectors and angles and distances
between two distinct vectors. Do reflections and rotations preserve lengths
and angles and distances?

Exercise 7.19. Suppose F : Rn → Rn is a transformation with the property
that for all x,y ∈ Rn,

F (x) · F (y) = x · y.

(a) Show that for all x,y ∈ Rn, ||F (x + y) − F (x) − F (y)||2 = 0.

(b) Show similarly that for all x ∈ Rn and r ∈ R, ||F (rx)− rF (x)||2 = 0
Conclude that F is in fact linear. Hence F is an orthogonal linear transfor-
mation.

Exercise 7.20. Find the reflection of R3 through the plane P if:

(a) P is the plane x+ y + z = 0; and

(b) P is the plane ax+ by + cz = 0.

Exercise 7.21. Which of the following statements are true? Explain.

(i) The composition of two rotations is a rotation.

(ii) The composition of two reflections is a reflection.

(iii) The composition of a reflection and a rotation is a rotation.

Exercise 7.22. Find a formula for the composition of two rotations. That
is, compute Rθ ◦Rµ in terms of sines and cosines. Give an interpretation of
the result.

Exercise 7.23. * Let f(x1, x2) = x2
1 + 2x2

2.

(a) Find both the gradient and differential of f at (1, 2).

(b) If u ∈ R2 is a unit vector, then df(1, 2)u is called the directional
derivative of f at (1, 2) in the direction u. Find the direction u ∈ R2 which
maximizes the value of df(1, 2)u.

(c) What has your answer in part (b) got to do with the length of the
gradient of f at (1, 2)?

Exercise 7.24. Let V = C and consider the transformation H : V → V
defined by H(z) = z. Interpret H as a transformation from R2 to R2.

Exercise 7.25. *. Find the differential at any (x1, x2) of the polar coordi-
nate map of Example 3.7.
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7.4 Matrices With Respect to an Arbitrary Basis

Let V and W be finite dimensional vector spaces over F, and suppose T :
V → W is linear. The purpose of this section is to define the matrix of T
with respect to arbitrary bases of the domain V and the target W .

7.4.1 Coordinates With Respect to a Basis

We will first define the coordinates of a vector with respect to an arbitrary
basis. Let v1,v2, . . . ,vn be a basis of V , and let B = {v1,v2, . . . ,vn} be a
basis of V . Then every w ∈ V has a unique expression

w = r1v1 + r2v2 + · · · + rnvn,

so we will make the following definition.

Definition 7.3. We will call r1, r2, . . . , rn the coordinates of w with respect
to B, and we will write w =< r1, r2, . . . , rn >. If there is a possibility of
confusion, will write the coordinates as < r1, r2, . . . , rn >B.

Notice that the notion of coordinates assumes that the basis is ordered.
Finding the coordinates of a vector with respect to a given basis of is a
familiar problem.

Example 7.11. Suppose F = R, and consider two bases of R2, say

B = {(1, 2)T , (0, 1)T } and B′ = {(1, 1)T , (1,−1)T }.

Expanding e1 = (1, 0)T in terms of these two bases gives two different sets
of coordinates for e1. By inspection,

(
1
0

)
= 1

(
1
2

)
− 2

(
0
1

)
,

and (
1
0

)
=

1

2

(
1
1

)
+

1

2

(
1
−1

)
.

Thus the coordinates of e1 with respect to B are < 1,−2 >, and with respect
to B′ they are < 1

2 ,
1
2 >.

Now consider how two different sets of coordinates for the same vector
are related. In fact, we can set up a system to decide this. For example,
using the bases of R2 in the above example, we expand the second basis B ′

in terms of the first B. That is, write
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(
1
1

)
= a

(
1
2

)
+ b

(
0
1

)
,

and (
1
−1

)
= c

(
1
2

)
+ d

(
0
1

)
.

These equations are expressed in matrix form as:

(
1 1
1 −1

)
=

(
1 0
2 1

)(
a c
b d

)
.

Now suppose p has coordinates < r, s > in terms of the first basis and
coordinates < x, y >′ in terms of the second. Then

p =

(
1 0
2 1

)(
r
s

)
=

(
1 1
1 −1

)(
x
y

)
.

Hence (
r
s

)
=

(
1 0
2 1

)−1(
1 1
1 −1

)(
x
y

)
.

Therefore, (
r
s

)
=

(
1 1
−1 −3

)(
x
y

)
.

We can imitate this in the general case. Let

B = {v1,v2, . . . ,vn},

and

B′ = {v′
1,v

′
2, . . . ,v

′
n}

be two bases of V . Define the change of basis matrix MB
B′ ∈ Fn×n to be the

matrix (aij) with entries determined by

v′
j =

n∑

i=1

aijvi.

To see how this works, consider the case n = 2. We have

v′
1 = a11v1 + a21v2

v′
2 = a12v1 + a22v2.
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It’s convenient to write this in matrix form

(v′
1 v′

2) = (v1 v2)

(
a11 a12

a21 a22

)
= (v1 v2)MB

B′ ,

where

MB
B′ =

(
a11 a12

a21 a22

)
.

Notice that (v1 v2) is a generalized matrix in the sense that it is a 1×2 matrix
with vector entries. A nice property of this notation is that if (v1 v2)A =
(v1 v2)B, then A = B. This is due to the fact that expressions in terms of
bases are unique and holds for any n > 2 also.

In general, we can express this suggestively as

B′ = BMB
B′ . (7.2)

Also note that
MB

B = In.

In the above example,

MB
B′ =

(
1 1
−1 −3

)
.

Proposition 7.10. Let B and B′ be bases of V . Then

(MB
B′)−1 = MB′

B .

Proof. We have

(v1 v2) = (v′
1 v′

2)MB′

B = (v1 v2)MB
B′MB′

B .

Thus, since B is a basis,
MB

B′MB′

B = I2.

Now what happens if a third basis B′′ = {v′′
1 ,v

′′
2} is thrown in? If we

iterate the expression in (7.3), we get

(v′′
1 v′′

2) = (v′
1 v′

2)MB′

B′′ = (v1 v2)MB
B′MB′

B′′ .

Thus
MB

B′′ = MB
B′MB′

B′′ .

This generalizes immediately to the n-dimensional case, so we have

Proposition 7.11. Let B,B′ and B′′ be bases of V . Then

MB
B′′ = MB

B′MB′

B′′ .
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7.4.2 Change of Basis for Linear Transformations

As above, let V and W be finite dimensional vector spaces over F, and
suppose T : V → W is linear. The purpose of this section is to define the
matrix of T with respect to arbitrary bases of V and W . Fix a basis

B = {v1,v2, . . . ,vn}

of V and a basis

B′ = {w1,w2, . . . ,wm}
of W . Suppose

T (vj) =

m∑

i=1

cijwi.

Definition 7.4. The matrix of T with respect to the bases B and B ′ is
defined to be the m× n matrix MB

B′(T ) = (cij).

This notation is set up so that if V = Fn and W = Fm and T = TA for
an m× n matrix A, we have MB

B′(T ) = A when B and B′ are the standard
bases since TA(ej) is the jth column of A. We remark that

MB
B′(Id) = MB

B′

where Id : V → V is the identity.

Now suppose V = W . In this case, we want to express the matrix of T in
a single basis and then find its expression in another basis. So let B and B ′

be bases of V . As above, for simplicity, we assume n = 2 and B = {v1,v2}
and B′ = {v′

v,v
′
2}. Hence (v′

1 v′
2) = (v1 v2)MB

B′ . Applying T , we obtain

(T (v′
1) T (v′

2)) = (T (v1) T (v2))MB
B′

= (v1 v2)MB
B(T )MB

B′

= (v′
1 v′

2)MB′

B MB
B(T )MB

B′ .

Hence,

MB′

B′(T ) = MB′

B MB
B(T )MB

B′ .

Putting P = MB′

B , we therefore see that

MB′

B′(T ) = PMB
B(T )P−1.

We have therefore shown
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Proposition 7.12. Let T : V → V be linear and let B and B ′ be bases of
V . Then

MB′

B′(T ) = MB′

B MB
B(T )MB

B′ . (7.3)

Thus, if P = MB′

B , we have

MB′

B′(T ) = PMB
B(T )P−1. (7.4)

Example 7.12. Consider the linear transformation T of R2 whose matrix
with respect to the standard basis is

A =

(
1 0
−4 3

)
.

Let’s find the matrix B of T with respect to the basis (1, 1)T and (1,−1)T .
Calling this basis B′ and the standard basis B, formula (7.3) says

B =

(
1 1
1 −1

)(
1 0
−4 3

)(
1 1
1 −1

)−1

.

Computing the product gives

B =

(
0 −3
1 −1

)
.

Definition 7.5. Let A and B be n× n matrices over F. Then we say A is

similar to B if and only if there exists an invertible P ∈ Fn×n such that
B = PAP−1.

It is not hard to see that similarity is an equivalence relation on Fn×n

(Exercise: check this). An equivalence class for this equivalence relation is
called a conjugacy class. Hence,

Proposition 7.13. The matrices which represent a given linear transfor-
mation T form a conjugacy class in Fn×n.

Example 7.13. Let F = R and suppose v1 and v2 denote (1, 2)T and
(0, 1)T respectively. Let T : R2 → R2 be the linear transformation such that
T (v1) = v1 and T (v2) = 3v2. By Proposition 7.14, T exists and is unique.
Now the matrix of T with respect to the basis v1,v2 is

(
1 0
0 3

)
.

Thus T has a diagonal matrix in the v1,v2 basis.
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Exercises

Exercise 7.26. Find the coordinates of e1, e2, e3 of R3 in terms of the
basis (1, 1, 1)T , (1, 0, 1)T , (0, 1, 1)T . Then find the matrix of the linear
transformation T (x1, x2, x3) = (4x1 + x2 − x3, x1 + 3x3, x2 + 2x3)

T with
respect to this basis.

Exercise 7.27. Consider the basis (1, 1, 1)T , (1, 0, 1)T , and (0, 1, 1)T of
R3. Find the matrix of the linear transformation T : R3 → R3 defined by
T (x) = (1, 1, 1)T × x with respect to this basis.

Exercise 7.28. Let H : R2 → R2 be the reflection through the line x = y.
Find a basis of R2 such that the matrix of H is diagonal.

Exercise 7.29. Show that any projection Pa : R2 → R2 is diagonalizable.
That is, there exists a basis for which the matrix of Pa is diagonal.

Exercise 7.30. Let Rθ be any rotation of R2. Does there exist a basis of
R2 for which the matrix of Rθ is diagonal. That is, is there an invertible
2 × 2 matrix P such that Rθ = PDP−1.

Exercise 7.31. A rotation Rθ defines a linear map from R2 to itself. Show
that Rθ also defines a C-linear map Rθ : C → C. Describe this map in
terms of the complex exponential.

Exercise 7.32. Show that similarity is an equivalence relation an Fn×n.
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7.5 Further Results on Linear Transformations

The purpose of this chapter is to develop some more of the tools necessary
to get a better understanding of linear transformations.

7.5.1 An Existence Theorem

To begin, we will prove an extremely fundamental, but very simple, existence
theorem about linear transformations. In essence, this result tells us that
given a basis of a finite dimensional vector space V over F and any other
vector space W over F, there exists a unique linear transformation T : V →
W taking whatever values we wish on the given basis. We will then derive
a few interesting consequences of this fact.

Proposition 7.14. Let V and W be any finite dimensional vector space
over F. Let v1, . . . ,vn be any basis of V , and let w1, . . . ,wn be arbitrary
vectors in W . Then there exists a unique linear transformation T : V →W
such that T (vi) = wi for each i. In other words a linear transformation is
uniquely determined by giving its values on a basis.

Proof. The proof is surprisingly simple. Since every v ∈ V has a unique
expression

v =

n∑

i=1

rivi,

where r1, . . . rn ∈ F, we can define

T (v) =

n∑

i=1

riT (vi).

This certainly defines a transformation, and we can easily show that T is
linear. Indeed, if v =

∑
αivi and w =

∑
βivi, then v + w =

∑
(αi + βi)vi,

so

T (v + w) =
∑

(αi + βi)T (vi) = T (v) + T (w).

Similarly, T (rv) = rT (v). Moreover, T is unique, since a linear transforma-
tionis determined on a basis.

If V = Fn and W = Fm, there is an even simpler proof by appealing to
matrix theory. Let B = (v1 v2 . . .vn) and C = (w1 w2 . . .wn). Then the
matrix A of T satisfies AB = C. But B is invertible since v1, . . . ,vn is a
basis of Fn, so A = CB−1.
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7.5.2 The Kernel and Image of a Linear Transformation

Let T : V →W be a linear transformation.

Definition 7.6. The kernel of T , is defined to be the set ker(T ) consisting
of all v ∈ V such that T (v) = 0. The image of T is the set Im(T ) consisting
of all w ∈W such that T (v) = w for some v ∈ V .

If V = Fn, W = Fm and T = TA, then of course, ker(T ) = N (A) and
Im(T ) = col(A). Hence the problem of finding ker(T ) is the same as finding
the solution space of an m× n homogeneous linear system.

Proposition 7.15. The kernel and image of a linear transformation T :
V → W are subspaces of V and W are respectively. T is one to one if and
only if ker(T ) = {0}.

Proof. The first assertion is obvious. Suppose that T is one to one. Then,
since T (0) = 0, ker(T ) = {0}. Conversely, suppose ker(T ) = {0}. If
x,y ∈ V are such that T (x) = T (y), then

T (x) − T (y) = T (x − y).

Therefore,

T (x − y) = 0.

Thus x − y ∈ ker(T ), so x − y = {0}. Hence x = y, and we conclude T is
one to one.

Example 7.14. Let W be any subspace of V . Let’s use Proposition 7.14 to
show that there exists a linear transformation T : V → V whose kernel is W .
Choose a basis v1, . . . ,vk of W and extend this basis to a basis v1, . . . ,vn
of V . Define a linear transformation T : V → V by putting T (vi) = 0 if
1 ≤ i ≤ k and putting T (vj) = vj if k + 1 ≤ j ≤ n. Then ker(T ) = W . For
if v =

∑n
i=1 aivi ∈ ker(T ), we have

T (v) = T (
n∑

i=1

aivi) =
n∑

i=1

aiT (vi) =
n∑

j=k+1

ajvj = 0,

so ak+1 = · · · = an = 0. Hence v ∈ W , so ker(T ) ⊂ W . Since we designed
T so that W ⊂ ker(T ), we are through.

The main result on the kernel and image is the following.
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Theorem 7.16. Suppose T : V → W is a linear transformation where
dimV = n. Then

dimker(T ) + dim Im(T ) = n. (7.5)

In fact, there exists a basis v1,v2, . . . ,vn of V so that

(i) v1,v2, . . . vk is a basis of ker(T ) and

(ii) T (vk+1), T (vk+2), . . . , T (vn) is a basis of im(T ).

Proof. Choose any basis v1,v2, . . . vk of ker(T ), and extend it to a basis
v1,v2, . . . ,vn of V . I claim that T (vk+1), T (vk+2), . . . , T (vn) span Im(T ).
Indeed, if w ∈ Im(T ), then w = T (v) for some v ∈ V . But then v =

∑
aivi,

so

T (v) =
∑

aiT (vi) =

n∑

i=k+1

aiT (vi),

by the choice of the basis. To see that T (vk+1), T (vk+2), . . . , T (vn) are
independent, let

n∑

i=k+1

aiT (vi) = 0.

Then T (
∑n

i=k+1 aivi) = 0, so
∑n

i=k+1 aivi ∈ ker(T ). But if
∑n

i=k+1 aivi 6=
0, the vi (1 ≤ i ≤ n) cannot be a basis, since every vector in ker(T ) is a linear
combination of the vi with 1 ≤ i ≤ k. This shows that

∑n
i=k+1 aivi = 0, so

each ai = 0.

This Theorem is the final version of the basic principle that in a linear
system, the number of free variables plus the number of corner variables is
the total number of variables stated in (3.4).

7.5.3 Vector Space Isomorphisms

One of the nicest applications of Proposition7.14 is the result that if V and
W are two vector spaces over F having the same dimension, then there exists
a one to one linear transformation T : V →W such that T (V ) = W . Hence,
in a sense, we can’t distinguish finite dimensional vector spaces over a field if
they have the same dimension. To construct this T , choose a basis v1, . . . ,vn
of V and a basis w1, . . . ,wn of W . All we have to do is let T : V → W be
the unique linear transformation such that T (vi) = wi if 1 ≤ i ≤ k. We
leave it as an exercise to show that T satisfies all our requirements. Namely,
T is one to one and onto, i.e. T (V ) = W .
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Definition 7.7. Let V and W be two vector spaces over F. A linear trans-
formation S : V → W which is both one to one and onto (i.e. im(T ) = W )
is called an isomorphism between V and W .

The argument above shows that every pair of subspaces of Fn and Fm

of the same dimension are isomorphic. (Thus a plane is a plane is a plane.)
The converse of this assertion is also true.

Proposition 7.17. Any two finite dimensional vector spaces over the same
field which are isomorphic have the same dimension.

We leave the proof as an exercise.

Example 7.15. Let’s compute the dimension and a basis of the space
L(F3,F3). Consider the transformation Φ : L(F3,F3) → F3×3 defined by
Φ(T ) = MT , the matrix of T . We have already shown that Φ is linear. In
fact, Proposition 7.4 tells us that Φ is one to one and Im(Φ) = F3×3. Hence
Φ is an isomorphism. Thus dimL(F3,F3) = 9. To get a basis of L(F3,F3),
all we have to do is find a basis of F3×3. But a basis is of F3×3 given by
the matrices Eij such that Eij has a one in the (i, j) position and zeros
elsewhere. Every A ∈ F3×3 has the form A = (aij) =

∑
i,j aijEij , so the Eij

span. If
∑

i,j aijEij is the zero matrix, then obviously each aij = 0, so the

Eij are also independent. Thus we have a basis of F3×3, and hence we also
have one for L(F3,F3).

This example can easily be extended to the space L(Fn,Fm). In partic-
ular, we have just given a proof of Proposition 7.2.
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Exercises

Exercise 7.33. Suppose T : V → V is a linear transformation, where V is
finite dimensional over F. Find the relationship between between N (MB

B)
and N (MB′

B′), where B and B′ are any two bases of V .

Exercise 7.34. Find a description of both the column space and null space
of the matrix 


1 1 0
2 3 1
1 2 1


 .

Exercise 7.35. Using only the basic definition of a linear transformation,
show that the image of a linear transformation T is a subspace of the tar-
get of T . Also, show that if V is a finite dimensional vector space , then
dimT (V ) ≤ dimV .

Exercise 7.36. Let A and B be n× n matrices.
(a) Explain why the null space of A is contained in the null space of BA.
(b) Explain why the column space of A contains the column space of

AB.
(c) If AB = O, show that the column space of B is contained in N (A).

Exercise 7.37. Consider the subspace W of R4 spanned by (1, 1,−1, 2)T

and (1, 1, 0, 1)T . Find a system of homogeneous linear equations whose
solution space is W .

Exercise 7.38. What are the null space and image of

(i) a projection Pb : R2 → R2,

(ii) the cross product map T (x) = x× v.

Exercise 7.39. What are the null space and image of a reflection Hb :
R2 → R2. Ditto for a rotation Rθ : R2 → R2.

Exercise 7.40. Ditto for the projection P : R3 → R3 defined by

P (x, y, z)T = (x, y)T .

Exercise 7.41. Let A be a real 3× 3 matrix such that the first row of A is
a linear combination of A’s second and third rows.

(a) Show that N (A) is either a line through the origin or a plane con-
taining the origin.

(b) Show that if the second and third rows of A span a plane P , then
N (A) is the line through the origin orthogonal to P .
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Exercise 7.42. Let T : Fn → Fn be a linear transformation such that
N (T ) = 0 and Im(T ) = Fn. Prove the following statements.

(a) There exists a transformation S : Fn → Fn with the property that
S(y) = x if and only if T (x) = y. Note: S is called the inverse of T .

(b) Show that in addition, S is also a linear transformation.
(c) If A is the matrix of T and B is the matrix of S, then BA = AB = In.

Exercise 7.43. Let F : R2 → R2 be the linear transformation given by

F

(
x
y

)
=

(
y

x− y

)
.

(a) Show that F has an inverse and find it.
(b) Verify that if A is the matrix of F , then AB = BA = I2 if B is a

matrix of the inverse of F .

Exercise 7.44. Let S : Rn → Rm and T : Rm → Rp be two linear trans-
formations both of which are one to one. Show that the composition T ◦ S
is also one to one. Conclude that if A is m × n has N (A) = {0} and B is
n× p has N (B) = {0}, then N (BA) = {0} too.

Exercise 7.45. If A is any n × n matrix over a field F, then A is said
to be invertible with inverse B if B is an n × n matrix over F such that
AB = BA = In. In other words, A is invertible if and only if its associated

linear transformation is. Show that if A =

(
a b
c d

)
, then A is invertible

provided ad−bc 6= 0 and that in this case, the matrix (ad−bc)−1

(
d −b
−c a

)

is an inverse of A.

Exercise 7.46. Prove Proposition 7.17.
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Exercises

Exercise 7.47. Find a bases for the row space and the column space of
each of the matrices in Exercise 3.21.

Exercise 7.48. In this problem, the field is F2. Consider the matrix

A =




1 1 1 1 1
0 1 0 1 0
1 0 1 0 1
1 0 0 1 1
1 0 1 1 0



.

(a) Find a basis of row(A).
(b) How many elements are in row(A)?
(c) Is (01111) in row(A)?

Exercise 7.49. Suppose A is any real m × n matrix. Show that when we
view both row(A) and N (A) as subspaces of Rn,

row(A) ∩N (A) = {0}.
Is this true for matrices over other fields, eg F2 or C?

Exercise 7.50. Show that if A is any symmetric real n × n matrix, then
col(A) ∩N (A) = {0}.
Exercise 7.51. Suppose A is a square matrix over an arbitrary field such
that A2 = O. Show that col(A) ⊂ N (A). Is the converse true?

Exercise 7.52. Suppose A is a square matrix over an arbitrary field. Show
that if Ak = O for some positive integer k, then dimN (A) > 0.

Exercise 7.53. Suppose A is a symmetric real matrix so that A2 = O.
Show that A = O. In fact, show that col(A) ∩N (A) = {0}.
Exercise 7.54. Find a non zero 2×2 symmetric matrix A over C such that
A2 = O. Show that no such a matrix exists if we replace C by R.

Exercise 7.55. For two vectors x and y in Rn, the dot product x ·y can be
expressed as xTy. Use this to prove that for any real matrix A, ATA and
A have the same nullspace. Conclude that ATA and A have the same rank.
(Hint: consider xTATAx.)

Exercise 7.56. In the proof of Proposition 5.11, we showed that row(A) =
row(EA) for any elementary matrix E. Why does this follow once we know
row(EA) ⊂ row(A)?
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7.6 Summary

A linear transformation between two vector spaces V and W over the same
field (the domain and target respectively) is a transformation T : V → W
which has the property that T (ax + by) = aT (x) + bT (y) for all x,y in
V and a, b in F. In other words, the property defining a linear transfor-
mation is that it preserves all linear combinations. Linear transformations
are a way of using the linear properties of V to study W . The set of all
linear transformations with domain V and target W is another vector space
over F denoted by L(V,W ). For example, if V and W are real inner prod-
uct spaces, we can consider linear transformations which preserve the in-
ner product. Such linear transformations are called orthogonal. The two
fundamental spaces associated with a linear transformation are its kernel
ker(T ) and its image Im(T ). If the domain V is finite dimensional, then
the fundamental relationship from Chapter 3 which said that in a linear
system, the number of variables equals the number of free variables plus the
number of corner variables takes its final form in the identity which says
dimV = dimker(T ) + dim Im(T ). If V and W are both finite dimensional,
dimker(T ) = 0 and dim Im(T ) = dimW , then T is one to one and onto.
In this case, it is called an isomorphism. We also showed that given an
arbitrary basis of V , there exists a linear transformation T : V →W taking
arbitrarily preassigned values on the basis. This is a useful existence theo-
rem, and it also demonstrates how different linear transformations are from
arbitrary transformations.

If V = Fn and W = Fm, then a linear transformation T : V → W
is nothing but an m × n matrix over F, i.e. an element of MT of Fm×n.
Conversely, every element of Fm×n defines such a linear transformation.
Thus L(Fn,Fm) = Fm×n. If V and W are finite dimensional, then whenever
we are given bases B of V and B′ of W , we can associate a unique matrix
MB

B′(T ) to T . There are certain rules for manipulating these matrices whicch
we won’t repeat here. They amount to the rule MT◦S = MTMS when
S : Fp → Fn and T : Fn → Fm are both linear. If we express a linear
transformation T : V → V in terms of two bases B and B ′ of V , then
MB′

B′(T ) = PMB
B(T )P−1 where P = MB′

B is the change of basis matrix
MB′

B (In).
As we have mentioned before, one of the main general questions about

linear transformations is this: when is a linear transformation T : V → V
semi-simple? That is, when does there exist a basis B of V for which MB

B(T )
is diagonal. Put another way, when is MB

B(T ) similar to a diagonal matrix?
We will solve it in Chapter ?? when F is algebraically closed.
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Chapter 8

An Introduction to the
Theory of Determinants

8.1 Introduction

The determinant is a function defined on the set of n×n matrices Fn×n over
a field F, whose definition goes back to the 18th century. It is one of the
richest and most interesting functions in matrix theory, if not all of mathe-
matics. The list of its applications is long and distinguished, including for
example the eigentheory of square matrices, the change of variables formula
for integration in several variables, and the notion of area in n dimensions.
For an interesting sample of 19th century mathematics, take a glance at the
remarkable work Theory of Determinants, by J. Muir.

8.2 The Definition of the Determinant

8.2.1 Some comments

If A ∈ Fn×n, the determinant of A, which is denoted either by det(A) or by
det(A), is an element of F with the remarkable property that if B ∈ Fn×n

also, then det(AB) = det(A) det(B). Moreover, det(A) 6= 0 if and only if
A−1 exists. Thus, for example, the nullspace of A has positive dimension
if and only if det(A) = 0. This is the standard numerical criterion for
determining if A is singular. The general definition of det(A) (8.2) is a sum
with n! terms, At first glance, any attempt at finding a general method
for computing det(A) will appear hopeless. Fortunately, we will see that
det(A) can be computed by bringing A into upper triangular form by row

201
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operations.

Besides having many mathematically beautiful properties, the determi-
nant also has basic many applications. For example, it is used to define the
characteristic polynomial of a square matrix A. The roots of this polynomial
are the eigenvalues of A. Nowadays, there are now many powerful readily
available tools for computing determinants and for approximating eigenval-
ues, but, nevertheless, the characteristic polynomial is still an important
basic concept.

8.2.2 The 2 × 2 case

The first case, of course, is the 1×1 case. Here, we can simply put det(a) = a.
Hence we can begin with the 2 × 2 case. Suppose A =

(
a b
c d

)
. Define the

determinant of A to be

det(A) = ad− bc.

Sometimes det(A) is also denoted by det(A). It is not hard to see that
ad− bc = 0 if and only if the rows of A are proportional. Thus, A has rank
2 if and only if ad− bc 6= 0. Since A has maximal rank, it is invertible, and
(as we have shown elsewhere),

A−1 =
1

(ad− bc)

(
d −b
−c a

)
.

Proposition 8.1. The determinant function det : F2×2 → F has the follow-
ing properties:

(1) det(A) 6= 0 if and only if A is invertible;

(2) det(I2) = 1; and

(3) det(AB) = det(A) det(B) for any A,B ∈ F2×2.

Proof. We indicated the proof of (1) above. Statement (2) is obvious, and
(3) can be checked by a direct calculation.

The remarkable property is (3), which, as mentioned above, holds for all
A,B ∈ Fn×n for all n.

8.2.3 Some Combinatorial Preliminaries

Unlike many situations we have seen, the definition of det(A) for 2 × 2
matrices gives only the slightest hint of how to extend the definition to
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the n × n matrices so that Proposition 8.1 still holds. To give the general
definition, we first need to study some elementary combinatorics.

First of all, let X denote any set.

Definition 8.1. A permutation or bijection of X is a mapping σ : X → X
which is both one to one and onto.

Let us put Xn = {1, 2, . . . , n}. First of all, we state the

Lemma 8.2. A mapping σ : Xn → Xn which is either one to one or onto is
a permutation. Moreover, the set S(n) of all permutations of Xn has exactly
n! elements. Finally, if π, σ ∈ S(n), then the composition σπ and the inverse
σ−1 are also in S(n).

Proof. The proof is an application of elementary combinatorics. We will
leave as an exercise.

In order to define the determinant, we need to define what is known
as the signature of a permutation. The definition of the signature goes as
follows.

Definition 8.2. Let σ ∈ S(n). Then we define the signature of σ to be the
rational number

sgn(σ) =
∏

i<j

σ(i) − σ(j)

i− j
.

Sometimes the signature of σ is also called the sign of σ. First of all,
notice that sgn(σ) is a nonzero rational number. In fact, we have

Proposition 8.3. For any σ ∈ S(n), sgn(σ) = ±1.

Proof. Since σ is a bijection of Xn, and

σ(i) − σ(j)

i− j
=
σ(j) − σ(j)

j − i
,

we see that

(sgn(σ))2 =
∏

i6=j

σ(i) − σ(j)

i− j
.

Moreover, since
σ(σ−1(i)) − σ(σ−1(j)) = i− j,

each possible value of i−j occurs the same number of times in the numerator
as in the denominator. Hence sgn(σ)2 = 1. Thus sgn(σ) = ±1, so the
Propositionis proven. .
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If i < j, then
σ(i) − σ(j)

i− j
> 0

exactly when σ(i) < σ(j). Therefore

sgn(σ) = (−1)m(σ),

where

m(σ) = |{(i, j) | i < j, σ(i) > σ(j)}|.

The simplest permutations are what are called transpositions. A trans-

position is a permutation σ such that there are two distinct a, b ∈ Xn with
σ(a) = b, σ(b) = a and σ(i) = i if i 6= a, b. We will denote the transposition
which interchanges a 6= b in Xn by σab.

Example 8.1. For example, σ12 interchanges 1 and 2 and leaves every
integer between 3 and n alone. I claim m(σ12) = 1. For, the only pair
(i, j) such that i < j for which σ12(i) > σ12(j) is the pair (1, 2). Hence
sgn(σ12) = −1.

We will need the explicit value for the signature of an arbitrary trans-
position. This is one of the results in the main theorem on the signature,
which we now state and prove.

Theorem 8.4. The signature mapping sgn : S(n) → {±1} satisfies the
following properties:

(1) for all σ, τ ∈ S(n), then sgn(τσ) = sgn(τ)sgn(σ),

(2) if σ is a transposition, then sgn(σ) = −1, and

(3) if σ is the identity, then sgn(σ) = 1.

Proof. First consider sgn(τσ). We have

sgn(τσ) =
∏

i<j

τσ(i) − τσ(j)

i− j

=
∏

i<j

τ(σ(i)) − τ(σ(j))

σ(i) − σ(j)

∏

i<j

σ(i) − σ(j)

i− j

=
∏

r<s

τ(r) − τ(s)

r − s

∏

i<j

σ(i) − σ(j)

i− j
.
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The third equality follows since

τ(σ(i)) − τ(σ(j))

σ(i) − σ(j)
=
τ(σ(j)) − τ(σ(i))

σ(j) − σ(i)
,

and since σ is a permutation of 1, 2, . . . , n. Hence sgn(τσ) = sgn(τ)sgn(σ),
so (1) is proven.

We now prove (2), using the result of Example 8.1. Consider an arbitrary
transposition σab, where 1 ≤ a < b ≤ n. I claim

σab = σ1bσ2aσ12σ2aσ1b. (8.1)

We leave this as an exercise. By (1),

sgn(σab) = sgn(σ1b)sgn(σ2a)sgn(σ12)sgn(σ2a)sgn(σ1b).

We know from Example 8.1 that sgn(σ12) = −1. Clearly,

sgn(σ1b)sgn(σ2a)sgn(σ2a)sgn(σ1b) > 0,

hence sgn(σab) = −1. The last claim is obvious, so the proof is finished.

8.2.4 Permutations and Permutation Matrices

Permutations and permutation matrices are closely related. Since any per-
mutation matrix P is a square matrix of zeros and ones so that each row and
each column contains exactly one non-zero entry, P is uniquely determined
by a permutation σ. Namely, if the ith column of P contains a 1 in the jth
row, we put σ(i) = j. If P is n× n, this defines a unique element σ ∈ S(n).
Conversely, given σ ∈ S(n), let us define Pσ by putting

Pσ = (eσ(1) eσ(2) · · · eσ(n)),

where eσ(i) is the vector with 0 in each component except the σ(i)th com-
ponent, which is 1.

Proposition 8.5. The mapping σ → Pσ defines a one to one corresponence
between S(n) and the set P (n) of n× n permutation matrices.

Proof. This is obvious consequence of the definitions.
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Example 8.2. In order to have some notation for a permutation, we will
represent σ ∈ S(n) by the symbol

[σ(1), σ(2), . . . , σ(n)].

For example, the identity permutation of S(3) is [1, 2, 3]. It corresponds to
I3. The permutation [2, 3, 1] ∈ S(3) corresponds to

P[2,3,1] =




0 0 1
1 0 0
0 1 0


 ,

and so forth. Note that the non-zero element of the ith column of Pσ is
pσ(i)i. Let’s see what what happens when we form the product P[2,3,1]A. We
have

P[2,3,1]A =




0 0 1
1 0 0
0 1 0






a1

a2

a3


 =




a3

a1

a2


 .

To give another example, we have

P[3,1,2]A =




a2

a3

a1


 .

More generally, let P[i,j,k] be the 3×3 permutation matrix in which the first
row of I3 is in the ith row, the second in the jth row and the third in the
kth row. Then P[i,j,k]A is obtained from A by permutating the rows of A by
the permutation [i, j, k].

8.2.5 The General Definition of det(A)

Now that we have the signature of a permutation, we can give the definition
of det(A) for any n.

Definition 8.3. Let F be any field, and let A ∈ Fn×n. Then the determinant
of A is defined to be

det(A) :=
∑

π∈S(n)

sgn(π) aπ(1)1aπ(2)2 · · · aπ(n)n (8.2)

Example 8.3. Obviously, det(A) = a if A is the 1 × 1 matrix (a). Let’s
compute det(A) in the 2 × 2 cases. There are only two elements σ ∈ S(2),
namely the identity and σ12. By definition,

det

(
a11 a12

a21 a22

)
= +a11a22 + sgn(σ12)a21a12 = a11a22 − a21a12.
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Thus the expression (8.2) agrees with the original definition.

Example 8.4. For the 3×3 case, we begin by listing the elements σ ∈ S(3)
and their signatures. Denoting each σ by the triple [σ(1), σ(2), σ(3)], we get
the table

π [1, 2, 3] [1, 3, 2] [2, 3, 1] [2, 1, 3] [3, 1, 2] [3, 2, 1]
sgn(π) 1 −1 +1 −1 +1 −1

.

Hence, if A = (aij), then

det(A) = a11a22a33 − a11a32a23 + a21a32a13

−a21a12a33 + a31a12a23 − a31a32a13, ,

which is the standard formula for a 3 × 3 determinant.

8.2.6 The Determinant of a Permutation Matrix

The first result about determinants is

Proposition 8.6. If P ∈ P (n) has the form Pσ , then det(P ) = sgn(σ).

Proof. We know that the nonzero entries of Pσ are the entries of the form
pσ(i)i, all of which are 1 (see Example 8.2. Applying the definition of det,
namely

det(Pσ) =
∑

π∈S(n)

sgn(π) pπ(1)1pπ(2)2 · · · pπ(n)n, (8.3)

we see that the only non-zero term is

sgn(σ)pσ(1)1pσ(2)2 · · · pσ(n)n = sgn(σ).

Therfore, det(Pσ) = sgn(σ), as claimed.

Notice that the row swap matrices of row operations are the permutation
matices which come from transpositions. Hence, we get

Corollary 8.7. If S is a row swap matrix, then det(S) = −1. Furthermore,
if a permutation matrix P is written as a product of row swaps matrices,
say P = S1S2 · · ·Sm, then det(P ) = (−1)m.

Proof. This follows from Proposition8.6.

We can interpret the m of this Corollary as the number of row swaps
needed to bring P back to the identity. Another consequence is that for any
row swap matrix S and permutation matrix P , det(SP ) = −det(P ) since
SP involves one more row swap than P Yet another consequence is that the
number of row swaps needed to express P is always even or always odd.
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Exercises

Exercise 8.1. Write down two 4 × 4 matrices A,B each with at most two
zero entries such that det(A)|B| 6= 0.

Exercise 8.2. If A is n× n and r is a scalar, find |rA|.
Exercise 8.3. In the 2 × 2 case, find:

(a) the determinant of a reflection matrix;

(b) the determinant of a rotation matrix;

(c) classify the elements of O(2,R) according to the determinant.

Exercise 8.4. Prove Equation (8.1).
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8.3 Determinants and Row Operations

So far, we’ve given very little insight as to how determinants are actually
computed, but it’s clear we aren’t going to get very far by trying to com-
pute them from the definition. We now show how to compute det(A) via
elementary row operations.

It will simplify matters (especially for studying the laplace expansion)
to have a slight reformulation of the definition of det(A), which we will give
first. For any A ∈ Fn×n, put

δ(A) =

n∏

i=1

aii.

Thus δ(A) is the product of all the diagonal entries of A.
For example, if A is upper or lower triangular, then det(A) = δ(A).

Proposition 8.8. If A ∈ Fn×n, then

det(A) : =
∑

σ∈S(n)

sgn(σ) aσ(1)1aσ(2)2 · · · aσ(n)n

=
∑

σ∈S(n)

det(Pσ)δ(PσA),

Before giving the proof, let’s calculate a 3×3 example. Consider δ(PA),
where P is the matrix P[2,3,1]. Thus

P. =




0 0 1
1 0 0
0 1 0


 , and A =




a1

a2

a3


 .

Recall from Example 8.2 that

P[2,3,1]A =




0 0 1
1 0 0
0 1 0






a1

a2

a3


 =




a3

a1

a2


 .

Hence
δ(P[2,3,1]A) = a31a12a23.

Thus, since σ(1) = 2, σ(2) = 3 and σ(3) = 1, we see that

δ(PσA) = aσ−1(1)1aσ−1(2)2aσ−1(3)3.

Let’s now give the proof of Proposition8.8.
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Proof. From the above calculation,

δ(PσA) = aσ−1(1)1aσ−1(2)2 · · · aσ−1(n)n.

But as sgn(σ) = sgn(σ−1) (why?), we have

sgn(σ)δ(PσA) = sgn(σ−1)aσ−1(1)1aσ−1(2)2 · · · aσ−1(n)n.

Now, as σ varies over all of S(n), so does σ−1, hence we see that

det(A) =
∑

σ∈S(n)

sgn(σ) aσ(1)1aσ(2)2 · · · aσ(n)n

=
∑

σ∈S(n)

sgn(σ−1) aσ−1(1)1aσ−1(2)2 · · · aσ−1(n)n

=
∑

σ∈S(n)

sgn(σ)δ(PσA)

=
∑

σ∈S(n)

det(Pσ)δ(PσA).

8.3.1 The Main Result

The strategy for computing determinants is explained by first considering
the triangular case.

Proposition 8.9. Suppose A is n× n and upper triangular, that is, every
element in A below the diagonal is zero. Then

det(A) = δ(A) = a11a22 · · · ann.

The same formula also holds for a lower triangular matrix.

The point is that the only nonzero term in det(A) is a11a22 · · · ann. For
if P is a permutation matrix different from the identity, then there has to
be an index i so that the ith row of PA is different from the ith row of A.
But that means PA has to have a 0 on the diagonal, so δ(PA) = 0.

Hence the key to computing higher order determinants is to use row
operations to bring A into triangular form. Thus we need to investigate
how det(A) changes after a row operation is performed on A. The following
properties of the determinant function give the rather pleasant answer.
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Theorem 8.10. Let F be an arbitrary field, and suppose n ≥ 2. Then the
following properties hold for any A,B ∈ Fn×n:

(Det I) if B is obtained from A by a row swap, then

det(B) = −det(A), (8.4)

(Det II) if B is obtained from A by multiplying a row of A by a (possibly
zero) scalar r, then

det(B) = r det(A), (8.5)

(Det III) if B is obtained from A by replacing the ith row by itself plus a
multiple of the jth row, i 6= j, then

det(B) = det(A), (8.6)

and

(Det IV) det(In) = 1.

Proof. Suppose, B = SA, where S swaps two rows, but leaves all the other
rows alone. By the previous Proposition,

det(B) = det(SA) =
∑

P∈P (n)

det(P )δ(P (SA)).

Since S and P are permutation matrices, so is Q = PS. Moreover, if we
hold S fixed and vary P over P (n), then Q = PS varies over all of P (n)
also. Therefore,

det(SA) =
∑

P∈P (n)

det(PS)δ(PSSA) =
∑

P∈P (n)

−det(P )δ(PS2A).

But S2 = In, and det(PS) = −det(P ), there being one more row swap in
PS than in P . Hence, by Proposition8.8, det(SA) = −det(A).

The proof of (Det II) is obvious. If E multiplies the i-th row of A by
the scalar r, then for every permutation matrix P , δ(P (EA)) = rδ(PA).
Thus det(EA) = r det(A).

(Det III) follows from two facts. First of all, suppose A,A′ ∈ Fn×n

coincide in all but one row, say the kth row. That is, if A = (aij) and
A′ = (a′ij), then aij = a′ij as long as i 6= k. Now define a matrix B = (bij)
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by bij = aij = a′ij if i 6= k, and bkj = akj + a′kj. Then it follows from the
definition of det that

det(B) = det(A) + det(A′). (8.7)

To prove (8.7), consider any term

sgn(π) bπ(1)1bπ(2)2 · · · bπ(n)n

of det(B). Let j be the index such that π(j) = k. Then, by the definition
of B, bπ(j)j = aπ(j)j + a′π(j)j. Hence,

sgn(π) bπ(1)1bπ(2)2 · · · bπ(n)n = sgn(π) bπ(1)1bπ(2)2 · · · bπ(j)j · · · bπ(n)n

= sgn(π) aπ(1)1aπ(2)2 · · · aπ(n)n +

sgn(π) a′π(1)1a
′
π(2)2 · · · a′π(n)n

This implies (8.7).
Next, suppose C ∈ Fn×n has two identical rows. There is an easy way to

see det(C) = 0 provided the characteristic of F is different from 2. For, if the
rth and sth rows of C coincide, then PσC = C, where σ = σrs. Hence, by
(Det I), det(C) = −det(C), which implies 2 det(C) = 0. Thus det(C) = 0
unless the characteristic of F is 2. We can give a proof that det(C) = 0
in any characteristic by applying the Laplace expansion. This is proved in
§8.3.4, so we will postpone the proof until then.

Now suppose E is the elementary matrix of type III is obtained from In
by replacing the ith row of In by itself plus a times the jth row, where i 6= j.
Thus B = EA. We know from (8.7) and (Det II) that

det(B) = det(A) + adet(C),

where the ith and jth rows of C are equal. But det(C) = 0, so det(B) =
det(A), and hence the proof of (Det III) is finished.

(Det IV) is obvious, so the Theorem is proved.

In particular, since det(In) = 1, Det I-Det III imply that if E is an
elementary matrix, then

det(E) =





−1 if E is of type I,

r if E is of type II,

1 if E is of type III

Therefore we can summarize Det I-Det III in the following way.
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Corollary 8.11. If A,E ∈ Fn×n and E is an elementary, then

det(EA) = det(E) det(A). (8.8)

Proof. IfE is a row swap , then det(EA) = −det(A) by Det I. IfE is of type
II, say det(E) = r, then by Det II, det(EA) = r det(A) = det(E) det(A). If
E is of type III, then det(E) = 1 while det(EA) = det(A) by Det III.

8.3.2 Properties and consequences

The way one uses Theorem 8.10 to evaluate det(A) is clear. First find ele-
mentary matrices E1, . . . , Ek such that U = Ek · · ·E1A is upper triangular.
By Proposition 8.9 and repeated application of Theorem 8.10,

det(U) = det(E1) · · · det(Ek) det(A) = u11u22 · · · unn,

where the uii are the diagonal entries of U . Since no det(Ei) = 0,

det(A) =
u11u22 · · · unn

det(E1) · · · det(Ek)
. (8.9)

Example 8.5. Let us compute det(A), where

A =




1 0 1 1
0 1 0 1
1 1 1 1
1 1 0 1


 ,

taking the field of coefficients to be Q. We can make the following sequence
of row operations, all of type III except for the last, which is a row swap.

A→




1 0 1 1
0 1 0 1
0 1 0 0
1 1 0 1


→




1 0 1 1
0 1 0 1
0 1 0 0
0 1 −1 0


→




1 0 1 1
0 1 0 1
0 0 0 −1
0 1 −1 0


→




1 0 1 1
0 1 0 1
0 0 0 −1
0 0 −1 0


→




1 0 1 1
0 1 0 1
0 0 −1 0
0 0 0 −1




Thus det(A) = −1.



214

Example 8.6. Let us next compute det(A), where A is the matrix of the
previous example, this time taking the field of coefficients to be Z2. First
add the first row to the third and fourth rows successively. Then we get

det(A) = det




1 0 1 1
0 1 0 1
0 1 0 0
0 1 1 0


 .

Since the field is Z2, row swaps also leave det(A) unchanged. Thus

det(A) = det




1 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0


 .

Adding the second row to the third row and the fourth row successively, we
get

det(A) = det




1 0 1 1
0 1 0 0
0 0 0 1
0 0 1 0


 .

Finally, switching the last two rows, we get

det(A) = det




1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1


 = 1.

One can simplify evaluating det(A) even more in some special cases. For
example, if A has the form (

B C
O D

)
, (8.10)

where the submatrices B and C are square, then det(A) = det(B) det(D).
The proof is similar to the proof of (8.9).

To see what the determinant sees, notice that (8.9) implies det(A) 6= 0
iff each uii 6= 0. Since this is the case precisely when A has maximal rank,
we get

Proposition 8.12. If A is n× n, then det(A) 6= 0 iff when A has rank n.
Moreover, if A has rank n and we write A = E1 · · ·Ek where the Ei are
elementary, then det(A) = det(E1) · · · det(Ek).
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Proof. The first statement is verified before the proposition. The second fol-
lows immediately from (8.9) and the fact noted above that if E is elementary,
then det(E−1) = det(E)−1.

We can now prove the product formula (Proposition 8.1, part (2)) to the
n× n.

Theorem 8.13. If A and B are any n×n matrices over F, then det(AB) =
det(A) det(B).

Proof. If A and B both have rank n, each one of them can be expressed as
a product of elementay matrices, say A = E1 · · ·Ek and B = Ek+1 · · ·Em.
Then AB = (E1 · · ·Ek)(Ek+1 · · ·Em), so

det(AB) = det(E1) · · · det(Ek) det(Ek+1) · · · det(Em) = det(A) det(B).

by Proposition 8.12. To finish the proof, we have to show that if either
det(A) or det(B) is zero, then det(AB) = 0. However, if det(AB) 6= 0, then
AB is invertible, and we know this implies both A and B are invertible.
Hence if either det(A) or det(B) is zero, then det(AB) = 0, and the proof
is complete.

Proposition 8.14. If A is invertible, then det(A−1) = det(A)−1.

Proof. This follows from the previous result since AA−1 = In implies

det(AA−1) = det(A) det(A−1) = 1.

Another remarkable property of the determinant is that both A and AT

have the same determinant.

Proposition 8.15. If A is any square matrix, then det(A) = det(AT ).

Proof. We know that A and AT have the same rank, so the result is true if
det(A) = 0. Hence suppose A has maximal rank. Express A as a product
of elementary matrices, say A = E1E2 · · ·Ek. This gives

AT = (E1E2 · · ·Ek)T = ETk E
T
k−1 · · ·ET

1 ,

by the rule for transposing a product. Thus it suffices to show that for any
elementary matrix E, we have

det(ET ) = det(E).
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This is clear if E is of type II or III, since elementary matrices of type II are
symmetric and the transpose of a type III elementary matrix is also of type
III, so in both cases the determinant is 1. If E is of type I, then E−1 = ET ,
so det(E) = det(E−1) = det(ET ), the common value being −1.

Remark: Finally, one can ask the question of how unique the determinant
is. As we have remarked above, it is a staightforward consequence of the
definition that det(A) is an F-linear function of the rows of A. That is, if we
hold all rows of A fixed except the ith, the the determinant is then a linear
function of the ith row, and this is true for any i. Then we have

Theorem 8.16. The determinant is the only function F : Fn×n → F such
that:

(1) F is F-linear in each row,

(2) F (B) = −F (A) if B is obtained from A by a row swap,

(3) F (A) = 0 if two rows of A are equal, and

(4) F (In) = 1.

Then F (A) = det(A)for all A ∈ Fn×n. In fact, if the characteristic of F is
different from 2, then condition (3) can be dropped.

Proof. In fact, these conditions tell us that for any elementary matrix E,
F (EA) is computed from F (A) in exactly the same way det(EA) is com-
puted from det(A).

8.3.3 The determinant of a linear transformation

Here is an application of the product theorem. Let V be a finite dimensional
vector space over F, and suppose T : V → V is linear. We now make the
following definition. To do so, let

Definition 8.4. The determinant det(T ) of T is defined to be det(A), where
A ∈ Fn×n is any matrix representation of T with respect to a basis.

To see that det(T ) is well defined we have to check the if B is some
other matrix representation, then det(A) = det(B). But we know from
Proposition ?? that if A and B are matrices of T with respect to a basis,
then A and B are similar, i.e. there exists an invertible P ∈ Fn×n such that
B = P−1AP . Thus

det(B) = det(P−1AP ) = det(P−1) det(A) det(P ) = det(A)

so det(T ) is indeed well defined.
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8.3.4 The Laplace Expansion

The determinant is frequently defined in terms of the Laplace expansion.
The Laplace expansion is useful for evaluating det(A) when A has entries
which are functions. In fact, this situation will arise as soon as we introduce
the characteristic polynomial of A.

Suppose A is n× n, and let Aij denote the (n− 1) × (n− 1) submatrix
obtained from A by deleting its ith row and jth column.

Theorem 8.17. For any A ∈ Fn×n, we have

det(A) =
n∑

i=1

(−1)i+jaij det(Aij). (8.11)

This is the Laplace expansion along the jth column. The corresponding
Laplace expansion of along the ith row is

det(A) =

n∑

j=1

(−1)i+jaij det(Aij). (8.12)

Proof. Since det(A) = det(AT ), it suffices to prove (8.11) . For simplicity,
we will assume j = 1, the other cases being similar. Now,

det(A) =
∑

σ∈S(n)

sgn(σ) aσ(1)1aσ(2)2 · · · aσ(n)n

= a11

∑

σ(1)=1

sgn(σ)aσ(2)2 · · · aσ(n)n +

a21

∑

σ(1)=2

sgn(σ)aσ(2)2 · · · aσ(n)n +

+ · · · + an1

∑

σ(1)=n

sgn(σ)aσ(2)2 · · · aσ(n)n

If σ ∈ S(n), let P ′
σ denote the element of Fn×n obtained from Pσ by deleting

the first column and the σ(1)st row. Since pσ(i)i = 1, it follows that P ′
σ ∈

P (n−1) (why?). Note that det(Pσ) = (−1)(σ(1)−1) det(P ′
σ), since if bringing

P ′
σ to In−1 by row swaps uses t steps, one needs t+ σ(1) − 1 row swaps to

bring Pσ to the identity. Next, recall that

det(A) =
∑

σ∈S(n)

det(Pσ)δ(PσA).
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Since det(Pσ) = (−1)(σ(1)−1) det(P ′
σ), we see that for each r with 1 ≤ r ≤ n,

∑

σ∈S(n)
σ(1)=r

det(Pσ)δ(PσA) = (−1)(r−1)ar1
∑

σ∈S(n)
σ(1)=r

det(P ′
σ)δ(P

′
σAr1).

But the right hand side is certainly (−1)(r−1)ar1 det(Ar1), since every ele-
ment of P (n− 1) is P ′

σ for exactly one σ ∈ S(n) with σ(1) = r. Therefore,

det(A) =

n∑

i=1

(−1)i−1ai1 det(Ai1),

which is the desired formula.

Example 8.7. If A is 3 × 3, expanding det(A) along the first column gives

det(A) = a11(a22a33 − a32a23)− a21(a12a23 − a13a32) + a31(a12a23 − a13a22).

This is the well known formula for the triple product a1 · (a2 × a3) of the
rows of A.

Example 8.8. Here is an example where the Laplace expansion is useful.
Suppose we want to find all values of x such that the matrix

Cx =




1 − x 2 0
2 1 − x −1
0 −1 2 − x




has rank less that 3, i.e. is singular. Hence we will try to solve the equation
det(Cx) = 0 for x. Clearly, row operations aren’t going to be of much
help in finding det(Cx), so we will use Laplace, as in the previous example.
Expanding along the first column gives

det(Cx) = (1 − x)
(
(1 − x)(2 − x) − (−1)(−1)

)
− 2
(
2(2 − x) − 0(−1)

)

= −x3 + 4x− 7

Hence Cx is singular at the three roots of x3 − 4x+ 7 = 0.

A moment’s consideration is all that is needed to see that the Laplace
expansion isn’t even in the same ballpark as row ops when it comes to
giving an efficient a procedure for computing det(A). All that the Laplace
expansion is doing is giving a systematic way of organizing all the terms.
Using Laplace to evaluate even a 20× 20 determinant is impractical, except



219

possibly for a super computer (note 20! = 2432902008176640000). Yet in
applications of linear algebra to biotechnology, one might need to evaluate a
2000 × 2000 determinant. In fact, calculations involving genomes routinely
require evaluating much larger determinants.

Remark: Recall that we still need to show that det(C) = 0 if two rows of
C coincide (or are proportional) in every characteristic. We now fill in this
gap.

Proposition 8.18. Suppose F is a field of arbitrary characteristic and n >
1. Then if C ∈ Fn×n has two equal rows, det(C) = 0.

Proof. This is an ideal situation in which to use mathematical induction. We
know that the result is true if n = 2. Now make the inductive hypothesis
that the result is true for all C ∈ Fm×m, where m ≤ n − 1. Next, let
C ∈ Fn×n and suppose C has two equal rows, say the ith and jth, We
may in fact suppose, without any loss of generality, that i, j 6= 1 (why?).
Applying the Laplace expansion along the first row, we see that det(C) is a
sum of (n − 1) × (n − 1) determinants, each of which has two equal rows.
By the inductive hypothesis, each of these (n− 1)× (n− 1) determinants is
0. Therefore det(C) = 0.

8.3.5 Cramer’s rule

Another reason the Laplace expansion is important, at least from a theo-
retical point of view, is that it gives a closed formula for the inverse of a
matrix. For example, if A is 2 × 2,

A−1 =
1

det(A)

(
a22 −a12

−a21 a11

)
.

Inspecting this formula may suggest the correct formula for A−1 in the
general case.

Proposition 8.19. Suppose det(A) 6= 0 and let bij = (−1)i+j det(Aji),
where, as above, Aij denotes the (n− 1) × (n− 1) submatrix of A obtained
by deleting A’s ith row and jth column. Then

A−1 =
1

det(A)
(bij).

For example, the inverse of an invertible 3 × 3 matrix A is given as
follows:

A−1 =
1

det(A)



A11 −A21 A31

−A12 A22 −A23

A13 −A23 A33


 .
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Exercises

Exercise 8.5. Find all possible values the determinant of an arbitrary n×n
orthogonal matrix Q.

Exercise 8.6. Two square matrices A and B are said to be similar if there
exists a matrix M so that B = MAM−1. Show that similar matrices have
the same determinants.

Exercise 8.7. Suppose P is an n × n matrix so that PP = P . What is
det(P )? What if P 4 = P−1?

Exercise 8.8. Find all values x ∈ R for which

A(x) =




1 x 2
x 1 x
2 3 1




is singular, that is, not invertible.

Exercise 8.9. Do the same as Problem 5 for the matrix

B(x) =




1 x 1 x
1 0 x 1
0 x 1 1
1 0 1 0


 .

(Suggestion: use the Laplace expansion to evaluate.)

Exercise 8.10. Suppose that Q is orthogonal. Find the possible values of
det(Q).

Exercise 8.11. Which of the following statements are true. Give your
reasoning.

(a) The determinant of a real symmetric matrix is always non negative.

(b) If A is any 2 × 3 real matrix, then det(AAT ) ≥ 0.

(c) If A is a square real matrix, then det(AAT ) ≥ 0.

Exercise 8.12. An n× n matrix A is called skew symmetric if AT = −A.
Show that if A is a skew symmetric n × n matrix and n is odd, then A
cannot be invertible.

Exercise 8.13. A complex n× n matrix U is called unitary if U−1 = U
T
,

where U is the matrix obtained by conjugating each entry of U . What are
the possible values of the determinant of det(U) of a unitary matrix U .
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Exercise 8.14. Compute




1 2 −1 0
2 1 1 1
0 −1 2 0
1 1 −1 1




in two cases: first when the field is Q and secondly when the field is Z5.
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8.4 Geometric Applications of the Determinant

Now let us mention some of the geometric applications of determinants.

8.4.1 Cross and vector products

Recall that the cross product is expressed as a determinant with vector
entries; namely,

x× y = det




e1 e2 e3

x1 x2 x3

y1 y2 y3


 .

A frequently asked question is why the cross product exists only in three
dimensions. In fact there is an n dimensional generalization of the cross
product called the vector product. The vector product assigns to any (n−1)
vectors x1,x2, . . . ,xn−1 ∈ Rn a vector

[x1,x2, . . . ,xn−1] ∈ Rn

orthogonal to each of the xi. It is defined by the follows determinantal
expression:

[x1,x2, . . . ,xn−1] = det




e1 e2 . . . en
x11 x12 . . . x1n

· ·
· ·
· ·

xn−1,1 xn−1,2 . . . xn−1,n



.

The fact that
xi · [x1,x2, . . . ,xn−1] = 0

for each i, 1 ≤ i ≤ n− 1, is simply due to the fact that a determinant with
two equal rows is 0.

8.4.2 Determinants and volumes

There is an important geometric interpretation of determinants for matrices
over R. Consider a basis w1, . . . , wn of Rn. Then w1, . . . , wn span an
n-dimensional solid parallelogram < w1, . . . , wn >. By definition

< w1, . . . , wn >= {
n∑

i=1

tiwi | 0 ≤ ti ≤ 1}.



223

It can be shown that the volume of < w1, . . . , wn > is given by the
formula

Vol(< w1, . . . , wn >) = |det(w1 w2 . . . wn)|.

Note that here the vertical bars denote the absolute value. To connect this
with matrices, consider the linear transformation of A : Rn → Rn such that
A(ei) = wi. In other words, the ith column of the matrix of A is wi. Thus
|det(A)| is the volume of the image under A of the unit cube spanned by
the standard basis vectors e, . . . , en, i.e.

|det(A)| = Vol(< w1, . . . , wn >).

Let us make a couple of comments about determinants and the geometry
of linear transformations. The upshot of the above remarks is that the linear
transformation associated to a real matrix having determinant of absolute
value 1 preserves the volume of a cube. A linear transformation T : Rn → Rn

whose determinant is 1 is called unimodular. We say that the matrix of T
is unimodular. The set of all unimodular real n× n matrices is denoted by
SL(n,R). It is called the special linear group.

Proposition 8.20. Products and inverses of unimodular real matrices are
also unimodular.

Unimodular matrices have another property that is a little more subtle.
For concreteness, let’s assume for the moment that n = 3. If the matrix A
of a linear transformation T : R3 → R3 has positive determinant, then the
linear transformation preserves right handed systems. Thus if det(T ) > 0,
then T is orientation preserving.

If A has determinant −1, then A preserves volumes but reverses orien-
tation. The possibility of having volume preserving orientation reversing
transformations is what makes it necessary to put the absolute value in the
change of variables formula below.

8.4.3 Change of variables formula

Now consider a smooth transformation F : Rn → Rn of the form

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).
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The Jacobian JF of F is defined to be the determinant of the differential of
the transformation F . That is,

JF =
∂(f1, . . . , fn)

∂(x1, . . . , xn)
= det




∂f1
∂x1

. . . ∂f1
∂xn

· ·
· ·
· ·

∂fn

∂x1
. . . ∂fn

∂xn



.

It is an easy exercise in partial differentiation that if F is linear and A is its
associated matrix, then the Jacobian of F satisfies JF = det(A).

Now the change of variables formula says that if U is a closed n dimen-
sional solid, then

∫

F (U)
g(y)dV =

∫

U
g(F (x))|JF (x)|dV

for all functions g that are continuous on F (U). The intuition for this is
based on the observation that |JF (x)|dV is a good approximation of the
volume of the (curvilinear) solid parallelogram F (U), where U denotes a
small cube in Rn and x ∈ U is arbitrary.

A specific application of this formula is that the volume of F (U) is the
integral of the absolute value of the Jacobian of F over U . If F is a linear
transformation, then

Vol(F (U)) = det(A)Vol(U).

Using this identity, it is not hard to give a geometric proof that if A,B are
two n× n matrices over R, then

|det(AB)| = |det(A)||det(B)|,

where we have used the det notation to avoid confusion with absolute values.

8.4.4 Lewis Carroll’s identity

The notion of the determinant of a matrix was introduced in the 19th cen-
tury. At that time, many mathematicians were amateurs. For them, mathe-
matics was a hobby, not a vocation. The determinant held great fascination
in those days. It is a complicated concept, yet it is also a concrete object
that can be calculated with and manipulated.
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One 19th century mathematician who studied determinants was Charles
Dodgson, a professor of mathematics at Oxford who is better known by his
pseudonym, Lewis Carroll, and for authoring Alice in Wonderland. Dodgson
discoverered and published of an amusing identity, now known as Lewis
Carroll’s Identity, which is reminiscent of the 2 × 2 case. Suppose A is an
n×n matrix. Let AC be the (n− 2)× (n− 2) submatrix in the middle of A
obtained by deleting the first and last rows and the first and last columns.
Also, let ANW the (n− 1)× (n− 1) submatrix in the upper left hand corner
of A, and define ANE, ASW and ASE to be the (n−1)× (n−1) submatrices
in the other three corners of A. If n = 2, put det(AC) = 1. Then Lewis
Carroll’s Identity says:

det(A) det(AC) = det(ANW ) det(ASE) − det(ANE) det(ASW ) (8.13)

(see C.L. Dodgson, Proc. Royal Soc. London 17, 555-560 (1860)). Interest-
ingly, Lewis Carroll’s Identity has recently reappeared in the modern setting
of semi-simple Lie algebras.
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Exercises

Exercise 8.15. Verify Lewis Carroll’s Identity for the matrix




1 2 −1 0
2 1 1 1
0 −1 2 0
1 1 −1 1


 .

Exercise 8.16. Under what condition does Lewis Carroll’s Identity make
it possible to evaluate det(A)?

Exercise 8.17. Suppose A is an n× n matrix over R.

(a) First show that the Jacobian of the linear transformation defined by A
is det(A).

(b) Use this to give a verification of the identity that says

|det(AB)| = |det(A)||det(B)|.

Exercise 8.18. List all the 3×3 permutation matrices that lie in SL(3,R).

Exercise 8.19. Prove Proposition 8.20.

Exercise 8.20. Prove that SL(3,R) is a subgroup of GL(3,R), where

GL(n,R) = {A ∈ Rn×n | det(A) 6= 0}.

Exercise 8.21. *. If G and H are groups, then a mapping ϕ : G → H is
called a group homomorphism if for any a, b ∈ G, ϕ(ab) = ϕ(a)ϕ(b). Explain
how the determinant can be viewed as a group homomorphism if we choose
the group G to be GL(n,F), where F is any field.
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8.5 Summary

The theory of determinants was one of the main topics of interest to the
mathematicians working in the 19th century. The determinant of a square
matrix over an arbitrary field F is an F-valued function det that with the
property that det(AB) = det(A) det(B), det(In) = 1 and det(A) 6= 0 if and
only if A is invertible. In this book, it is defined combinatorially, and its
properties are rigorously proved. In many texts, the determinant is defined
inductively, by the Laplace expansion. The problem with this approach is
that it is very messy to show that the definition is the same for all possible
Laplace expansions. The determinant of a linear transformation T : V → V
is defined as the determinant any matrix representing T .

In addition to its importance in algebra, which will be amply demon-
strated in the next chapter, the determinant also has many important ge-
ometric applications. This stems from theh fact that |det(A)| is, by def-
inition, the n-dimensional volume of the solid parallelogram spanned by
Ae1, Ae2, . . . , Aen. Thus the determinant appears in the change of vari-
ables theorem for multiple integrals, though in that context, it is called a
Jacobian.



228



Chapter 9

Eigentheory

Let V be a finite dimensional vector space over a field F, and let T : V → V
be a linear transformation. In particular, if V = Fn, then T is an element
of Fn×n, i.e. an n×n matrix over F. One of the most basic questions about
T is for which non-zero vectors v ∈ V is it true that there exists a scalar
λ ∈ F for which T (v) = λv. A pair (λ,v) for which this happens is called
an eigenpair for T .

The purpose of this chapter is to study this eigenvalue problem. In
particular, we will develop the tools for finding the eigenpairs for T and give
examples of how they are used. The fundamental question is when does V
have a basis consisting of eigenvectors. If such an eigenbasis B exists, then
T is what we have called a semi-simple transformation. It turns out that if
T is semi-simple, then the matrix MB

B(T ) of T is diagonal. For example, if
V = Fn, then T itself is a matrix, and an eigenbasis exists if and only if we
can write T = MDM−1 for an invertible M ∈ Fn×n. Finding M and D is
the diagonalization problem, and determining when it has a solution is the
main goals of this chapter (and subsequent chapters).

9.1 An Overview

The purpose of this section is to give a quick introduction to the eigentheory
of matrices and linear transformations. We will give a much more complete
treatment in the subsequent sections. The key concepts in eigentheory are
the eigenvalues and eigenvectors of a linear transformation T : V → V ,
where V is a finite dimensional vector space over F. In this introduction,
we will concentrate just on matrices, keeping in mind that a square matrix
A over F is a linear transformation from Fn to itself. The eigenvalues and
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eigenvectors enable us to understand how this linear transformation acts.

9.1.1 An Example: Dynamical Systems

One of the many applications of eigentheory is the decoupling of a dynamical
system, which entails solving the above diagonalization problem.

Let us begin with a Fibonacci sequence. Recall that this is any sequence
(ak) in which a0 and a1 are arbitrary non-negative integers and ak = ak−1 +
ak−2 if k ≥ 2. We already noticed that the Fibonacci sequence leads to a
matrix equation (

ak+1

ak

)
=

(
1 1
1 0

)(
ak
ak−1

)
,

hence putting

F =

(
1 1
1 0

)
,

we see by iterating that

(
ak+1

ak

)
= F

(
ak
ak−1

)
= F 2

(
ak−1

ak−2

)
= · · · = F k

(
a1

a0

)
.

Putting

v0 =

(
a1

a0

)
and vk =

(
ak+1

ak

)
,

we can therefore express the Fibonacci sequence in the form vk = F kv0.
The Fibonacci sequence is therefore an example of a dynamical system.

Suppose in general that A ∈ Rn×n, and fix an arbitrary vector v0 ∈ Rn.
Then the dynamical system associated to A having initial value v0 is the
sequence (vk) with

vk = Avk−1, k = 1, 2, . . .

Thus
v1 = Av0, v2 = Av1 = A2v0, . . . , vk = Akv0.

This sequence is easy to analyze ifA is diagonal, say A = diag(d1, d2, . . . , dn).
Indeed, A’s Nth power AN is just the diagonal matrix

AN = diag(dN1 , d
N
2 , . . . , d

N
n ).

Thus, if v0 = (v1, v2, . . . , vn), then

vN = ((d1)
Nv1, (d2)

Nv2, . . . , (dn)
Nvn).
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Fortunately, this isn’t the only situation where we can compute AN .
Suppose v ∈ Rn satisfies the condition Av = λv for some scalar λ ∈ R. We
will call such a pair (λ,v) an eigenpair for A as long as v 6= 0. Given an
eigenpair, we see that

ANv = AN−1(Av) = AN−1(λv) = λAN−1v.

By iteration, we therefore see that ANv = λNv, for all N > 0, so we know
the dynamical system determined by A with initial value v. Now suppose
there exists a basis v1,v2, . . . vn of Fn such that Avi = λivi for 1 ≤ i ≤ n.
Since we can expand an arbitrary v ∈ Fn as v = a1v1 + a2v2 + · · · + anvn,
it follows that

Av =
∑

aiAvi =
∑

aiλvi.

Given an eigenbasis v1,v2, . . .vn for A, we therefore get

ANv =
∑

aiA
Nvi =

∑
aiλ

Nvi. (9.1)

Hence an eigenbasis for A is also one for AN . The key to understanding
a dynamical system with arbitrary initial value v0 is therefore to find an
eigenbasis for A, expand v0 in terms of this basis and apply (9.1).

We’ll finish this discussion below after we’ve said more about the eigen-
value problem.

We can interpret this as follows. let TA : Fn → Fn be the linear trans-
formation

9.1.2 The Eigenvalue Problem

Let A be a square matrix over the field F, i.e. A ∈ Fn×n. We now want to
consider the eigenvalue problem for A. That is, we want to find all λ ∈ F

for which there exists a v ∈ Fn such that v 6= 0 and

Av = λv.

Notice that the way this problem is imposed presents a difficulty: the vari-
ables being λ and the components of v, the right hand side is nonlinear since
λ multiplies the components of v. Since we only know how to treat linear
equations, we may have a problem. However, a slight tweak of the problem
gives us the much better form

(A− λIn)v = 0. (9.2)
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This is a homogeneous linear system. Moreover, it tells us that the eigen-
value problem actually consists breaks up into two parts:

(1) find those λ ∈ F such that the matrix A− λIn has a nontrivial null
space, and

(2) given λ satisfying (1), find N (A− λIn).

For the first part, we consider the equation

det(A− λIn) = 0, (9.3)

which is called the characteristic equation of A. Indeed, λ ∈ F belongs
to an eigenpair (λ,v) if and only if A − λIn has rank less than n if and
only if det(A − λIn) = 0. As we will see below, this is the nonlinear part
of the eigenvalue problem. Once we have a λ ∈ F satisfying (9.3), the
second problem is a straightforward linear problem, as we only need to find
N (A− λIn).

Example 9.1. Let’s consider the real matrix

A =

(
1 2
2 1

)
.

The eigenvalues of A are the real numbers λ such that

A− λI2 =

(
1 − λ 2

2 1 − λ

)

has rank 0 or 1. This happens exactly when det(A− λI2) = 0. Now

det(A− λI2) = (1 − λ)2 − 2 · 2 = λ2 − 2λ− 3 = 0.

Since λ2 − 2λ − 3 = (λ − 3)(λ + 1), the eigenvalues of A are 3 and -1. We
can now proceed to finding corresponding eigenvectors. For this we need to
find the null spaces N (A− 3I2) and N (A+ I2). Clearly,

N (A− 3I2) = N (

(
−2 2
2 −2

)
) = R

(
1
1

)
,

and

N (A+ I2) = N (

(
2 2
2 2

)
) = R

(
1
−1

)
.
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We now want to point out a consequence of this calculation. We can combine
everything into a matrix equation

(
1 2
2 1

)(
1 1
1 −1

)
=

(
3 −1
3 1

)
=

(
1 1
1 −1

)(
3 0
0 −1

)
.

This is an expression in the form AP = PD, where the columns of P are two
independent eigenvectors. Thus P is invertible, and we get the factorization
A = PDP−1. At this point, we say A has been diagonalized.

Let’s apply this to our dynamical system problem of taking powers of A.
For example,

A3 = (PDP−1)(PDP−1)(PDP−1) = PDI2DI2DP
−1 = PD3P−1.

Generalizing this to any positive integer N , we get the formula

AN = PDNP−1.

9.1.3 Dynamical Systems Revisted

Recall that analyzing the dynamical system Avk = vk+1 required that we
find the powers Ak of k. Whenever A can be diagonalized, that is expressed
as PDP−1, then Ak can easily be computed. For example,

A3 = (PDP−1)(PDP−1)(PDP−1) = PDInDInDP
−1 = PD3P−1.

Generalizing this to any positive integer N , we get the formula

AN = PDNP−1.

We can now finish our discussion of the Fibonacci sequence. Thus we
have to solve the eigenvalue problem for F . Clearly, the characteristic equa-
tion of F is λ2 − λ + 1 = 0. Using the quadratic formula, we obtain the
roots

τ =
1 +

√
5

2
, µ =

1 −
√

5

2
,

and since both roots are real, F has two real eigenvalues. I leave it to you to
check that N (F − τI2) = R(τ, 1)T , and N (F − µI2) = R(µ, 1)T . Therefore,
as in the previous example,

F =

(
τ µ
1 1

)(
τ 0
0 µ

)(
τ µ
1 1

)−1

.
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Hence
(
am+1

am

)
= Fm

(
a1

a0

)
=

(
τ µ
1 1

)(
τm 0
0 µm

)(
τ µ
1 1

)−1(
a1

a0

)
.

To take a special case, let a0 = 0 and a1 = 1. Then this leaves us with the
identity

am =
τm − µm

τ − µ
=

1√
5 · 2m

((1 +
√

5)m − (1 −
√

5)m). (9.4)

Taking the ratio am+1/am and letting m tend to ∞, we obtain

lim
m→∞

am+1

am
= lim

m→∞
τm+1 − µm+1

τm − µm
= τ,

since limm→∞(µ/τ)m = 0. Therefore, for large m, the ratio am+1/am is
approximately τ . Since −1 < µ < 0 (in fact µ ≈ −0.618034) and

am + µm/
√

5 = τm/
√

5,

it follows that

a2m =


 1√

5

(
1 +

√
5

2

)2m

 and a2m+1 =


 1√

5

(
1 +

√
5

2

)2m+1

+ 1,

where [k] denotes the integral part of k.

The eigenvalue τ is the so called golden number 1+
√

5
2 which was known

to the early Greeks and, in fact, used in their architecture. It was also
encountered in the discussion of the icosahedron and Buckminsterfullerene.
There is an interesting observation in botany, namely that certain observed
ratios in plant growth are approximated by quotients of Fibonacci numbers.
For example, on some types of pear trees, every eight consecutive leaves
make three turns around the stem. (Think of a spiral staircase making
three complete turns around its axis that has eight steps and you have the
leaves on the stem of a pear tree.) There are more examples and refer-
ences of this is the book Geometry, by H.M.S. Coxeter. The implication is
that the golden number may have some properties that influence biological
patterns, just as it has properties that affect molecular structures such as
buckminsterfullerene.

In the above two examples, we solved the diagonalization problem. That
is, given A we constructed a matrix P such that A = PDP −1.
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Definition 9.1. Two matrices A and B in Fn×n are said to be similar if
there exists an invertible M ∈ Fn×n so that B = MAM−1.

Thus the diagonalization problem for A is to find a diagonal matrix
similar to A.

Now suppose that V is an arbitrary vector space over R and T : V → V
is a linear transformation. In the infinite dimensional setting, it is custom-
ary to call a linear transformation a linear operator. Then the eigenvalue
problem for T is still the same: to find scalars λ ∈ R so that there exists a
non zero v ∈ V such that T (v) = λv. However, since V is not assumed to be
finite dimensional, the above method involving the characteristic equation
won’t work. One way to proceed is to try to find finite dimensional sub-
spaces W of V so that A(W ) ⊂W . But in the infinite dimensional setting,
there is no such simple technique for finding eigenvalues of T . This has lead
to the development of many different techniques. In the next example, we
consider a case which arises in differential equations.

Example 9.2. Let V = C∞(R) be the space of real valued functions on R

which have derivatives of all orders. Since the derivative of such a function
also has derivatives of all orders, differentiation defines a linear operator
D : C∞(R) → C∞(R). That is, D(f) = f ′. It is clear that the exponential
function f(x) = erx is an eigenvector of D with corresponding eigenvalue
r. Thus (r, erx) form an eigenpair for D. In this context, eigenvectors are
usually called eigenfunctions. Considering D2 instead of D, we easily see
that for any integers m and n, cosmx and sinnx are also eigenfunctions
with corresponding eigenvalues −m2 and −n2 respectively.

We will return to this example after the Principal Axis Theorem.

9.2 The Characteristic Polynomial

Having now seen some of the basic definitions and some applications and
examples, we will next consider eigentheory in greater detail.

9.2.1 Basic Definitions and Properties

Let F be a field, and suppose V is a finite dimensional vector space over F.

Definition 9.2. Suppose T : V → V is a linear map. Then a pair (λ,v),
where λ ∈ F and v ∈ V , is called an eigenpair for T if v 6= 0 and

T (v) = λv. (9.5)
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If (λ,v) is an eigenpair for T , we call λ an F-eigenvalue, or, simply, an
eigenvalue of T and v an eigenvector of T corresponding to λ.

As we discussed above, the fundamental question is whether T has an
eigenbasis.

It turns out that it is most convenient to first treat the eigenvalue prob-
lem for matrices. Thus we will consider matrices first and return to linear
transformations after that. Here are a couple of observations that follow
directly form the definitions.

First, let us make some simple observations. Not every square matrix
has an eigenvalue.

Example 9.3. The characteristic equation of J =
(

0 −1
1 0

)
is λ2 + 1 = 0.

Since the roots of λ2 + 1 = 0 are ±i, there are no real eigenvalues. This
isn’t surprising since J is the matrix of the rotation Rπ/2 : R2 → R2 of
R2 through π/2, and thus there are no eigenvectors in R2. On the other
hand, if we think of J as a complex matrix (as we may since R ⊂ C), the
eigenvalues of J are ±i. Solving the for corresponding eigenvectors gives
eigenpairs (i, (−1, i)T ) and (−i, (1, i)T ). Thus

(
0 −1
1 0

)(
1 1
−i i

)
=

(
1 1
−i i

)(
i 0
0 −i

)
.

Hence JM = MD or J = MDM−1.

This Example brings up a somewhat subtle point. When considering
the eigenvalue problem for an A ∈ Rn×n, we know, by the Fundamental
Theorem of Algebra (Theorem 4.11), that the characteristic equation of A
has n complex roots. But only the real roots determine eigenpairs for A
when we are taking F = R. However, as R is a subfield of C, so we can also
consider A as a matrix in Cn×n, and thus every root µ of the characteristic
equation of A gives us an eigenpair (µ,v) with v ∈ Cn.

Let us now give some of the basic general properties of eigenpairs.

Proposition 9.1. Suppose A is a square matrix over F and (λ,v) is an
eigenpair for A. Then for any scalar r ∈ F, (rλ,v) is an eigenpair for rA.
Moreover, for any positive integer k, (λk,v) is an eigenpair for Ak. Finally,
A has an eigenpair of the form (0,v) if and only if N (A) is nontrivial.

Proof. The proof is left as an exercise.

Recall that we defined the characteristic equation of A ∈ Fn×n in the
previous section to be det(A − λIn) = 0. We will frequently denote the
determinant det(A− λIn) by |A− λIn|.
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Proposition 9.2. If A ∈ Fn×n, then det(A−λIn) is a polynomial in λ over
F of degree n. Its leading term is (−1)nλn and its constant term is det(A).
The eigenvalues of A are the roots of det(A− λIn) = 0 in F.

Proof. This is obvious from the definition of the determinant.

Definition 9.3. Given A ∈ Fn×n, we call pA(λ) = det(A − λIn) the char-

acteristic polynomial of A.

The next Proposition gives an important property of the characteristic
polynomial .

Proposition 9.3. Two similar matrices have the same characteristic poly-
nomial.

Proof. Suppose A and B are similar, say B = MAM−1. Then

det(B − λIn) = det(MAM−1 − λIn)

= det(M(A− λIn)M
−1)

= det(M) det(A− λIn) det(M−1)

Since det(M−1) = det(M)−1, the proof is done.

We can now extend these definitions to linear transformations.

Definition 9.4. If V is a finite dimensional vector space over F and T :
V → V is linear, then we define the characteristic equation of T to be the
characteristic equation pA(λ) = 0 of any matrix A ∈ Fn×n which represents
T . Similarly, we call pA(λ) the characteristic polynomial of T .

Since any two matrices MB
B(T ) representing T are similar, Proposition

9.2 tells us that the the characteristic equation and characteristic polynomial
of T are well defined. Now we need to show that an eigenpair for MB

B(T )
gives an eigenpair for T , and conversely.

Proposition 9.4. Let V be a finite dimensional vector space over F and
suppose T : V → V is linear. Then any root µ ∈ F of the characteristic
equation of T is an eigenvalue of T , and conversely.

Proof. Let A be the matrix representing T for a basis v1, . . . ,vn of V . Sup-
pose µ ∈ F is a root of the characteristic equation det(A−µIn) = 0, and let
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(µ,x) be an eigenpair for A. Thus Ax = µx. Let x = (x1, . . . , xn)
T and put

v =
∑

i xivi. Then

T (v) =
∑

i

xiT (vi)

=
∑

i,j

xiajivj

=
∑

j

µxjvj

= µv

Since some xj 6= 0, it follows that v is non zero, so (µ,v) is an eigenpair for
T . For the converse, just reverse the argument.

The previous two Propositionshave the consequence that from now on,
we can concentrate on the eigentheory of n×n matrices and ignore the more
viewpoint of linear maps. Put in other terms, the eigenvalue problem for lin-
ear transformations on a finite dimensional vector space reduces completely
to the case of matrices.

Let’s now consider some examples.

Example 9.4. If A =
(

1 2
2 −1

)
, then A − λI2 =

(
1−λ 2
−2 −1−λ

)
, so the charac-

teristic polynomial of A is |A − λI2| = (1 − λ)(−1 − λ) − (2)(2) = λ2 − 5.
The eigenvalues of A are ±

√
5. Both eigenvalues are real.

Example 9.5. As we saw above, the matrix J =

(
0 −1
1 0

)
has no real

eigenvalues. However, it does have two distinct eigenvalues in C.

Example 9.6. Let K =
(

0 −i
i 0

)
. The characteristic polynomial of K is

λ2 − 1, so the eigenvalues of K are ±1. Thus K is a complex matrix with
real eigenvalues. Notice that K = iJ , so Proposition 9.1 in fact tells us a
priori that its eigenvalues are i times those of J .

9.2.2 Formulas for the Characteristic Polynomial

The characteristic polynomial pA(λ) of a 2 × 2 matrix A =
(
a b
c d

)
over an

arbitrary field F has a nice form, which we will generalize. First, define the
trace of A to be the sum of the diagonal elements of A, i.e. Tr(A) = a+ d.
Then

pA(λ) = (a− λ)(d− λ) − bc = λ2 − (a+ d)λ+ (ad− bc).
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Hence,

pA(λ) = λ2 + Tr(A)λ+ det(A). (9.6)

The quadratic formula gives the eigenvalues of A in the form

λ =
1

2

(
−(a+ d) ±

√
(a+ d)2 − 4(ad − bc)

)

which can be rewritten as

λ =
1

2

(
−Tr(A) ±

√
Tr(A)2 − 4 det(A)

)
. (9.7)

Hence if A is real, it has real eigenvalues if and only if the discriminant
∆(A) :=Tr(A)2 − 4 det(A) is non negative: ∆(A) ≥ 0. If ∆(A) = 0, the
roots are real but repeated. If ∆(A) < 0, the roots are complex and unequal.
In this case, the roots are conjugate complex numbers. By factoring the
characteristic polynomial as

(λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2

and comparing coefficients, we immediately see that:

(i) the trace of A is the sum of the eigenvalues of A:

Tr(A) = λ1 + λ2,

(ii) the determinant of A is the product of the eigenvalues of A:

det(A) = λ1λ2.

For n > 2, the characteristic polynomial is more difficult to compute.
Using row operations to compute a characteristic polynomial isn’t very prac-
tical (see Example 8.8), so when computing by hand, it is almost necessary
to also use the Laplace expansion. There is an important warning that needs
to be issued here. Whenever you are computing the characteristic
polynomial of a matrix A, never, repeat, never row reduce A or
partly row reduce A before computing the characteristic polyno-
mial. There is absolutely no reason the characteristic polynomials of A and
EA should have any common roots. If they did all invertible matrices would
have the same eigenvalues.

On the other hand, there is a beautiful formula for the characteristic
polynomial involving the so called principal minors of A. Since pA(λ) is a
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polynomial in λ of degree n with leading coefficient (−1)nλn and constant
term det(A), we can write

pA(λ) = (−1)nλn + (−1)n−1σ1(A)λn−1 + (−1)n−2σ2(A)λn−2+

+ · · · + (−1)1σn−1(A)λ+ det(A), (9.8)

where the σi(A), 1 ≤ i ≤ n− 1, are the remaining coefficients.

Theorem 9.5. The coefficients σi(A) for 1 ≤ i ≤ n are given by

σi(A) :=
∑(

all principal i× i minors of A
)
, (9.9)

where the principal i× i minors of A are defined to be the determinants of
the i× i submatrices of A obtained by deleting n− i rows of A and then the
same n− i columns.

We will omit the proof.
By definition, the principal 1 × 1 minors are just the diagonal entries

of A, since deleting (n − 1) of the rows and the same (n− 1) columns just
leaves the diagonal entry aii in the unique row that wasn’t deleted. Hence

σ1(A) = a11 + a22 + · · · + ann

so
σ1(A) = Tr(A).

Of course, formula (9.8) says that the constant term is the determinant
of A, i.e. σn(A) = det(A). But this is clear. In general, the number of
j × j minors of A is the binomial coefficient

( n
j

)
= n!

j!(n−j)! . Thus, the
characteristic polynomial of a 4 × 4 matrix will involve four 1 × 1 principal
minors, six 2 × 2 principal minors, four 3 × 3 principal minors and a single
4 × 4 principal minor. But using Theorem 9.5 is still much simpler than
expanding det(A− λIn) via Laplace.

Example 9.7. For example, let

A =




3 −2 −2
3 −1 −3
1 −2 0


 .

Then
det(A− λI3) = −λ3 + (−1)2(3 − 1 + 0)λ2+
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(−1)1(det

(
3 −2
3 −1

)
+ det

(
−1 −3
−2 0

)
+ det

(
3 −2
1 0

)
)λ+ det(A).

Thus the characteristic polynomial of A is

pA(λ) = −λ3 + 2λ2 + λ− 2.

A natural question is how to find the roots of the characteristic polyno-
mial. Except in the 2 × 2, 3 × 3 and 4 × 4 cases, where there are general
formulas, there aren’t any general methods for finding the roots of a polyno-
mial. Solving the eigenvalue problem for a given square matrix is a problem
which is usually approached by other methods, such as tNewton’s method
or the QR algorithm, which we will discuss later.

In particular examples, the rational root test can be helpful, since
most examples deal with matrices with integer entries. Hence the charac-
teristic polynomial has integer coefficients. The rational root test treats such
polynomials. It says that if

p(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0

is a polynomial with integer coefficients a0, . . . an, then the only possible
rational roots have the form p/q, where p and q are integers without any
common factors, p divides a0 and q divides an. In particular, if the leading
coefficient an = 1, then q = ±1, so the only possible rational roots are the
inegers which divide the constant term a0. Therefore we obtain the following

Proposition 9.6. If A is a matrix with integer entries, then the only pos-
sible rational eigenvalues are the integers which divide det(A).

Since the characteristic polynomial of the matrix A in the previous ex-
ample is −λ3 + 2λ2 + λ − 2 the only possible rational eigenvalues are the
divisors of 2, that is ±1 and ±2. Checking these possibilities, we find that
±1 and 2 are roots, so these are the eigenvalues of A.

Note also that the coefficients of pA(λ) are certain explicit functions of
its roots. For if pA(λ) has roots λ1, . . . , λn, then

pA(λ) = (λ1 − λ)(λ1 − λ) . . . (λ1 − λ)

= (−1)n(λ)n + (−1)n−1(λ1 + λ2 + . . . λn)λ
n−1 + · · · + λ1λ2 · · · λn

Thus we obtain a generalization of what we showed in the 2× case.

Proposition 9.7. The trace of a matrix A is the sum of the roots of its
characteristic polynomial, and similarly, the determinant is the product of
the roots of its characteristic polynomial.
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There are other functions σi(λ1, . . . , λn) expressing the coefficients σi(A)
as functions of λ1, . . . , λn. These are called the elementary symmetric func-
tions. You might be amused to find some expressions for them on your own.
For example,

σ2(λ1, . . . , λn) = σ2(A) =
∑

i<j

λiλj.

Exercises

In the following exercises, A and B are assumed to be square matrices of
the same size over

either R or C. Recall that an eigenbasis for a real n× n matrix A is a
basis of Rn consisting of eigenvectors.

Exercise 9.1. Find the characteristic polynomial, eigenvalues and if possi-
ble, an eigenbasis for:

(i) the X-files matrix

X =




1 0 1
0 1 0
1 0 1


 ,

(ii) the checkerboard matrix

C =




0 1 0
1 0 1
0 1 0


 ,

(iii) the 4 × 4 X-files matrix




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 ,

(iv) the 4 × 4 checkerboard matrix




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 .
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Exercise 9.2. Find the characteristic polynomial and eigenvalues of




−3 0 −4 −4
0 2 1 1
4 0 5 4
−4 0 −4 −3




in two ways, one using the Laplace expansion and the other using principal
minors.

Exercise 9.3. The following matrix A was on a blackboard in the movie
Good Will Hunting:

A =




0 1 0 1
1 0 2 1
0 2 0 0
1 1 0 0


 .

Find the characteristic polynomial of A and try to decide how many real
eigenvalues there are.

Exercise 9.4. Find the characteristic polynomial of a 4 × 4 matrix A if
you know that three eigenvalues of A are ±1 and 2 and you also know that
det(A) = 6.

Exercise 9.5. Using only the definitions, prove Proposition 9.1.

Exercise 9.6. Suppose A ∈ Fn×n has the property that A = A−1. Show
that if λ is an eigenvalue of A, then so is λ−1.

Exercise 9.7. Show that two similar matrices have the same trace and
determinant.

Exercise 9.8. True or False: If two matrices have the same characteristic
polynomial , they are similar.

Exercise 9.9. If A is a square matrix, determine whether or not A and AT

have the same characteristic polynomial, hence the same eigenvalues.

Exercise 9.10. Show that 0 is an eigenvalue of A if and only if A is singular,
that is, A−1 does not exist.

Exercise 9.11. True or False: If λ is an eigenvalue of A and µ is an eigen-
value of B, then λ+ µ is an eigenvalue of A+B.
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Exercise 9.12. An n×nmatrix such that Ak = O for some positive integer
k is called nilpotent.

(a) Show all eigenvalues of a nilpotent matrix A are 0.

(b) Hence conclude that the characteristic polynomial of A is (−1)nλn. In
particular, the trace of a nilpotent matrix is 0.

(c) Find a 3 × 3 matrix A so that A2 6= O, but A3 = O. (Hint: look for an
upper triangular example.)

Exercise 9.13. Find the characteristic polynomial of the X-Files matrix




1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1



.

Exercise 9.14. Show that the complex eigenvalues of a real n× n matrix
occur in conjugate pairs λ and λ. (Note: the proof of this we gave for
n = 2 does not extend. First observe that if p(x) is a polynomial with real
coefficients, then p(x) = p(x).)

Exercise 9.15. Conclude from the previous exercise that a real n×nmatrix,
where n is odd, has at least one real eigenvalue. In particular, every 3 × 3
real matrix has a real eigenvalue.

Exercise 9.16. Find eigenpairs for the two eigenvalues of the rotation Rθ

of R2. (Note, the eigenvalues are complex.)

Exercise 9.17. Show that in general, the only possible real eigenvalues of
an n× n real orthogonal matrix are ±1.

Exercise 9.18. Suppose A is n×n and invertible. Show that for any n×n
matrix B, AB and BA have the same characteristic polynomial.

Exercise 9.19. * Find the characteristic polynomial of



a b c
b c a
c a b


 ,

where a, b, c are all real. (Note that the second matrix in Problem 2 is of
this type. What does the fact that the trace is an eigenvalue say?)
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Exercise 9.20. Find the elementary symmetric functions σi(λ1, λ2, λ3, λ4)
for i = 1, 2, 3, 4 by expanding (x− λ1)(x− λ2)(x − λ3)(x− λ4). Deduce an
expression for all σi(A) for an arbitrary 4 × 4 matrix A.

Exercise 9.21. Show directly that

τm − µm

τ − µ
=

1√
5 · 2m

((1 +
√

5)m − (1 −
√

5)m)

is an integer, thus explaining the strange expression in Section 9.1.
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9.3 Eigenvectors and Diagonalizability

We now begin our study of the question of when an eigenbasisexists.

9.3.1 Eigenspaces

Let A ∈ Fn×n and suppose λ ∈ F is an eigenvalue.

Definition 9.5. The null space N (A − λIn) is called the eigenspace of A
corresponding to λ. Similarly, if T : V → V is linear and λ is an eigenvalue
of T , then the eigenspace of T corresponding to λ is the subspace

Eλ = {v ∈ V | T (v) = λv}.

Example 9.8. Consider a simple example, say

A =

(
1 2
2 1

)
.

Then pA(λ) = λ2 − 2λ − 3 = (λ − 3)(λ + 1), so the eigenvalues of A are
λ = 3,−1. Now

A− (−1)I2 =

(
2 2
2 2

)
and A− 3I2 =

(
−2 2
2 −2

)
.

Thus E−1 = N (A+ I2) = R

(
1
−1

)
and E3 = N (A− 3I2) = R

(
1
1

)
. Notice

that we have found an eigenbasis of R2.

Definition 9.6. Let A ∈ Fn×n. Then we say A is diagonalizable over F, or
simply diagonalizable if there is no danger of confusion, if and only if there
exist eigenpairs (λ1,w1), . . . , (λn,wn) so that w1, . . . , wn are a basis of
Fn.

Note that in this definition, some eigenvalues may appear more than
once. The next proposition describes the set of diagonalizable matrices.

Proposition 9.8. Assume A is an n × n matrix over F which is diago-
nalizable, and let w1, . . . , wn ∈ Fn be an eigenbasis with eigenvalues
λ1, . . . , λn in F. Then A = PDP−1, where P = (w1 . . . wn) and
D = diag(λ1, . . . , λn). Conversely, if A = PDP−1, where P ∈ Fn×n is
nonsingular and D = diag(λ1, . . . , λn), then the columns of P are an
eigenbasis of Fn for A and the diagonal entries of D are the correspond-
ing eigenvalues. That is, if the ith column of P is wi, then (λi,wi) is an
eigenpair for A.
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Proof. Suppose an eigenbasisw1 . . . wn is given and P = (w1 . . . wn).
Then

AP = (λ1w1 . . . λnwn = (w1 . . . wn)diag(λ1, . . . , λn).

Since the columns of P are an eigenbasis, P is invertible, hence A is diago-
nalizable. The converse is proved in the same way.

Example 9.9. Here is another calculation. Let

A =




3 −2 −2
3 −1 −3
1 −2 0


 .

Then pA(λ) = −λ3+2λ2+λ−2. The eigenvalues of A are ±1, 2. Thus N (A−
I3) = R(1, 0, 1)T , N (A+ I3) = R(1, 1, 1)T , and N (A − 2I3) = R(0, 1,−1)T ,
where Rv is the line spanned by v. Hence an eigenbasis exists and A is
diagonalizable.

You may have noticed that in all the above examples of diagonalizable
matrices, the matrices have distinct eigenvalues. No eigenvalues are re-
peated. Matrices with this property are always diagonalizable.

Proposition 9.9. An n× n matrix A over F with n distinct eigenvalues in
F is diagonalizable. More generally, if V be a finite dimensional vector space
over F and T : V → V is a linear transformation with distinct eigenvalues,
then V admits an eigenbasis for T .

The proof entails showing that if w1, . . . , wn are eigenvectors for A
(or T ) corresponding to the n distinct eigenvalues, then w1, . . . , wn are
linearly independent. This assures us that P = (w1 . . .wn) is invertible.
The idea for n = 2 is that since the eigenvalues are distinct, corresponding
eigenvectors cannot be proportional. This idea can be extended to the n×n
case, but we won’t give the proof since we will prove a more general fact in
the next section.

Consider another example.

Example 9.10. The counting matrix

C =




1 2 3
4 5 6
7 8 9




has characteristic polynomial pC(x) = −λ3 + 15λ2 − 21λ, hence eigenvalues
0 and 1

2 (15 ±
√

151). The eigenvalues of C are real and distinct, hence C is
diagonalizable over R.
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A simple way of determining whether A has distinct eigenvaluesis to
apply the repeated root test. A polynomial p(x) has a double root if and
only if p(x) and p′(x) have a common root. Thus we get

Proposition 9.10. A square matrix A has non repeated eigenvalues exactly
when pA(λ) and p′A(λ) have no common roots.

Example 9.11. By the previous example, the characteristic polynomial
of the counting matrix C is pC(λ) = −λ3 + 15λ2 − 21λ. Since p′C(λ) =
−3(λ2 − 10λ + 21) has roots λ = 3, 7, pC(λ) has simple roots since neither
3 nor 7 is one of its roots. Thus, C has distinct eigenvalues.
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Exercises

Exercise 9.22. Diagonalize the following matrices if possible:

A =

(
1 −1
−1 1

)
, B =




1 0 1
0 1 0
1 0 1


 , C =




−3 0 −4 −4
0 2 1 1
4 0 5 4
−4 0 −4 −3


 .

Exercise 9.23. Decide whether the Good Will Hunting matrix (cf Exercise
9.3) can be diagonalized.

Exercise 9.24. Suppose A and B are similar and v is an eigenvector of A.
Find an eigenvector of B.

Exercise 9.25. Let A be a real 3× 3 matrix so that A and −A are similar.
Show that

(a) det(A) = Tr(A) = 0,

(b) 0 is an eigenvalue of A, and

(c) if some eigenvalue of A is non-zero, then A is diagonalizable over C.

Exercise 9.26. Find an example of two real matrices which have the same
characteristic polynomial but which are not similar.

Exercise 9.27. A 4×4 matrix has eigenvalues ±1, trace 3 and determinant
0. Can A be diagonalized?

Exercise 9.28. Let A be a 3 × 3 matrix whose characteristic polynomial
has the form −x3 + 7x2 − bx + 8. Suppose that the eigenvalues of A are
integers.

(i) Find the eigenvalues of A.

(ii) Find the value of b.

Exercise 9.29. What is the characteristic polynomial of A3 in terms of
that of A?

Exercise 9.30. Diagonalize J =

(
0 1
−1 0

)
. More generally do the same for

Rθ for all θ 6= 0.

Exercise 9.31. Let A =

(
a b
c d

)
, where a, b, c, d are all positive real num-

bers. Show that A is diagonalizable.
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Exercise 9.32. Suppose A is the matrix in Exercise 9.31. Show that A has
an eigenvector in the first quadrant and another in the third quadrant.

Exercise 9.33. We say that two n×n matrices A and B are simultaneously
diagonalizable if they are diagonalized by the same matrix M . Show that
two simultaneously diagonalizable matrices A and B commute. That is,
show that AB = BA.

Exercise 9.34. This is the converse to Exercise 9.33. Suppose that two n×n
matrices A and B commute. Show that if both A and B are diagonalizable,
then they are simultaneously diagonalizable. That is, they share a common
eigenbasis.



251

9.4 Is Every Matrix Diagonalizable?

9.4.1 A Sufficient Condition

In the last section, we stated a result which says that every matrix with
distinct eigenvalues is diagonalizable. In particular, if A is a real n × n
matrix with n distinct real eigenvalues, then there is an eigenbasis of Rn

for A. If A has some complex entries or some complex eigenvalues, then we
are guaranteed an eigenbasis of Cn. Thus, to answer to the question in the
title, we have to see what happens when A has repeated eigenvalues. Before
considering that question, we will give a characterization of the matrices
are diagonalizable in terms of their eigenspaces. First, let us prove the
generalization of Proposition 9.9 mentioned above.

Proposition 9.11. Suppose A ∈ Fn×n, and λ1, . . . , λk ∈ F are distinct
eigenvalues of A. Choose an eigenpair (λi,wi) for each λi. Then the vectors
w1,w2, . . . ,wk are linearly independent. Moreover, if we choose a set of lin-
early independent eigenvectors in Eλi

for each λi, 1 ≤ i ≤ k, then the union
of these k linearly independent sets of eigenvectors is linearly independent.

Proof. Let W be the subspace of Fn spanned by w1,w2, . . . ,wk. We already
know from Chapter 5 that some subset of w1,w2, . . . ,wk gives a basis of W .
Hence, suppose, after renumbering that w1,w2, . . . ,wm is this basis, where
m ≤ k. If m < k, then we may write

wm+1 =
m∑

i=1

aiwi. (9.10)

Applying A, we obtain A(wm+1) =
∑m

i=1 aiA(wi), so

λm+1wm+1 =
m∑

i=1

aiλiwi. (9.11)

Multiplying (9.10) by λm+1 and subtracting (9.11), we obtain

m∑

i=1

(λm+1 − λi)aiwi = 0.

But w1,w2, . . . ,wm are independent, so (λm+1−λi)ai = 0 provided 1 ≤ i ≤
m. Since each (λm+1 − λi) 6= 0, all ai = 0, which contradicts the fact that
wm+1 6= 0. Thus m < k leads to a contradiction, so m = k, and we have
verified the first claim of the Proposition.
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To verify the second assertion, suppose we take a set of linearly indepen-
dent vectors from each Eλi

, and consider a linear combination of all these
vectors which gives 0. Let vi be the part of this sum which lies in Eλi

.
Hence we have that

k∑

i=1

vi = 0.

It follows from the what we just proved that each vi = 0. But this implies
that all the coefficients in the part of the sum involving vectors from Eλi

are zero. Since i is arbitrary, all coefficients in the original sum are zero,
proving the independence and finishing the proof.

Using this, we obtain a new characterization of the set of all diagonaliz-
able matrices.

Proposition 9.12. Let A be an n × n matrix over F, and suppose that
λ1, . . . λk are the distinct eigenvalues of A in F. Then A is diagonalizable
if and only if

k∑

i=1

dimEλi
= n. (9.12)

In that case,

Fn =

k∑

i=1

Eλi
,

where the above sum is direct. Moreover, if the equality (9.12) holds, the
union of the bases of the Eλi

is an eigenbasis of Fn.

Similarly, for a linear transformation T : V → V , where V is a finite
dimensional vector space , we obtain that a linear map T : V → V is
semi-simple if and only if dimV =

∑k
i=1 dimEλi

, where the Eλi
are the

eigenspaces of T .
Given Proposition 9.12, it is easy to deduce the diagonalizability of a

matrix with distinct eigenvalues, which was asserted in the last section.

Corollary 9.13. An n× n matrix A over F with n distinct eigenvalues in
F is diagonalizable.

9.4.2 Do Non-diagonalizable Matrices Exist?

We now have a criterion which can answer the question of whether non-
diagonalizable matrices can exist. Of course, we have seen that there exist
real matrices which aren’t diagonalizable over R since some of their eigen-
values are complex. But these matrices might all be diagonalizable over C.
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However, it turns out that there are matrices for which (9.12) isn’t satisfied.
Such matrices can’t be diagonalizable. In fact, examples are quite easy to
find.

Example 9.12. Consider the real 2 × 2 matrix

A =

(
0 1
0 0

)
.

Clearly pA(λ) = λ2, so 0 is the only eigenvalue of A. It is a repeated eigen-
value. Clearly, E0 = N (A) = Re1, i.e. E0 has dimension one. Therefore,
A cannot have two linearly independent eigenvectors hence cannot be di-
agonalized over R. For the same reason, it can’t be diagonalized over C

either.

Another way of seeing A isn’t diagonalizable is to suppose it is. Then
A = MDM−1 for some invertible M . Since A’s eigenvalues are both 0 and
two similar matrices have he same eigenvalues, D = diag(0, 0). This leads to
the equation A = MDM−1 = O, where O is the zero matrix. But A 6= O.

The above example is a nice illustration of a general fact, which we will
prove in due course. Namely, the multiplicity of an eigenvalue as a root of
the characteristic polynomial is at least the dimension of the corresponding
eigenspace.

On the other hand, having repeated eigenvalues does not preclude diag-
onalizability, which is the point of Proposition 9.12. Here is an example.

Example 9.13. Here is an example with repeated eigenvalues that is rather
fun to analyze. Let B denote the 4 × 4 all ones matrix

B =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

Now 0 is an eigenvalue of B. In fact, B has rank 1, so the system Bx = 0 =
0x has three linearly independent solutions. Thus the eigenspace E0 of 0 has
dimension 3. All eigenvectors for 0 satisfy the equation x1 + x2 + x3 + x4 =
0, which has fundamental solutions f1 = (−1, 1, 0, 0)T , f2 = (−1, 0, 1, 0)T ,
f3 = (−1, 0, 0, 1)T . Another eigenvalue can be found by inspection, if we
notice a special property of B. Every row of B adds up to 4. Thus, f4 =
(1, 1, 1, 1)T is another eigenvector for λ = 4. By Proposition 9.11, we now
have four linearly independent eigenvectors, hence an eigenbasis. Therefore
B is diagonalizable; in fact, B is similar to D = diag(0, 0, 0, 4).
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In the above example, the fourth eigenvalue of B was found by noticing
a special property of B. A more methodical way to find λ4 would have been
to use the fact that the trace of a square matrix is the sum of its eigenvalues.
Hence if all but one eigenvalue is known, the final eigenvalue can be found
immediately. In our case, three eigenvalues are 0, hence the fourth must be
the trace, which is 4.

Example 9.14. Recall the Good Will Hunting matrix

A =




0 1 0 1
1 0 2 1
0 2 0 0
1 1 0 0


 .

The characteristic polynomial of A is

p(λ) = λ4 − 7λ2 − 2λ+ 4.

This polynomial has −1 as a root and factors as

(λ+ 1)(λ3 − λ2 − 6λ+ 4).

We want to see if it’s possible to show that p(λ) has four real distinct roots.
It’s clear that −1 is not a root of q(λ) = λ3 − λ2 − 6λ+ 4 = 0 Now q′(λ) =
3λ2 − 2λ− 6 which has roots

r =
2 ±

√
76

6
.

Now

q(
2 +

√
76

6
) < 0,

while

q(
2 −

√
76

6
) > 0.

Since the points where q′ = 0 are not zeros of q, the graph of q crosses the
real axis at three distinct points. Therefore, A has 4 distinct real eigenvalues,
so it is diagonalizable.
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9.4.3 The Cayley-Hamilton Theorem

We conclude this section by stating a famous result called the Cayley-
Hamilton Theorem, which gives an important relationship between a matrix
and its characteristic polynomial.

Theorem 9.14. Let A be an n× n matrix over an arbitrary field F. Then
pA(A) = O. That is, A satisfies its own characteristic polynomial.

Note that by pA(A) = O we mean

(−1)nAn + (−1)n−1Tr(A)An−1 + · · · + det(A)In = O.

Note that here we have put A0 = In. For example, the characteristic polyno-
mial of the matrix J =

(
0 −1
1 0

)
is λ2 + 1. By Cayley-Hamilton, J 2 + I2 = O,

which is easy to check directly.
There is a deceptively attractive but definitely incorrect proof of Cayley-

Hamilton that goes as follows. Consider the characteristic equation det(A−
λIn) = 0 of A. If we set λ = A, then we get the equation det(A − A) = 0,
which is obviously valid. Hence A satisfies its own characteristic equation.
Be sure to find the flaw in this proof?

We can outline a correct proof if F = R or C, but we won’t be able to
give all the details. We will however give a complete proof in Chapter ??.
The first thing to notice is that if A is diagonal, say A = diag(d1, . . . , dn),
then pA(A) = diag(p(d1), p(d2), . . . , p(dn)). But the diagonal entries of a
diagonal matrix are the eigenvalues, so the conclusion pA(A) = O is clear.
Now if A is diagonalizable, say A = MDM−1, then

pA(A) = pA(MDM−1) = MpA(D)M−1 = MOM−1 = O.

Thus we are done if A is diagonalizable. To finish the proof, one can use
limits. If A is any matrix over R or C, one can show there is a sequence of
diagonalizable matrices Ak such that

lim
k→∞

Ak = A.

Letting pk denote the characteristic polynomial of Ak, we then have

lim
k→∞

pk(Ak) = p(A) = O

since each pk(Ak) = O.
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Exercises

Exercise 9.35. Suppose Q is an orthogonal matrix that is diagonalizable
(over R), say Q = PDP−1. Show that the diagonal matrix D has only ±1
on its diagonal.

Exercise 9.36. Determine which of the following matrices is diagonalizable
over the reals:

A =




1 0 −1
−1 1 1
2 −1 −2


 , B =




0 1 1
1 0 1
1 −1 1


 , C =




2 −1 1
1 0 1
1 −1 −2


 .

Exercise 9.37. Does

C =




1 0 −1
−1 1 1
2 −1 −2




have distinct eigenvalues? Is it diagonalizable?

Exercise 9.38. Show from first principals that if λ and µ are distinct eigen-
values of A, then Eλ ∩Eµ = {0}.
Exercise 9.39. Find an example of a non-diagonalizable 3 × 3 matrix A
with real entries which is not upper or lower triangular such that every
eigenvalue of A is 0.

Exercise 9.40. Recall that a square matrix A is called nilpotent if Ak = O
for some integer k > 0.

(i) Show that if A is nilpotent, then all eigenvalues of A are 0.

(ii) Prove that a nonzero nilpotent matrix cannot be diagonalizable.

(iii) Show, conversely, that if all the eigenvalues of A are 0, then A is
nilpotent. (Hint: Consider the characteristic polynomial.)

Exercise 9.41. Show that if an n × n matrix A is nilpotent, then in fact
An = O.

Exercise 9.42. Let A be a 3 × 3 matrix with eigenvalues 0,0,1. Show that
A3 = A2.

Exercise 9.43. Let A be a 2 × 2 matrix so that A2 + 3A+ 2I2 = O. Show
that −1,−2 are eigenvalues of A.

Exercise 9.44. Suppose A is a 2 × 2 matrix so that A2 + A − 3I2 = O.
Show that A is diagonalizable.
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Exercise 9.45. Let U be an upper triangular matrix over F with distinct
entries on its diagonal. Show that U is diagonalizable.

Exercise 9.46. Suppose that a 3 × 3 matrix A with real entries satisfies
the equation A3 +A2 −A+ 2I3 = O.

(i) Find the eigen-values of A.

(ii) Is A diagable? Explain.

(iii) How do you know A isn’t symmetric.

Exercise 9.47. Next, let U be an arbitrary upper triangular matrix over F

possibly having repeated diagonal entries. Show by example that U may not
be diagonalizable, and give a condition to guarantee it will be diagonalizable
without changing any diagonal entries.

Exercise 9.48. Give the proofs of Corollary 9.13 and Proposition 9.12.

Exercise 9.49. Prove the Cayley-Hamilton Theorem for diagonal matrices
A by proving that if p(x) is any polynomial, then

p(diag(λ1, λ2, . . . , λn)) = diag(p(λ1), p(λ2), . . . , p(λn)).

Deduce the theorem for all diagonalizable matrices from this.

Exercise 9.50. Prove the Cayley-Hamilton Theorem for upper triangular
matrices, and then deduce the general case from Schur’s Theorem (which
you will have to look up).

Exercise 9.51. The following proof of the Cayley-Hamilton Theorem ap-
pears in at least one algebra book. Since setting λ = A in p(λ) = det(A −
λIn) gives det(A − AIn) = 0, it follows that p(A) = O. Comment on this
”proof”.

Exercise 9.52. Use the Cayley-Hamilton Theorem to deduce that a 2 × 2
matrix A is nilpotent if and only if Tr(A) = det(A) = 0. Generalize this
result to 3 × 3 matrices.

Exercise 9.53. * Fill in the details of the proof of the Cayley-Hamilton
Theorem suggested above using sequences. That is, show that any matrix
is the limit of a sequence of diagonalizable matrices.
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9.5 Matrix powers and the exponential of a matrix

We now return to the topic of the powers of a square matrix A, expanding
somewhat on the remarks in §9.1. We will also extend the ordinary the
exponential function ex to be a function on Rn×n. We could also deal with
complex matrices, but some care must be taken in defining the derivative of
the exponential in the complex case. Thus we will omit it.

9.5.1 Powers of Matrices

Suppose A ∈ Rn×n can be diagonalized, say A = MDM−1. Then we saw
that for any k > 0, Ak = MDkM−1. For example:

(1) If A is a diagonalizable real matrix with non negative eigenvalues, then
A has a square root; in fact kth roots of A for all positive integers k
are given by A

1

k = MD
1

kM−1;

(2) If A is diagonalizable and none of the eigenvalues of A are 0, then the
negative powers of A are found from the formula A−k = MD−kM−1.
Here, A−k means (A−1)k.

(3) If all the eigenvalues λ of A satisfy 0 ≤ λ ≤ 1, then limm→∞Am exists,
and if no λ = 1, this limit is O.

We can in general obtain kth roots of a real matrix A as long as A is
diagonalizable. One can’t expect these matrices to be real however. For
example, if A is diagonalizable but has a negative eigenvalue, then A cannot
have any real square roots. However, these comments aren’t valid for non-
diagonalizable matrices.

9.5.2 The Exponential

Let A ∈ Rn×n. The exponential exp(A) of A is defined to be the matrix
obtained by plugging A into the usual exponential series

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + . . . .

Thus the exponential exp(A) of A is given by the infinite series

exp(A) = In +A+
1

2!
A2 +

1

3!
A3 + · · · = In +

∞∑

m=1

1

m!
Am. (9.13)
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It can be shown that for any A, every component of the exponential series
converges, a fact we will simply assume. The matrix exponential behaves
just like the ordinary exponential ex in a number of ways, but the identity
e(x+y) = exey no longer always holds. The reason for this is that although
real number multiplication is commutative, matrix multiplication definitely
isn’t. In fact, we have

Proposition 9.15. If AB = BA, then exp(A+B) = exp(A)exp(B).

If A is diagonalizable, then the matter of finding exp(A) is easily settled
by the following:

Proposition 9.16. Suppose A is a diagonalizable n×n matrix with eigen-
values λ1, . . . , λn, say A = Mdiag(λ1, λ2, . . . , λn)M

−1. Then

exp(A) = Mexp(D)M−1 = Mdiag(eλ1 , . . . , eλn)M−1.

In other words, if v1, . . . ,vn is an eigenbasis of Rn for A, then it is also an
eigenbasis for exp(A), and the eigenvector vi has eigenvalue eλi . Thus, for
each 1 ≤ i ≤ n,

exp(A)vi = eλivi.

In particular, if w =
∑n

i=1 aivi, then

exp(A)w =
n∑

i=1

aie
λivi.

9.5.3 Uncoupling systems

One of the main applications of the exponential is to solve first order linear
systems of differential equations. A typical application is the exponential
growth problem solved in calculus. Assume a(t) denotes the amount of a
substance at time t that obeys the law a′(t) = ka(t), where k is a constant.
Then a(t) = a0e

kt for all t, where a0 is the initial amount of a.
The general form of this problem is the first order linear system

d

dt
x(t) = Ax(t),

where A ∈Mn(R) and x(t) = (x1(t), . . . , xn(t))
T .

The geometric interpretation of this is that x(t) traces out a curve in
Rn, whose velocity vector at every time t is Ax(t). It turns out that to solve
this system, we consider the derivative with respect to t of exp(tA). First
notice that by Proposition 9.15,
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exp((s+ t)A) = exp(sA)exp(tA). Thus

d

dt
exp(tA) = lim

s→0

1

s
(exp((t+ s)A) − exp(tA))

= exp(tA) lim
s→0

1

s
(exp(sA) − In).

It follows from the definition of exp(tA) that

lim
s→0

1

s
(exp(sA) − In) = A,

so we have the (not unexpected) formula

d

dt
exp(tA) = exp(tA)A = Aexp(tA).

This implies that if we set x(t) = exp(tA)v, then

d

dt
x(t) =

d

dt
exp(tA)v = Aexp(tA)v = Ax(t).

Hence x(t) is a solution curve or trajectory of our given first order system.
Since x(0) = v is the initial value of x(t), it follows that the initial value of
the trajectory x(t) can be arbutrarily prescribed, so a solution curve x(t)
can be found passing through any given initial point x(0).

Example 9.15. Consider the system
(
x′

y′

)
=

(
2 1
1 2

)(
x
y

)
.

The matrix A =
(

2 1
1 2

)
can be written A = Mdiag(3, 1)M−1, so

exp(tA) = Mexp

(
3t 0
0 t

)
M−1 = M

(
e3t 0
0 et

)
M−1.

Therefore, using the value of M already calculated, our solution to the
system is

x(t) =

(
x(t)
y(t)

)
=

1

2

(
1 1
1 −1

)(
e3t 0
0 et

)(
1 1
1 −1

)(
x(0)
y(0)

)
.

The final expression for x(t) is therefore
(
x(t)
y(t)

)
=

1

2

(
e3t + et e3t − et

e3t + et e3t − et

)(
x(0)
y(0)

)
.
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If the matrix A is nilpotent, then the system x′(t) = Ax(t) is still solved
by exponentiating tA. The only difference is that A is no longer diagonaliz-
able unless A = O. However, since A is nilpotent, Ak = O for some k > 0,
and so the infinite series is actually a finite sum. More generally, if A is an
arbitrary real n×n matrix, it turns out that A is similar to a matrix of the
form D + N , where D is diagonal, N is upper triangular and DN = ND.
But then the exponential of D+N is easily computed from Proposition 9.15.
Namely,

exp(D +N) = exp(D)exp(N).

This factorization A = P (D+N)P−1 is known as the Jordan Decomposition

of A. We will establish the existence of the Jordan decomposition in Chapter
??.

Example 9.16. Consider the system
(
x′

y′

)
=

(
1 1
0 1

)(
x
y

)
.

Notice that the matrix of the system is in the D +N form above. Now

exp(t

(
1 1
0 1

)
) = exp(t

(
1 0
0 1

)
)exp(t

(
0 1
0 0

)
).

Thus

exp(t

(
1 1
0 1

)
) =

(
et 0
0 et

)(
1 t
0 1

)
=

(
et tet

0 et

)
.

Finally, (
x
y

)
=

(
et tet

0 et

)(
x0

y0

)
,

where the point

(
x0

y0

)
gives the initial position of the solution. Therefore

x(t) = x0e
t + y0te

t

y(t) = y0e
t

Exercises

Exercise 9.54. Find all possible square roots of the following matrices if
any exist: (

2 1
1 2

)
,

(
1 2
2 1

)
,

(
1 −1
1 −1

)
.



262

Exercise 9.55. Do the same as in Problem 9.54 for the 4×4 all 1’s matrix.

Exercise 9.56. Calculate the exponentials of the matrices of Problem 9.54.
What are the eigenvalues of their exponentials?

Exercise 9.57. Show that if A is diagonalizable, then det(exp(A)) = eTr(A).
Conclude that det(exp(A)) > 0 for any diagonalizable A.

Exercise 9.58. Verify that exp(A + B) = exp(A)exp(B) if A and B are
diagonal matrices. Use this formula to find the inverse of exp(A) for any
square matrix A over R.

Exercise 9.59. Recall that a square matrix A is called nilpotent if Ak = O
for some integer k > 0. Find a formula for the exponential of a nilpotent
3 × 3 matrix A such that A2 = O.

Exercise 9.60. Solve the first order system x′(t) = Ax(t) with x(0) =
(a, b)T for the following matrices A:

(
1 2
2 1

)
,

(
0 1
1 0

)
,

(
1 −1
1 −1

)
.

For the last matrix, you may need to compute the exponential directly.

Exercise 9.61. Compute the nth power of all the matrices of Exercise 2
and also the 3 × 3 all 1’s matrix.
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Chapter 10

The Orthogonal Geometry of
Rn

As the title indicates, the goal of this chapter is to study some geometric
problems arising in Rn. The first of these problems is to find the minimal
distance from a point of Rn to a subspace. This is called the least squares
problem. We will also do some preparation for the Principal Axis Theorem,
which is proved in the next chapter. In particular, we will show that every
subspace of Rn has an orthonormal basis. The last section is devoted to
studying the rotations of R3 and to giving examples of rotation groups.

10.1 Orthogonal Projection on a Subspace

Let us start with an elementary problem. Suppose W is a subspace of Rn

and x ∈ Rn. What is the formula for the distance from from x to W ?
Note that by the distance from x to W , we mean the minimum distance
d(x,w) = |x−w| as w varies over W .

This is a problem we solved geometrically for a plane through the origin
in R3. Recall that the distance d from (x0, y0, z0) ∈ R3 to the plane ax +
by + cz = 0 is given by

d =
|ax0 + by0 + cz0|
(a2 + b2 + c2)1/2

. (10.1)

What this formula represents of course is the length of the projection of
(x0, y0, z0) onto the line through the origin normal to the plane.

Before taking this up, we will recall the notion of the orthogonal com-
plement of a subspace.
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10.1.1 The orthogonal complement of a subspace

Consider a subspace W of Rn. Recall from Example 5.24 that the orthogonal

complement of W is the subspace W⊥ of Rn defined as the set of all vectors
v ∈ Rn which are orthogonal to every vector in W . That is,

W⊥ = {v ∈ Rn | v ·w = 0 ∀ w ∈W} (10.2)

Note that W⊥ is defined whether or not W is a subspace, and W⊥

is always a subspace of Rn. This is easy to visalize in terms of matrices.
Suppose W is the column space of an n × k real matrix A. Then clearly
W⊥ = N (AT ). In other words, ignoring the distinction between row and
column vectors, it is clear that the row space and null space of a matrix
are the orthogonal complements of one another. Applying our old principle
that the number of variables in a homogeneous linear system is the number
of corner variables plus the number of free variables, and using the fact that
A and AT have the same rank, we thus see that

dim(W ) + dim(W⊥) = n.

This leads to a basic result.

Proposition 10.1. Let W be a subspace of Rn and W⊥ its orthogonal
complement. Then

(i) W ∩W⊥ = {0}.
(ii) Every x ∈ Rn can be orthogonally decomposed in exactly one way as

x = w+y, where w ∈W and y ∈W⊥. In particular, W ⊕W⊥ = Rn.

(iii) (W⊥)⊥ = W .

Proof. Part (i) follows immediately from the fact that if v ∈ W ∩ W ⊥,
then v · v = 0, so v = 0. The proof of (ii) is harder. Let a basis for
W be w1, . . . ,wr and a basis for W⊥ be v1, . . . ,vs. We showed above
that r + s = n, so all we have to show is that w1, . . . ,wr,v1, . . . ,vs are
independent since n independent vectors in Rn form a basis. But we know
from (i) that if we have a sum w+v = 0, where w ∈W , and v ∈W ⊥, then
w = v = 0. Thus if a linear combination

∑
aiwi +

∑
bjvj = 0,

then the ai are all 0 and similarly, the bj are all 0. Therefore we have the
independence so W ⊕W⊥ = Rn.

We leave (iii) as an exercise.
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Definition 10.1. Let x = w + y as in Proposition10.1 (ii). Then we’ll call
w the component of x in W .

10.1.2 A Fundamental Subspace Problem

We can now solve the following fundamental
Problem: Let W be a subspace of Rn, and let x ∈ Rn be arbitrary. Find
the minimum distance d(x,y), where y is an arbitrary vector in W . The
minimum is called the distance from x to W .

Observe that minimizing the distance d(x,y) is equivalent to minimizing
the sum of squares |x − y|2. This is a convenient simplification so that we
can use the Pythagorean property of the inner product. By part (ii) of
Proposition 10.1, we may break x down uniquely as x = w+v with w ∈W
and v ∈W⊥. Then for any y ∈W , (x −w) · (w − y) = 0, so

|x − y|2 = |(x −w) + (w − y)|2
= |x−w|2 + |w − y|2
≥ |x−w|2.

Thus the minimum distance is realized by the component w of x in W .

Proposition 10.2. The distance from x ∈ Rn to the subspace W is |x−w|,
where w is the component of x in W . Put another way, the distance from
x to W is the length of the component of x in W⊥.

10.1.3 The Projection on a Subspace

In view of our analysis of the above least squares problem, it is clear that
the next step is to find an expression for the component w of x in W . Let
us begin with the following definition.

Definition 10.2. The orthogonal projection of Rn onto a subspace W is
the transformation PW : Rn → W defined by PW (x) = w, where w is the
component of x in W .

Thus PW (x) is the unique solution of the least squares problem for the
subspace W . Usually we will simply call PW the projection of Rn onto W .

We now derive a method for finding PW . First, choose a basis of W , say
w1, . . . ,wm, and put A = (w1 · · · wm), so that W is the column space
col(A) of A. Note that A ∈ Rn×m. Then w satisfies two conditions called
the normal equations:

for some y ∈ Rm, w = Ay and AT (x −w) = 0. (10.3)
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Now the first normal equation says w is a linear combination of w1, . . . ,wm,
while the second says that x − w ∈ W⊥, since the rows of AT span W .
Proposition10.1 (ii) implies the normal equations can be solved. The only
question is whether the solution can be expressed elegantly (and usefully).

Multiplying the normal equations by AT and combining leads to the
single equation

ATx = ATw = ATAy.

We now call on the fact, left as an exercise (see Exercise 10.13), that if A
is a real matrix with independent columns, then ATA is invertible. Given
this, we can uniquely solve for y. Indeed,

y = (ATA)−1ATx.

Multiplying by A, we get w in the sought after elegant form:

w = Ay = A(ATA)−1ATx. (10.4)

Therefore,
PW (x) = A(ATA)−1ATx. (10.5)

Let’s next consider some examples.

Example 10.1. Let W be the line in Rn spanned by w. Here the projection
PW is simply

PW = w
(
wTw

)−1
wT .

This is a formula we already saw in Chapter 1.

Example 10.2. Let

A =




1 −1
2 1
1 0
1 1


 .

Then A has rank 2 and we find by direct computation that

PW = A(ATA)−1AT =
1

17




14 1 5 4
1 11 4 7
5 4 3 1
4 7 1 6


 .

Example 10.3. Suppose W = Rn. Then clearly, PW = In. In this case, A
has rank n, so A and AT are both invertible. Thus PW = A(ATA)−1AT =
A(A−1(AT )−1)AT = In as desired.
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The reader has undoubtedly noticed that the wild card is the choice of
A. Some choices of A are more natural than others. We will see in the next
section that an optimal choice of A is achieved by making the columns of A
orthonormal. The important thing, however, is that we now have an explicit
method for finding the component PW (x) of any x ∈ Rn in W .

The following Propositionsummarizes the basic properties of projections.

Proposition 10.3. The projection PW : Rn → W is a linear transforma-
tion, and

x = PW (x) + (x − PW (x))

is the orthogonal sum decomposition of x into the sum of a component in
W and a component in W⊥. In addition, PW has the following properties:

(i) if w ∈W , then PW (w) = w;

(ii) PWPW = PW ; and finally,

(iii) the matrix A(ATA)−1AT of PW is symmetric.

Proof. The fact that PW is linear follows from the fact that it is defined by
the matrix A(ATA)−1AT . We already showed that x = PW (x)+(x−PW (x))
is the unique orthogonal sum decomposition of x, so it remains to show (i)-
(iii). If w ∈ W , then w = w + 0 is an orthogonal sum decomposition
of w with one component in W and the other in W⊥, so it follows from
the uniqueness of such a decomposition that PW (w) = w. (One can also
show A(ATA)−1ATw = w, but this is a little harder.) Part (ii) follows
immediately from (i) by setting w = PW (x). We leave part (iii) as an
exercise.

In the next section, we will express PW in terms of an orthonormal basis.
This expression is theoretically much more important, because it is tied up
with Fourier series.
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Exercises

Exercise 10.1. Find:

(i) the component of x = (1, 1, 2)T on the line R(2,−1, 0)T , and

(ii) the minimum distance from x = (1, 1, 2)T to this line.

Exercise 10.2. Find:

(i) the component of x = (1, 1, 2, 1)T in the subspace of R4 spanned by
(1, 1,−1, 1)−T and (2,−1, 0, 1)T , and

(ii) the minimum distance from x = (1, 1, 2, 1)T to this subspace.

Exercise 10.3. What are the eigenvalues of a projection PW ?

Exercise 10.4. True or False: The matrix of a projection can always be
diagonalized, i.e. there always exists an eigenbasis of Rn for every PW .

Exercise 10.5. Suppose n = 3 and W is a line or a plane. Is it True or
False that there exists an orthonormal eigenbasis for PW ? See §10.2 for the
definition of an orthonormal basis.

Exercise 10.6. Finish the proof of Proposition10.3 by showing that every
projection matrix is symmetric.

Exercise 10.7. Diagonalize (if possible) the matrix PW in Example 10.6.

Exercise 10.8. Recall from (10.13) that the reflection Hu through the
hyperplane orthogonal to a unit vector u ∈ Rn is given by the formula
Hu = In − 2PW , where W = Ru (so H = W⊥). Find the matrix of Hu in
the following cases:

(a) u is a unit normal to the hyperplane x1 +
√

2x2 + x3 = 0 in R3.

(b) u is a unit normal to the hyperplane x1 + x2 + x3 + x4 = 0 in R4.

Exercise 10.9. Show that the matrix Hu defined in (10.13) is a symmetric
orthogonal matrix such that Huu = −u and Hux = x if x · u = 0.

Exercise 10.10. Let Q be the matrix of the reflection Hb.

(a) What are the eigenvalues of Q?

(b) Use the result of (a) to show that det(Q) = −1.

(c) Show that Q can be diagonalized by explicitly finding an eigenbasis
of Rn for Q.



269

Exercise 10.11. Prove the Pythagorean relation used to prove Proposition
10.1. That is, show that if p · q = 0, then

|p + q|2 = |p − q|2 = |p|2 + |q|2.

Conversely, if this identity holds for p and q, show that p and q are orthog-
onal.

Exercise 10.12. Let A be the matrix



1 2
2 1
1 1
0 1


 .

(i) Find the projection PW of R4 onto the column space W of A.

(ii) Find the projection of (2, 1, 1, 1)T onto W .

(iii) Find the projection of (2, 1, 1, 1)T onto W⊥.

Exercise 10.13. Suppose A ∈ Rn×m has rank m. Show that ATA has rank
m. (Hint: consider xTATAx for any x ∈ Rm.)

Exercise 10.14. Show that the result of Exercise 10.13 does not always
hold if R is replaced with Z2 (or another Zp) by giving an explicit example
of a 3 × 2 matrix A over Z2 of rank 2 so that ATA has rank 0 or 1.

Exercise 10.15. Suppose H is a hyperplane in Rn with normal line L.
Interpret each of PH + PL, PHPN and PNPH by giving a formula for each.
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10.2 Orthonormal Sets

In this section, we will study properties of orthonormal bases and give some
basic applications, such as the defining pseudo-inverse of a matrix, which is
based on the subspace problem we solved in the previous section. We will
also use orthonormal bases to obtain another expression for the projection
PW .

10.2.1 Orthonormal Bases

We begin with the definition.

Definition 10.3. A set O of unit vectors in Rn is called orthonormal if any
two distinct elements of O are orthogonal. An orthonormal basis of Rn is
a basis which is orthonormal. More generally, an orthonormal basis of a
subspace W of Rn is a basis of W which is orthonormal.

Proposition 10.4. The vectors u1,u2, . . . ,un give an orthonormal basis of
Rn if and only if the matrix U = (u1 u2 . . .un) is orthogonal.

Proof. This is clear since UTU = In if and only if (uTi uj) = (ui·uj) = In.

Proposition 10.5. Any orthonormal set in Rn is linearly independent.
In particular, an orthonormal subset of Rn cannot contain more than n
elements. In addition, if W is a subspace of Rn such that dimW = m, then
any orthonormal set in W having m elements is an orthonormal basis of
W .

Proof. We leave this is an exercise.

We now establish a basic fact: every subspace of Rn admits an orthonor-
mal basis.

Proposition 10.6. Every non trivial subspace of Rn admits an orthonormal
basis.

Proof. We prove this by induction on dimW . If dimW = 1, the result is
clear since either vector in W of length one is an orthonormal basis. Thus
suppose dimW = m > 1 and the result is true for any subspace of W of
dimension m − 1. Let u be any unit vector in W and let H = (Ru)⊥.
Then dimH = m − 1, so we know H admits an orthonormal basis. But
this orthonormal basis, together with W give m orthonormal elements of
W , hence, by the previous Proposition, are an orthonormal basis of W .

Example 10.4 (Some orthonormal bases). Here are some examples.
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(a) The standard basis e1, . . . , en is an orthonormal basis of Rn.

(b) u1 = 1√
3
(1, 1, 1)T , u2 = 1√

6
(1,−2, 1)T , u3 = 1√

2
(1, 0,−1)T are an

orthonormal basis of R3. The first two basis vectors are an orthonormal
basis of the plane x− z = 0.

(c) The columns of an orthogonal matrix Q are an orthonormal basis of
Rn. Using the fact that the matrix

Q =
1

2




1 1 1 1
−1 1 −1 1
1 −1 −1 1
1 1 −1 −1


 ,

is orthogonal, can you produce two distinct orthonormal bases of R4.

10.2.2 Fourier Coefficients and the Projection Formula

Suppose u1,u2, . . . ,un is an orthonormal basis of Rn and w ∈ Rn. How do
we find the scalars a1, . . . , an such that w = a1u1 + · · · + anun? Of course
we know that the ai can be found by solving a system of n equations in n
variables. However, as our next Propositionshows, there is a much neater
solution.

Proposition 10.7 (Projection Formula). Suppose u1,u2, . . . ,un is any
orthonormal basis of Rn, and let w ∈ Rn be arbitrary. Then w has the
unique expansion

w =
n∑

1=i

(w · ui)ui =
n∑

1=i

(wTui)ui. (10.6)

Before giving the proof, let’s make some commments. First of all, the
coefficients in (10.6) have a particularly simple form. In fact, we make the
following definition.

Definition 10.4. The scalars w · ui = wTui are called the Fourier coeffi-

cients of w with respect to the orthonormal basis u1,u2, . . . ,un.

The reason this result is called the projection formula for Rn is that it
says every vector in Rn can be expressed as the sum of its projections on
any given orthonormal basis.

The projection formula can also be stated in a matrix form, namely

In =
n∑

1=i

uiu
T
i , (10.7)
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which says the sum of the projections on an orthonormal basis is the identity.

Example 10.5. For example,

(1, 0, 0, 0) =
1

2
(1, 1, 1, 1)− 1

2
(−1, 1,−1, 1)+

1

2
(1,−1,−1, 1)+

1

2
(1, 1,−1,−1).

Let us now prove the formula.

Proof. To begin, write

w =

n∑

1=i

xiui.

To find the xi, consider the system

Qx = w,

where Q = (u1 u2 . . .un). Since Q is orthogonal, the unique solution is

x = QTw.

But this that says that for each i,

xi = uTi w = ui · w = w · ui,

which is the desired formula.

More generally, suppose W is a subspace of Rn with an orthonormal
basis u1,u2, . . . ,um. By a similar argument, each w ∈ W has the unique
expansion

w =

m∑

1=i

(w · ui)ui. (10.8)

To see this, first write

w =
m∑

1=i

xiui,

and repeat the argument above.
I claim that the formula for the projection PW is

PW (x) =

m∑

i=1

(x · ui)ui. (10.9)

There are two ways to show this. The first is to use the fact that PW (x) is
characterized by the property that x−PW (x) ∈W⊥. But y = x−∑m

1=i (x ·
ui)ui ∈W⊥. Indeed, y · ui = 0 for each i. Hence PW (x) = y.
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The second proof of (10.9) is to calculate the matrix of PW directly,
using our orthonormal basis. That is, suppose Q = (u1 · · ·um). Since
col(Q) = W , PW = Q(QTQ)−1QT . But since u1, . . . ,um are orthonormal,
QTQ = Im (check this), so PW = QImQ

T = QQT .
Hence we have proven

Proposition 10.8. Let u1, . . . ,um be an orthonormal basis for a subspace
W of Rn. Then the projection PW : Rn →W is given by

PW (x) =
m∑

i=1

(x · ui)ui. (10.10)

If Q ∈ Rn×m is the matrix Q = (u1 · · · um) with orthonormal columns,
then

PW = QQT . (10.11)

Put another way,

PW =

m∑

i=1

uiu
T
i . (10.12)

Equation (10.11) is the optimal expression for PW we mentioned above.

Example 10.6. Let W = span{(1, 1, 1, 1)T , (1,−1,−1, 1)T }. To find the
matrix of PW the old fashioned way, we would compute PW (ei) for i =
1, 2, 3, 4. Observe that u1 = 1/2(1, 1, 1, 1)T and u2 = 1/2(1,−1,−1, 1)T are
an orthonormal basis of W . Now, by a straightforward computation,

PW (e1) =
1

2
(1, 0, 0, 1)T , PW (e2) =

1

2
(0, 1, 1, 0)T .

By inspection, PW (e3) = PW (e2) and PW (e4) = PW (e1). Hence the matrix
A of PW is

A =
1

2




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 .

The simpler method would have been to calculate QQT , where Q = (u1 u2).
Now

QQT = 1/4




1 1
1 −1
1 −1
1 1



(

1 1 1 1
1 −1 −1 1

)
,

which of course gives the same result as the old fashioned method, but more
efficiently.
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The projection onto a hyperplane W in Rn with unit normal u 6= 0 has
the form

PW (x) = (In − uuT )x.

This shows that to find PW , one doesn’t need an orthonormal basis for W
as long as an orthonormal basis for W⊥ is given. This makes computing
reflections a simple matter. Using the same reasoning as in Chapter 1, the
reflection through a hyperplane W is the linear transformation

Hu = In − 2Pu, (10.13)

where u is a unit vector in the line W⊥. Note Hu(u) = −u and Hu(w) = w
for all w ∈ W . That is, Hu has the properties expected of a reflection. We
leave it as an exercise to show that Hu is a symmetric orthogonal matrix.

The notion of Fourier coefficients and orthogonal projections are impor-
tant in infinite dimensional situations also. For example, recall that C[a, b]
is an inner product space with the inner product

(f, g) =

∫ b

a
f(t)g(t)dt.

A set S of functions in C[a, b] is orthonormal if for any f, g ∈ S,

(f, g) =

{
0 if f 6= g
1 if f = g

The formula for projecting C[a, b] onto the subspace W spanned by a finite
set of functions is exactly as given above, provided an orthonormal basis
of W has been found. The next Section is devoted to describing a natural
method for producing such an orthonormal basis. Before that, however, we
give some further considerations on the method of least squares.

10.2.3 The Pseudo-Inverse and Least Squares

Suppose A ∈ Rn×m has independent columns, and W denotes the column
space of A. Then the matrix A+ = (ATA)−1AT is called the pseudo-inverse

of A. If m = n so that A is square, then A and AT are both invertible, and
A+ = A−1. In general, A+ is always a left inverse of A. That is, A+A = Im.

To see a little better what is going on, look at A as a linear transformation
A : Rm → Rn. Since the columns of A are independent, N (A) = 0, hence
A is one to one. Thus, Ax = Ay implies x = y. By the result of Exercise
10.25, every one to one linear map T : Fm → Fn has at least one left inverse
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B : Fn → Fm, which is also linear. (Here, F is an arbitrary field.) However,
when m < n, the inverse left inverse B, turns out not to be unique.

The pseudo-inverse A+ is a choice of left inverse with certain useful
properties. In particular, not only is A+A = Im, but AA+ = PW . Thus
A+ solves an important least squares problem for W : given b ∈ Rn, find
x ∈ Rm so that Ax is the element of W nearest b. The solution is x = A+b,
and

Ax = AA+b = PW (b).

This amounts to a method for finding an optimal solution of an incon-
sistent system. The system Ax = b if inconsistent, can be replaced by the
nearest consistent system

Ax = AA+b = PW (b).

since PW (b) is the vector in the column space W of A nearest b, and luckily
we already know that the solution to this system is x = A+b. One can
easily envision that this idea has error correcting possibilities.

Notice that if the original system Ax = b had been consistent, that is
b ∈W , then first projecting wouldn’t have changed anything since PW (b) =
b.

Let’s consider a typical application. Suppose one has m points (ai, bi)
in R2, which represent the outcome of an experiment. Typically, one wants
to find the line y = cx + d fitting these points as well as possible. The
points (ai, bi) are all lined up (so to speak) if and only if bi = cai + d for all
i = 1, . . . ,m. When this happens, we get the matrix equation

Ax =




a1 1
a2 1
. . . . . .
am 1



(
c
d

)
=




b1
b2
. .
bm


 ,

with the unknowns c and d in the components of x. Obviously, the property
of being lined up has no real chance of happening, so we need to apply least
squares. Hence we replace b1, . . . , bm by c1, . . . , cm so that all (ai, ci) lie on
a line and the sum

m∑

i=1

(bi − ci)
2

is minimized. Using the pseudo-inverse A+, we get

x =

(
c
d

)
= A+b = (ATA)−1ATb.
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Thus, (
c
d

)
=

(∑
a2
i

∑
ai∑

ai m

)−1(∑
aibi∑
bi

)
.

Note that the 2 × 2 matrix in this solution is invertible just as long as we
don’t have all ai = 0 or all ai = 1.

The problem of fitting a set of points (ai, bi, ci) to a plane is similar.
The method can also be adapted to the problem of fitting a set of points
in R2 to a nonlinear curve, such as an ellipse. This is apparently the origin
of the least squares method. Its inventor, the renowned mathematician
Gauss, astonished the astronomical world in 1801 by his prediction, based
on approximately 9◦ of observed orbit, of the position where astronomers
would find an obscure astroid named Ceres a full 11 months after his initial
calculations had been made.

Least squares can apply to function spaces such as C[a, b] as well.

Example 10.7. Suppose we want to minimize the integral
∫ 1

−1
(cos x− (a+ bx+ cx2))2dx.

The solution proceeds exactly as in the Euclidean situation. The problem
is to minimize the square of the distance from the function cos x on [−1, 1]
to the subspace of C[−1, 1] spanned by 1, x and x2. We first apply Gram-
Schmidt to 1, x, x2 on [−1, 1] to obtain orthonormal polynomials f0, f1, f2

on [−1, 1], and then compute the Fourier coefficients of cos x with respect
to the fi. Clearly f0(x) = 1√

2
. Since x is odd and the interval is symmetric

about the origin, (x, f0) = 0. Hence

f1(x) =
x√

(x, x)
=

√
2

3
x.

To get f2, we calculate x2 − (x2, f0)f0 − (x2, f1)f1 which turns out to be
x2 − 1

3 . Computing (x2 − 1
3 , x

2 − 1
3), we get 8

45 , so

f2(x) =

√
45√
8

(x2 − 1

3
).

The Fourier coefficients (cos x, fi) =
∫ 1
−1 cos xfi(x)dx turn out to be 2 cos 1√

2
, 0

and
√

45√
8

(4 cos 1 − 8
3 sin 1). Thus the best least squares approximation is

cos 1 +

√
45√
8

(4 cos 1 − 8

3
sin 1)(x2 − 1

3
).
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The calculation was greatly simplified by the fact that [−1, 1] is sym-
metric about 0, since x and x2 are already orthogonal on [−1, 1], as are any
two polynomials such that one is even and the other odd.
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Exercises

Exercise 10.16. Expand (1, 0, 0)T using the orthonormal basis consisting of
the columns of the matrix Q of Example 10.4(b). Do the same for (1, 0, 0, 0)
using the rows of U .

Exercise 10.17. Find an orthonormal basis for the plane x− 2y + 3z = 0
in R3. Now extend this orthonormal set in R3 to an orthonormal basis of
R3.

Exercise 10.18. Prove Proposition10.5. That is, show that any orthonor-
mal set in Rn is linearly independent and cannot contain more than n ele-
ments. (For the first part, use the projection formula.)

Exercise 10.19. Let Q = (u1u2 · · ·un) ∈ O(n,R). If Q is not symmetric,
show how to produce a new orthonormal basis of Rn from the columns of Q.
What new orthonormal basis of R4 does one obtain from the orthonormal
basis in Example 10.4, part (c)?

Exercise 10.20. Assume u1,u2, . . . ,un is an orthonormal basis of Rn.
Show that In =

∑n
1=i uiu

T
i . This verifies the identity in (10.7).

Exercise 10.21. Let u be a unit vetor in Rn. Show that the reflection Hu

through the hyperplane H orthogonal to u admits an orthonormal eigenba-
sis.

Exercise 10.22. Find the line that best fits the points (−1, 1), (0, .5), (1, 2),
and (1.5, 2.5).

Exercise 10.23. Suppose coordinates have been put on the universe so
that the sun’s position is (0, 0, 0). Four observations of a planet orbiting the
sun tell us that the planet passed through the points (5, .1, 0), (4.2, 2, 1.4),
(0, 4, 3), and (−3.5, 2.8, 2). Find the plane (through the origin) that best
fits the planet’s orbit.

Exercise 10.24. Find the pseudo-inverse of the matrix




1 0
2 1
1 1


 .

Exercise 10.25. Let F be any field. Show that every one to one linear map
T : Fm → Fn has at least one left inverse B : Fn → Fm.



279

Exercise 10.26. Show that if A has independent columns, then any left
inverse of A has the form A+ + C, where CA = O. (Note: CA = O is
equivalent to col(A) ⊂ N (C). If CA = O, what is (A+ + C)A? And
conversely?)

Exercise 10.27. Suppose A has independent columns and let A = QR be
the QR factorization of A.

(i) Find the pseudo-inverse A+ of A in terms of Q and R; and

(ii) Find a left inverse of A in terms of Q and R.

Exercise 10.28. Consider the matrix

A =




1 2
0 1
−1 0


 .

(a) Find the pseudo-inverse A+ of A, and

(b) Compute the QR factorization of A and use the result to find another
left inverse of A.

Exercise 10.29. Let W be a subspace of Rn with basis w1, . . . ,wk and
put A = (w1 · · · wk). Show that ATA is always invertible. (HINT: It is
sufficient to show that ATAx = 0 implies x = 0 (why?). Now consider
xTATAx.)
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10.3 Gram-Schmidt and the QR Factorization

10.3.1 The Gram-Schmidt Method

We are next going to give a constructive method for finding orthonor-
mal bases. Given a subspace W with a basis w1, . . . ,wm, we will in
fact construct an orthonormal basis u1, . . . ,um of W such that for each
index for k = 1, . . . m,

span{u1, . . . ,uk} = span{w1, . . . ,wk}.

This is referred to as the Gram-Schmidt method (just Gram-Schmidt for
short). In fact, Gram-Schmidt is simply a repeated application of Proposi-
tion 10.3 (ii).

The reason we treat Gram-Schmidt in such detail is because it’s ap-
plicable in more general settings than Rn. That is, Gram-Schmidt gives
a constructive method for constructing an orthonormal basis of any finite
dimensional subspace W of an arbitrary inner product space, such as C[a, b].

Consider a subspace W of Rn having a basis w1, . . . ,wm. Recall
that no proper subset of this basis can span W . For each index j, let
Wj = span{w1, . . . ,wj}. Clearly Wj ⊂ Wj+1, dimWj = j and Wm = W .
Now proceed as follows: as w1 6= 0, we may put

u1 = |w1|−1w1.

Then u1 is an orthonormal basis of W1. Next, we need a non zero vector v2

in W2 orthogonal to u1. In fact, we can just let v2 be the component of w2

orthogonal to u1. Since w2 = PW1
(w2) + (w2 − PW1

) is the decomposition
of w2 into orthogonal components (by Proposition 10.3), we put

v2 := w2 − PW1
(w2) = w2 − (w2 · u1)u1.

Clearly v2 6= 0, so put
u2 := |v2|−1v2.

Then u1 and u2 are orthogonal, so they are an orthonormal basis of W2.
To continue, consider W3. Again, by Proposition 10.3, the vector

v3 = w3 − PW2
(w3) = w3 − (w3 · u1)u1 − (w3 · u2)u2

is orthogonal to W2. Moreover, v3 ∈ W3 and v3 6= 0 (why?). As above,
putting

u3 = |v3|−1v3.
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gives an orthonormal basis u1,u2,u3 of W3.
In general, if 1 < j ≤ m, suppose an orthonormal basis u1, . . . ,uj−1 of

Wj−1 is already given. Then vj := wj − PWj−1
(wj) is orthogonal to Wj−1

and vj 6= 0 since wj 6∈Wj−1. Hence,

vj = wj − (wj · u1)u1 − (wj · u2)u2 − · · · − (wj · uj−1)uj−1

and u1, . . .uj−1 give an orthonormal set in Wj. Thus putting

uj = |vj |−1vj

gives an orthonormal basis u1, . . . ,uj−1,ujof Wj since dimWj = j. Con-
tinuing in this manner, will yield an orthonormal basis u1, . . . ,um of W
with the desired property that the span of u1, . . . ,uj is Wj for each j.
Hence we have shown

Proposition 10.9. Suppose w1, . . . ,wm ∈ Rn are linearly independent.
Then Gram-Schmidt produces an orthonormal subset {u1, . . . ,um} ⊂W
such that

span{u1, . . . ,uk} = span{w1, . . . ,wk}
for each k with 1 ≤ k ≤ m.

10.3.2 The QR Decomposition

The Gram-Schmidt method can be stated in an alternate form which is quite
important in applied linear algebra, for example as the basis of the the QR
algorithm. This is known as the QR decomposition.

Suppose a matrix A = (w1 w2 w3) with independent columns is given.
Applying Gram-Schmidt to w1,w2,w3 gives an orthonormal basis u1,u2,u3

of the column space col(A). Moreover, by construction, the following matrix
identity holds:

(w1 w2 w3) = (u1 u2 u3)




w1 · u1 w2 · u1 w3 · u1

0 w2 · u2 w3 · u2

0 0 w3 · u3


 .

In general, if A = (w1 · · · wm) is an n × m matrix over R with linearly
independent columns, let Q = (u1 · · · um) be the associated n×m matrix
produced by the Gram-Schmidt method andR is them×m upper triangular
matrix of Fourier coefficients. Then

A = QR. (10.14)

Summarizing (and adding a bit more), we have
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Proposition 10.10. Every A ∈ Rn×m of rank m can be factored A = QR,
where Q ∈ Rn×m has orthonormal columns and R ∈ Rm×m is invertible
and upper triangular.

Proof. The only assertion we have left to show is that R is invertible. Thus
we have to show that wi ·ui 6= 0 for each i. But if wi ·ui = 0, then ui ∈Wi−i
(here we set W0 = {0} if i = 1). But the Gram-Schmidt method guarantees
this can’t happen, so we are through.

If A is square, then both Q and R are square. In particular, Q is an
orthogonal matrix. The factorization A = QR is the first step in the QR
algorithm, which is an important method for approximating the eigenvalues
of A. For more details, see Chapter 12.
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Exercises

Exercise 10.30. Let W ⊂ R4 be the span of (1, 0, 1, 1), (−1, 1, 0, 0), and
(1, 0, 1,−1).

(i) Find an orthonormal basis of W .

(ii) Expand (0, 0, 0, 1) and (1, 0, 0, 0) in terms of this basis.

Exercise 10.31. Let

A :=




1 −1 1
0 1 0
1 0 1
1 0 −1


 .

Find the QR factorization of A.

Exercise 10.32. Find a 4×4 orthogonal matrix Q whose first three columns
are the columns of A in the previous problem.

Exercise 10.33. What would happen if the Gram-Schmidt method were
applied to a set of vectors that were not lineary independent? In other
words, why can’t we produce an orthonormal basis from nothing?

Exercise 10.34. In the QR decomposition, we claimed that the diagonal
entries of R are non zero, hence R is invertible. Explain why they are indeed
non zero.

Exercise 10.35. Suppose A = QDQ−1 with Q orthogonal and D diagonal.
Show that A is always symmetric and that A is orthogonal if and only if all
diagonal entries of D are either

±1. Show that A is the matrix of a reflection Hu precisely when D =
diag(−1, 1, . . . , 1), that is exactly one diagonal entry of D is −1 and all
others are +1.

Exercise 10.36. How would you define the reflection H through a subspace
W of Rn? What properties should the matrix of H have? For example, what
should the eigenvalues of H be?

Exercise 10.37. Check directly that if R = In − PW , then R2 = R. Verify
also that the eigenvalues of R are 0 and 1 and that E0 = W and E1 = W⊥.

Exercise 10.38. Show that for any subspaceW of Rn, PW can be expressed
as PW = QDQT , whereD is diagonal andQ is orthogonal. Find the diagonal
entries of D, and describe Q.
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Exercise 10.39. Find an orthonormal basis of the plane W in R4 spanned
by (0, 1, 0, 1) and (1,−1, 0, 0). Do the same for W⊥. Now find an orthonor-
mal basis of R4 containing the orthonormal bases of W and W⊥.

Exercise 10.40. Let A have independent columns. Verify the formula
P = QQT using A = QR.

Exercise 10.41. Suppose A has independent columns and let A = QR be
the QR factorization of A.

(i) Find the pseudo-inverse A+ of A in terms of Q and R; and

(ii) Find a left inverse of A in terms of Q and R.

Exercise 10.42. The Gram-Schmidt method applies to the inner product
on C[a, b] as well.

(a) Apply Gram-Schmidt to the functions 1, x, x2 on the interval [−1, 1] to
produce an orthonormal basis of the set of polynomials on [−1, 1] of degree
at most two. The resulting functions P0, P1, P2 are the first three normalized
orthogonal polynomials of Legendre type.

(b) Show that your nth polynomial Pn satisfies the differential equation

(1 − x2)y′′ − 2xy′ + n(n+ 1)y = 0.

(c) The nth degree Legendre polynomial satisfies this second order differen-
tial equation equation for all n ≥ 0. This and the orthogonality condition
can be used to generate all the Legendre polynomials. Find P3 and P4

without GS.

Exercise 10.43. Using the result of the previous exercise, find the projec-
tion of x4 + x on the subspace of C[−1, 1] spanned by 1, x, x2.
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10.4 The group of rotations of R3

In crystallography, the study of the molecular structure of crystals, one
of the basic problems is to determine the set of rotational symmetries of
a particular crystal. More generally, one may also consider the problem
of determining the set of all rotational symmetries Rot(B) of an arbitrary
solid B in R3. The set of these symmetries is known as the rotation group

of B. One of the first problems which one thinks of is to find the rotation
groups of the Platonic solids in R3. A Platonic solid in R3 is a solid whose
boundary is made up of plane polygons in such a way that all the polygons
that make up the boundary are congruent. It has been known since the time
of the Greeks that there are exactly five Platonic solids: a cube, a regular
quadrilateral, a regular tetrahedron, a regular dodecahedron and a regular
icosahedron. We will take these up again in Chapter 16.

10.4.1 Rotations of R3

The first question we need to consider is what a rotation of R3 is. We will
use a characterization, due to Euler, that says that a rotation ρ of R3 is
characterized as a transformation R which fixes every point on some axis
through the origin, and rotates every plane orthogonal to this axis through
the same fixed angle θ.

Using this as the basic definition, we will now show that all rotations
are linear and describe them in terms of matrix theory. It is clear that a
rotation R of R3 about 0 should preserve lengths and angles. Recalling that
for any x,y ∈ R3,

x · y = |x||y| cos α,
we see that any transformation of R3 preserving both lengths and angles
also preserves the all dot products. Thus if ρ ∈ Rot(R3),

ρ(x) · ρ(y) = x · y. (10.15)

Therefore, every rotation is given by an orthogonal matrix, and we see that
Rot(R3) ⊂ O(3,R), the set of 3 × 3 orthogonal matrices.

We now need the following fact.

Proposition 10.11. A transformation ρ : Rn → Rn satisfying

ρ(x) · ρ(y) = x · y

for all x,y ∈ Rn is linear. Hence, ρ is given by an orthogonal linear trans-
formationand its matrix is orthogonal.
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Proof. If we can show ρ is linear, we will be done since from Proposition7.8,
the matrix of ρ is orthogonal. We have to show two things: for all x,y ∈ Rn,

|ρ(x + y) − ρ(x) − ρ(y)|2 = 0

and, in addition, for all r ∈ R,

|ρ(rx) − rρ(x)|2 = 0.

For the first,

|ρ(x+y)−ρ(x)−ρ(y)|2 = (ρ(x+y)−ρ(x)−ρ(y)) · (ρ(x+y)−ρ(x)−ρ(y)),

so expanding one gets

|ρ(x + y) − ρ(x) − ρ(y)|2 = ρ(x + y) · ρ(x + y)

−2ρ(x + y) · ρ(x) − 2ρ(x + y) · ρ(y) − ρ(x) · ρ(x) − ρ(y) · ρ(y).

But, by assumption, the right hand side is

(x + y) · (x + y) − 2(x + y) · x− 2(x + y) · y − x · x− y · y,

which, as it is easy to show, clearly 0. The proof that |ρ(rx) − rρ(x)|2 = 0
is similar and is left to the reader.

In particular, every rotation ρ of R3 is an orthogonal linear transforma-
tion. However, not every orthogonal 3 × 3 matrix gives rise to a rotation.
For example, a reflection of R3 through a plane through the origin clearly
isn’t a rotation, because if a rotation fixes two orthogonal vectors in R3,
it fixes all of R3. On the other hand, a reflection does fix two orthogonal
vectors without fixing R3. In fact, a reflection has eigenvalues1,1,-1, so the
determinant of a reflection is -1.

I claim that every rotation ρ of R3 has a positive determinant. Indeed, ρ
fixes a line L through the origin pointwise, so ρ has eigenvalue 1. Moreover,
the plane orthogonal to L is rotated through an angle θ, so there exists an
orthonormal basis of R3 for which the matrix of ρ has the form




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


 .

Hence det(ρ) = 1.
We now bring in SO(3). Recall that SL(3,R) denotes the set of all 3×3

real matrices of determinant 1. Put SO(3) = SL(3,R) ∩O(3,R). It follows
that Rot(R3) ⊂ SO(3). In fact, we will now show
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Theorem 10.12. Rot(R3) = SO(3).

Proof. We only need to show SO(3) ⊂ Rot(R3), i.e. every element of SO(3)
is a rotation. Note that by our definition, the identity transformation I3 is
a rotation. Namely I3 is the rotation which fixes any line L through 0 and
rotates every plane parallel to L⊥ through zero degrees.

I claim that if σ ∈ SO(3), then 1 is an eigenvalue of σ, and moreover, if
σ 6= I3, the eigenspace E1 of 1 has dimension 1. That is, E1 is a line.

We know that every 3 × 3 real matrix has a real eigenvalue, and we
also know that the real eigenvalues of an orthogonal matrix are either 1
or −1. Hence, if σ ∈ SO(3), the eigenvalues of σ are one of the following
possibilities:

(i) 1 of multiplicity three,

(ii) 1,−1, where −1 has multiplicity two, and

(iii) 1, λ, λ, where λ 6= λ (since the complex roots of the characteristic
polynomial of a real matrix occur in conjugate pairs).

Hence, 1 is always an eigenvalue of σ, so dimE1 ≥ 1. I claim that if
σ ∈ SO(3) and σ 6= I3, then dimE1 = 1. Indeed, dimE1 = 3, is impossible
since σ 6= I3. If dimE2 = 2, then σ fixes the plane E2 pointwise. Since σ
preserves angles, it also has to send the line L = E⊥

2 to itself. Thus L is an
eigenspace. But the only real eigenvalue different from 1 is -1, so if σ 6= I3,
there is a basis of R3 so that the matrix of σ is




1 0 0
0 1 0
0 0 −1


 .

But then det(σ) = −1, so dimE1 = 2 cannot happen. This gives the claim
that dimE1 = 1 if σ 6= I3.

Therefore σ fixes every point on a unique line L through the origin and
maps the plane L⊥ orthogonal to L into itself. We now need to show σ
rotates L⊥. Let u1,u2,u3 be an orthonormal basis in R3 such that u1,u2 ∈
L⊥ and σ(u3) = u3. Let Q = (u1 u2 u3). Since σu1 and σu2 are orthogonal
unit vectors on L⊥, we can choose an angle θ such that

σu1 = cos θu1 + sin θu2

and

σu2 = ±(sin θu1 − cos θu2).
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In matrix terms, this says

σQ = Q




cos θ ± sin θ 0
sin θ ∓ cos θ 0

0 0 1


 .

Since det(σ) = 1 and det(Q) 6= 0, it follows that

det(σ) = det




cos θ ± sin θ 0
sin θ ∓ cos θ 0

0 0 1


 = 1.

The only possibility is that

σ = Q




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Q−1. (10.16)

This tells us that σ rotates the plane L⊥ through θ, hence σ ∈ Rot(R3).
This completes the proof that SO(3,R) = Rot(R3).

We get a surprising conclusion.

Corollary 10.13. Rot(R3) is a matrix group. In particular, the composition
of two rotations of R3 is another rotation.

Proof. This is clear since SO(3) is a matrix group: the product of two el-
ements of SO(3) is another element of SO(3) and SO(3) is closed under
taking inverses. Indeed, SO(3) = SL(3,R) ∩ O(3,R), and, by the product
theorem for determinants, the product of two elements of SL(3,R) is an-
other element of SL(3,R). Moreover, we also know that the product of two
elements of O(3,R) is also in O(3,R).

The fact that the composition of two rotations is a rotation is anything
but obvious from the definition. For example, how does one describe the
unique line fixed pointwise by the composition of two rotations?

Notices that the matrix Q defined above may be chosen so as to be a
rotation. Therefore, the above argument gives another result.

Proposition 10.14. The matrix of a rotation σ ∈ SO(3) is similar via
another rotation Q to a matrix of the form




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .
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10.4.2 Rotation Groups of Solids

We begin with a definition.

Definition 10.5. Let S be a solid in R3. The rotation group of S is defined
to be the set of all σ ∈ SO(3) such that σ(S) = S. We denote the rotation
group of S by Rot(S).

Proposition 10.15. Let S be a solid in R3. If σ and τ are rotations of S,
then so are στ and σ−1. Hence the rotation group of S is a matrix group.

Proof. Clearly σ−1 ∈ SO(3). By Corollary 10.13, στ ∈ SO(3) as well. It’s
also clear that στ(S) = S. Since I3 ∈ Rot(S) as well, the proof is finished.

Example 10.8. Let S denote the cube with vertices at the points (A,B,C),
where A,B,C = ±1. Let us find Rot(S). Every rotation of R3 which maps
S to itself maps each one of its six faces to another face. Moreover, since any
face contains a basis of R3, each σ ∈ Rot(S) is completely determined by
how it acts on any face. Let F denote one of the faces. Given any one of the
six faces F ′ of S, there is at least one σ such that σ(F ) = F ′. Furthermore,
each face has four rotations, so by Proposition10.15, we have found that
rot(S) has at least 24 elements.

Now consider the 4 diagonals of S, i.e. the segments which join a vertex
(A,B,C) to (−A,−B,−C). Every rotation of S permutes these segments,
and two rotations which define the same permutation of the diagonals co-
incide (why?). Since the number of permutations of 4 objects is 4! = 24, it
follows that Rot(S) has at most 24 elements. Therefore, there are exactly
24 rotations of S, and, incidentally, these 24 rotations are realized by the 24
permutations of the diagonals.

Example 10.9. Consider the set consisting of the midpoints of the 6 faces of
the cube S. The solid polygon S ′ determined by these 6 points is called the
regular octahedron. It is a solid with 8 triangular faces all congruent to each
other. The cube and the regular octahedron are two of the 5 Platonic solids,
which we will consider in Chapter 16. Since each element of Rot(S) must
also send midpoint to another midpoint, it follows that Rot(S) ⊂ Rot(S ′).
But the other containment clearly also holds, so we deduce that Rot(S) =
Rot(S′).
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10.4.3 Reflections of R3

We now know that rotations of R3 are characterized by the property that
their determinants are +1, and we know that the determinant of any element
of O(3,R) is ±1. Hence every element of O(3,R) that isn’t a rotation has
determinant −1. We also know that every orthogonal 2× 2 matrix is either
a rotation or a reflection: a rotation when the determinant is +1 and a
reflection when the determinant is −1. A natural is whether this is also true
in O(3,R). It turns out that the determinant of a reflection of R3 is indeed
−1. This is due to the fact that a reflection leaves a plane pointwise fixed
and maps every vector orthogonal to the plane to its negative. Thus, for a
reflection, dimE1 = 2 and dimE−1 = 1, so the determinant is −1.

It turns out, however, that there exist elements σ ∈ O(3,R) det(σ) = −1
which are not reflections. For example, such a σ has eigenvalues −1, λ, λ. It
is left as an easy exercise to describe how σ acts on R3. As to reflections,
we have the following fact.

Proposition 10.16. An element Q ∈ O(3,R) is a reflection if and only if
Q is symmetric and det(Q) = −1.

We leave the proof as an exercise. It is useful to recall a reflection can be
expressed as I3 − 2PL, where PL is the projection on the line L orthogonal
to the plane E1 of the reflection. One final comment is that every reflection
of R2 actually defines a rotation of R3. For if σ reflects R2 through a line L,
the rotation ρ of R3 through π with L as the axis of rotation acts the same
way as σ on R2, hence the claim. Note: the eigenvalues of ρ are 1,−1,−1,
that is −1 occurs with multiplicity two.

Remark: The abstract definition of the term group as in ”rotation group”
is given in Chapter 16. In essence, a group is a set that has a structure like
that matrix group. In particular, elements can be multiplied, there is an
identity and every element has an inverse.

Exercises

Exercise 10.44. Prove Proposition 10.16.

Exercise 10.45. Let S be a regular quadrilateral in R3, that is S has 4 faces
made up of congruent triangles. How many elements does Sym(S) have?

Exercise 10.46. Compute Rot(S) in the following cases:

(a) S is the half ball {x2 + y2 + z2 ≤ 1, z ≥ 0}, and

(b) S is the solid rectangle {−1 ≤ x ≤ 1,−2 ≤ y ≤ 2,−1 ≤ z ≤ 1}.



Chapter 11

The Diagonalization
Theorems

Let V be a finite dimensional vector space and T : V → V be linear.
The most basic question one can ask is whether T is semi-simple, that is,
whether it admits an eigenbasis or, equivalently, whether T is represented
by a diagonal matrix. The purpose of this chapter is to study this question.
We will prove several theorems: the Principal Axis (or Spectral) Theorem,
Schur’s Theorem and the Jordan Decomposition Theorem. We will also
draw a number of consequences of these results, such as the Cayley-Hamilton
Theorem.

Our first topic is the Principal Axis Theorem, the fundamental result
that says every Hermitian matrix admits a Hermitian orthonormal eigen-
basis, hence is orthogonally diagonalizable. The reason this result is so
important is that so many basic eigenvalue problems in mathematics or in
the physical sciences involve real symmetric or or their complex analogues
Hermitian matrices. In the real case, this result says that every symmetric
matrix admits an orthonormal eigenbasis. As we will also point out, the
general finite dimensional version of the Principal Axis Theorem is the result
that every self adjoint linear transformation T : V → V on a finite dimen-
sional inner product space V admits an orthogonal eigenbasis. In particular,
T is semi-simple.

After we obtain the Principal Axis Theorem, we will extend it to normal
matrices. We will then study linear transformations and matrices over an
arbitrary algebraically closed field F. It turns out there that every T : V →
V , equivalently every A ∈Mn(F), has a unique expression T = S +N with
S semi-simple, N nilpotent and SN = NS with a corresponding version
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for A. This fact is the Jordan Decomposition Theorem. It opens the door
to a number of other results about linear transformations and matrices, for
example the Cayley-Hamilton Theorem and the fact that T is semi-simple if
and only if its minimal polynomial has simple roots.

11.1 The Principal Axis Theorem in the Real Case

In this section, we will show that all symmetric matrices A ∈ Rn×n are
orthogonally diagonalizable. More precisely, we will prove

Theorem 11.1. Let A ∈ Rn×n be symmetric. Then all eigenvalues of A are
real, and there exists an orthonormal basis of Rn consisting of eigenvectors
of A. Consequently, there exists an orthogonal matrix Q such that

A = QDQ−1 = QDQT ,

where D ∈ Rn×n is diagonal. Conversely, if A = QDQ−1, where Q is
orthogonal, then A is symmetric.

Notice that the last assertion is rather obvious since any matrix of the
form CDCT is symmetric, and Q−1 = QT for all Q ∈ O(n,R).

11.1.1 The Basic Properties of Symmetric Matrices

One of the problems in understanding symmetric matrices (or self adjoint
operators in general) is to understand the geometric significance of the con-
dition aij = aji. It turns out that there are several key geometric properties,
the first of which is that every eigenvalue of a symmetric matrix is real. The
second key fact is that two eigenvectors corresponding to different eigenval-
ues are orthogonal. These two facts are all we need for the first proof of
the Principal Axis Theorem. We will also give a second proof which gives a
more complete understanding of the geometric principles behind the result.

We will first formulate the condition aij = aji in a more useful form.

Proposition 11.2. A ∈ Rn×n is symmetric if and only if

vTAw = wTAv

for all v,w ∈ Rn.

Proof. To see this, notice that since vTAw is a scalar, it equals its own
transpose. Thus

vTAw = (vTAw)T = wTATv.
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So if A = AT , then

vTAw = wTAv.

For the converse, use the fact that

aij = eTi Aej,

so if eTi Aej = eTj Aei, then aij = aji.

In other words, A ∈ Rn×n is symmetric if and only if TA(v)·w = v·TA(w)
for all v,w ∈ Rn, where TA : Rn → Rn is the linear transformation associ-
ated to A.

Definition 11.1. A linear map T : Rn → Rn is called self adjoint if and
only if T (v) ·w = v · T (w) for all v,w ∈ Rn.

In other words, symmetric matrices are the same as self adjoint lin-
ear transformations. We now establish the two basic properties mentioned
above. First, we show

Proposition 11.3. Eigenvectors of a real symmetric A ∈ Rn×n correspond-
ing to different eigenvalues are orthogonal.

Proof. Let u and v be eigenvectors corresponding to distinct eigenvalues
λ 6= µ. Then

uTAv = uTµv = µuTv

while

vTAu = vTλu = λvTu.

Since A is symmetric, uTAv = vTAu, so λuTv = µvTu. But uTv = vTu,
so (λ − µ)uTv = 0. Since λ 6= µ, we infer uTv = 0, which finishes the
proof.

We next show that the second property.

Proposition 11.4. All eigenvalues of a real symmetric matrix are real.

Proof. Not unexpectedly, this proof requires complex numbers. In fact, we
will establish a general identity also needed in the in the Hermitian case.

Lemma 11.5. If A ∈ Rn×n is symmetric, then

vTAv ∈ R

for all v ∈ Cn.
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Proof. Recall that α ∈ C is real if and only if α = α. Keeping in mind that
A ∈ Rn×n, αβ = αβ for all α, β ∈ C and vTAv ∈ C, we see that

vTAv = vTAv

=
(
vTAv

)T

= vTATv.

Since A = AT , it follows that vTAv = vTAv, so the proof is finished.

Now let A ∈ Rn×n be symmetric. Since the characteristic polynomial of
A is a real polynomial of degree n, the Fundamental Theorem of Algebra
implies it has n roots in C. Suppose that λ ∈ C is a root. Then there exists
a v 6= 0 in Cn so that Av = λv. Hence

vTAv = vTλv = λvTv.

We may obviously assume λ 6= 0, so the right hand side is nonzero. Indeed,
if v = (v1, v2, . . . vn)

T 6= 0, then

vTv =
n∑

i=1

vivi =
n∑

i=1

|vi|2 > 0.

Since vTAv ∈ R, λ is a quotient of two reals, so λ ∈ R. This completes the
proof of the Proposition.

11.1.2 Some Examples

Example 11.1. Let H denote a 2× 2 reflection matrix. Then H has eigen-
values ±1. Either unit vector u on the reflecting line together with either
unit vector v orthogonal to the reflecting line form an orthonormal eigen-
basis of R2 for H. Thus Q = (u v) is orthogonal and

H = Q

(
1 0
0 −1

)
Q−1 = Q

(
1 0
0 −1

)
QT .

Note that there are only four possible choices for Q. All 2 × 2 reflection
matrices are similar to diag[1,−1]. The only thing that can vary is Q.

Here is another example.

Example 11.2. Let B be the all ones 4×4 matrix. We already saw that the
eigenvalues of B are 0 and 4. The eigenspace E0 = N (B) = (R(1, 1, 1, 1)T )⊥,
so to check the Principal Axis Theorem, we need to find an orthonormal
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basis of (R(1, 1, 1, 1)T )⊥. We will do this by inspection rather than Gram-
Schmidt, since it is easy to find vectors orthogonal to (1, 1, 1, 1)T . In fact,
v1 = (1,−1, 0, 0)T , v2 = (0, 0, 1,−1)T , and v3 = (1, 1,−1,−1)T give an
orthonormal basis after we normalize. Then v4 = (1, 1, 1, 1)T ∈ E4 is a
fourth eigenvector, which, by our construction is orthogonal to E0. Of course
the real reason v4 is orthogonal to E0 is that 0 and 4 are distinct eigenvalues
of the symmetric matrix B. Thus we get the following expression for B as
QDQT :

1

4




2
√

2 0 0 1

−2
√

2 0 1 1

1 2
√

2 −1 1

0 −2
√

2 −1 1







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4







2
√

2 −2
√

2 1 0

0 0 2
√

2 −2
√

2
0 1 −1 −1
1 1 1 1




This is somewhat amusing since 3 of D’s diagonal entries are 0.

11.1.3 The First Proof

Since we know that all eigenvalues of a symmetric matrix A are real, and
eigenvectors corresponding to different eigenvalues are orthogonal, there is
nothing to prove when all the eigenvalues are distinct. The difficulty is that
if A has repeated eigenvalues, say λ1, . . . λm, then one has to show

m∑

i=1

dimEλi
= n.

Our first proof doesn’t actually require us to overcome this difficulty. It
rests on the group theoretic property that the product of two orthogonal
matrices is orthogonal.

To keep the notation simple and since we will also give a second proof,
let us just do the 3 × 3 case, which, in fact, involves all the essential ideas.
Thus let A be real 3×3 symmetric, and consider an eigenpair (λ1,u1) where
u1 ∈ R3 is a unit vector. By the Gram-Schmidt process, we can include u1

in an orthonormal basis u1, u2, u3 of R3. Let Q1 = (u1 u2 u3). Then Q1 is
orthogonal and

AQ1 = (Au1 Au2 Au3) = (λ1u1 Au2 Au3).

Now

QT1AQ1 =




uT1
uT2
uT3


 (λ1u1 Au2 Au3) =



λ1u

T
1 u1 ∗ ∗

λ1u
T
2 u1 ∗ ∗

λ1u
T
3 u1 ∗ ∗


 .
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But since QT
1AQ1 is symmetric (since A is), and since u1, u2, u3 are or-

thonormal, we see that

QT1AQ1 =



λ1 0 0
0 ∗ ∗
0 ∗ ∗


 .

It is clear that the 2 × 2 matrix in the lower right hand corner of A is
symmetric. Calling this matrix B, we can find, by repeating the construction
just given, a 2 × 2 orthogonal matrix Q′ so that

Q
′TBQ′ =

(
λ2 0
0 λ3

)
.

Putting Q′ =

(
r s
t u

)
, it follows that

Q2 =




1 0 0
0 r s
0 t u




is orthogonal, and in addition

QT2Q
T
1AQ1Q2 = QT2



λ1 0 0
0 ∗ ∗
0 ∗ ∗


Q2 =



λ1 0 0
0 λ2 0
0 0 λ3


 .

But Q1Q2 is orthogonal, and so (Q1Q2)
−1 = Q−1

2 Q−1
1 = QT2Q

T
1 . Therefore,

putting Q = Q1Q2 and D = diag(λ1, λ2, λ3), we get A = QDQ−1 = QAQT ,
so A has been orthogonally diagonalized and the first proof is done.

Note, using mathematical induction, this proof extends immediately to
prove the general case. The drawback of the above technique is that it
requires a repeated application of the Gram-Schmidt process. What is nice
is that the argument is completely transparent.

11.1.4 Proof Number Two

Our second proof, more geometric proof, seems to me to give more insight.
It relies on the two basic properties of symmetric matrices discussed above
and also one more.

Proposition 11.6. If A ∈ Rn×n is symmetric and W is a nonzero subspace
of Rn with the property that TA(W ) = AW ⊂ W , then W contains an
eigenvector of A.
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Proof. Pick an orthonormal basis Q = {u1, . . . ,um} of W . As TA(W ) ⊂W ,
there exist scalars rij (1 ≤ i, j ≤ m), such that

TA(uj) = Auj =

m∑

i=1

rijui.

This defines an m×m matrix R, which I claim is symmetric. Indeed, since
TA is self adjoint,

rij = ui ·Auj = Aui · uj = rji.

Let (λ, (x1, . . . , xm)T ) be an eigenpair for R. Putting w :=
∑m

j=1 xjuj , I
claim that (λ,w) forms an eigenpair for A. In fact,

TA(w) =

m∑

j=1

xjTA(uj)

=
m∑

j=1

xj(
m∑

i=1

rijui)

=

m∑

i=1

(

m∑

j=1

rijxj)ui

=
m∑

i=1

λxiui

= λw.

This finishes the proof.

We can now complete the second proof. As above, let λ1, . . . λk be the
distinct eigenvalues of A. Then the corresponding eigenspaces Eλi

are or-
thogonal to each other, so if we combine orthonormal bases of each Eλi

, we
obtain an orthonormal set in Rn. Putting dimEλi

= ki, it follows the span of

this orthonormal set is a subspace E of Rn of dimension e :=
∑k

i=1 ki. Com-
bining all the eigenvectors gives an orthonormal basis of E. To show e = n,
let W = E⊥. If E 6= Rn, then by Proposition 10.1, dimW = n − e > 0.
Clearly, TA(Eλi

) ⊂ Eλi
(check). Hence TA(E) ⊂ E. I claim that we also

have that TA(W ) ⊂ W . To see this, we have to show that if v ∈ E and
w ∈W , then v·Aw = vTAw = 0. But since TA(E) ⊂ E and A is symmetric,

vTAw = wTAv = 0.

Hence the claim. ButW has positive dimension, so it contains an eigenvector
w of A. But all eigenvectors of A are, by definition, elements of E, so E
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and W both contain a non zero vector. This contradicts Proposition10.1, so
W = {0}. Therefore, E = Rn and the second proof is done.

Note also that in the course of the proof of the Principal Axis Theorem,
we discovered a fourth interesting geometric property of symmetric matrices:

Proposition 11.7. If A ∈ Rn×n is symmetric and A(W ) ⊂ W for a sub-
space W of Rn, then A(W⊥) ⊂W⊥ too.

11.1.5 A Projection Formula for Symmetric Matrices

Sometimes it’s useful to express the Principal Axis Theorem as a projection
formula for symmetric matrices. Let A be symmetric, let u1, . . . ,un be an
orthonormal eigenbasis of Rn for A, and suppose (λi,ui) is an eigenpair.
Suppose x ∈ Rn. By the projection formula of Chapter 10,

x = (uT1 x)u1 + · · · + (uTnx)un,

hence
Ax = λ1(u

T
1 x)u1 + · · · + λn(u

T
nx)un.

This amounts to writing

A = λ1u1u
T
1 + · · · + λnunu

T
n . (11.1)

Recall that uiu
T
i is the matrix of the projection of Rn onto the line Rui, so

(11.1) expresses A as a sum of orthogonal projections.



299

Exercises

Exercise 11.1. Orthogonally diagonalize the following matrices:




1 0 1
0 1 0
1 0 1


 ,




1 1 3
1 3 1
3 1 1


 ,




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 .

I claim that you can diagonalize the first and second matrices, and a good
deal (if not all) of the third, without pencil and paper.

Exercise 11.2. Prove Proposition11.7.

Exercise 11.3. Answer either T or F. If T, give a brief reason. If F, give a
counter example.

(a) The sum and product of two symmetric matrices is symmetric.

(b) For any real matrix A, the eigenvalues of ATA are all real.

(c) For A as in (b), the eigenvalues of ATA are all non negative.

(d) If two symmetric matrices A and B have the same eigenvalues, counting
multiplicities, then A and B are orthogonally similar (that is, A = QBQT

where Q is orthogonal).

Exercise 11.4. Recall that two matrices A and B which have a common
eigenbasis commute. Conclude that if A and B have a common eigenbasis
and are symmetric, then AB is symmetric.

Exercise 11.5. Describe the orthogonal diagonalization of a reflection ma-
trix.

Exercise 11.6. Let W be a hyperplane in Rn, and let H be the reflection
through W .

(a) Express H in terms of PW and PW⊥ .

(b) Show that PWPW⊥ = PW⊥PW .

(c) Simultaneously orthogonally diagonalize PW and PW⊥ .

Exercise 11.7. * Diagonalize



a b c
b c a
c a b


 ,
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where a, b, c are all real. (Note that the second matrix in Problem 1 is of
this type. What does the fact that the trace is an eigenvalue say?)

Exercise 11.8. * Diagonalize

A =




aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd


 ,

where a, b, c, d are arbitrary real numbers. (Note: thimk!)

Exercise 11.9. Prove that a real symmetric matrix A whose only eigenval-
ues are ±1 is orthogonal.

Exercise 11.10. Suppose A ∈ Rn×n is symmetric. Show the following.

(i) N (A)⊥ = Im(A).

(ii) Im(A)⊥ = N (A).

(iii) col(A) ∩N (A) = {0}.
(iv) Conclude form (iii) that if Ak = O for some k > 0, then A = O.

Exercise 11.11. Give a proof of the Principal Axis Theorem from first
principles in the 2 × 2 case.

Exercise 11.12. Show that two symmetric matrices A and B that have
the same characteristic polynomial are orthogonally similar. That is, A =
QBQ−1 for some orthogonal matrix Q.

Exercise 11.13. Let A ∈ Rn×n be symmetric, and let λm and λM be its
minimum and maximum eigenvalues respectively.

(a) Show that for every x ∈ Rn, we have

λmxTx ≤ xTAx ≤ λMxTx.

(b) Use this inequality to find the maximum and minimum values of |Ax|
on the ball |x| ≤ 1.



301

11.2 Self Adjoint Maps

The purpose of this section is to formulate the Principal Axis Theorem for
an arbitrary finite dimensional inner product space V . In order to do this,
we have to make some preliminary comments about this class of spaces.

11.2.1 Inner Product Spaces and Isometries

Recall that a real vector spaceV with an inner product is called an inner
product space. Simple examples include of course Rn with the dot product
and C[a, b] with the inner product (f, g) =

∫ b
a f(x)g(x)dx. In fact, we have

Proposition 11.8. Every finite dimensional vector space over R admits an
inner product.

Proof. Select a basis v1, . . . ,vn of V . Then, if x =
∑
xivi and y =

∑
yjvj,

put

(x,y) =
∑

xiyi.

Then it is easy to see that ( , ) is an inner product on V .

Let V be a finite dimensional inner product space, and let ( , ) denote
its inner product. In the above proof, the inner product is defined so that
v1, . . . ,vn is an orthonormal basis. On the other hand, the techniques of
the previous chapter extend immediately to an arbitrary finite dimensional
inner product space, so we have the analogue of Proposition10.6: every finite
dimensional inner product space has an orthonormal basis.

Definition 11.2. Let U and V be finite dimensional inner product spaces,
and suppose Φ : U → V is a transformation such that

(Φ(x),Φ(y)) = (x,y)

for all x,y ∈ U . Then Φ is called an isometry.

The notion of an isometry was briefly touched on in Chapter 3.3. In
particular, we showed that every element of O(n,R) defines an isometry:
see (3.8).

Proposition 11.9. Let U and V be finite dimensional inner product spaces
of the same positive dimension. Then every isometry Φ : U → V is a linear
isomorphism. Moreover, Φ : U → V is an isometry if and only if Φ carries
any orthonormal basis of U to an orthonormal basis of V . In particular, any
inner product space of dimension n is isometric to Rn.
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Proof. To see that Φ(x + y) = Φ(x) + Φ(y), it suffices to show

(Φ(x + y) − Φ(x) − Φ(y),Φ(x + y) − Φ(x) − Φ(y) = 0,

The proof of this is exactly the same as in the proof of Proposition10.11. One
sees that Φ(rx) = rΦ(x) in a similar way. Hence, every isometry is linear.
An isometry Φ is also one to one since if x 6= 0, then Φ(x) 6= 0 (why?).
Hence Φ is an isomorphism since it is one to one and dimU = dimV . We
leave the rest of the proof as an exercise.

A couple of more comments about isometries are in order. First, the
matrix of an isometry Φ : U → U with respect to an orthonormal basis is
orthogonal. (See the comment above about O(n,R).) Also, since isometries
preserve inner products, so they also preserve lengths and angles and angles
between vectors.

11.2.2 Self Adjoint Operators

In the previous section, we defined the notion of a self adjoint linear map
T : Rn → Rn. The notion of a self adjoint operator on an arbitrary inner
product space is exactly the same. We will treat this in a slightly more
general way, however. First we make the following definition.

Definition 11.3. Let V be a real inner product space and suppose T : V →
V is linear. Define the adjoint of T to be the map T ∗ : V → V determined
by the condition that

(T ∗(x),y) = (x, T (y))

for all x,y ∈ V . Then we say that T is self adjoint if and only if T = T ∗.

Proposition 11.10. Let V be a real inner product space and suppose T :
V → V is linear. Then the adjoint T ∗ : V → V is also a well defined linear
transformation. If V is finite dimensional, then T is self adjoint if and only
if for every orthonormal basis Q of V , the matrix MQ

Q(T ) is symmetric.

More generally, the matrix MQ
Q(T ∗) is MQ

Q(T )T .

Proof. The proof is left as an exercise.

Hence a symmetric matrix is a self adjoint linear transformation from
Rn to itself and conversely. Therefore the eigenvalue problem for self adjoint
maps on a finite dimensional inner product space reduces to the eigenvalue
problem for symmetric matrices on Rn.

Here is a familiar example.
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Example 11.3. Let W be a subspace of Rn. Then the projection PW is
self adjoint. In fact, we know that its matrix with respect to the standard
basis has the form C(CCT )−1CT , which is clearly symmetric. Another way
to see the self adjointness is to choose an orthonormal basis u1, . . . ,un of
Rn so that u1, . . . ,um span W . Then, by the projection formula, PW (x) =∑k

i=1(x ·ui)ui. It follows easily that PW (ui) ·uj = ui ·PW (uj) for all indices
i and j. Hence PW is self adjoint.

To summarize the Principal Axis Theorem for self adjoint operators, we
state

Theorem 11.11. Let V be a finite dimensional inner product space, and let
T : V → V be self adjoint. Then there exists an orthonormal eigenbasis Q
of V consisting of eigenvectors of T . Thus T is semi-simple, and the matrix
MQ

Q(T ) is diagonal.

Proof. Let B = {u1, . . . ,un} denote an orthonormal basis of V . The map
Φ : V → Rn defined by Φ(ui) = ei is an isometry (see Proposition10.11).
Now S = ΦTΦ−1 is a self adjoint map of Rn (check), hence S has an
orthonormal eigenbasis x1, . . . ,xn ∈ Rn. Since Φ is an isometry, v1 =
Φ−1(x1), . . . ,vn = Φ−1(xn) form an orthonormal basis of V . Moreover, the
vi are eigenvectors of T . For, if S(xi) = λixi, then

T (vi) = Φ−1SΦ(vi) = Φ−1S(xi) = Φ−1(λixi) = λiΦ
−1(xi) = λivi.

Thus T admits an orthonormal eigenbasis, as claimed.

11.2.3 An Infinite Dimensional Self Adjoint Operator

We now give an example of a self adjoint operator (or linear transformation)
in the infinite dimensional setting. As mentioned in the introduction, self
adjoint operators are frequently encountered in mathematical, as well as
physical, problems.

We will consider a certain subspace of function space C[a, b] of all con-
tinuous functions f : [a, b] → R with the usual inner product

(f, g) =

∫ b

a
f(x)g(x)dx.

The condition for a linear transformation T : C[a, b] → C[a, b] to be self
adjoint is that satisfies the condition (Tf, g) = (f, Tg) for all f, g, that is

∫ b

a
T (f)(x)g(x)dx =

∫ b

a
f(x)T (g)(x)dx.
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Now let [a, b] = [0, 2π], and let P (for periodic) denote the subspace of
C[0, 2π] consisting of all functions f which have derivatives of all orders on
[0, 2π] and satisfy the further condition that

f (i)(0) = f (i)(2π) if i = 0, 1, 2, . . . ,

where f (i) denotes the ith derivative of f . Among the functions in P are the
trigonometric functions cos λx and sinλx for all λ ∈ R. We will show below
that these functions are linearly independent if λ > 0, so P is an infinite
dimensional space.

We next give an example of a self adjoint operator on P. Thus symmetric
matrices can have infinite dimensional analogues. By the definition of P,
it is clear that if f ∈ P, then f (i) ∈ P for all i ≥ 1. Hence the derivative
operator D(f) = f ′ defines a linear transformation D : P → P. I claim the
second derivative D2(f) = f ′′ is self adjoint. To prove this, we have to show
(D2(f), g) = (f,D2(g)) for all f, g ∈ P. This follows from integration by
parts. For we have

(D2(f), g) =

∫ 2π

0
f ′′(t)g(t)dt

= f ′(2π)g(2π) − f ′(0)g(0) −
∫ 2π

0
f ′(t)g′(t)dt.

But by the definition of P, f ′(2π)g(2π) − f ′(0)g(0) = 0, so

(D2(f), g) = −
∫ 2π

0
f ′(t)g′(t)dt.

Since this expression for (D2(f), g) is symmetric in f and g, it follows that

(D2(f), g) = (f,D2(g)),

so D2 is self adjoint, as claimed.

We can now ask for the eigenvalues and corresponding eigenfunctions
of D2. There is no general method for finding the eigenvalues of a linear
operator on an infinite dimensional space, but one can easily see that the
trig functions cos λx and sinλx are eigenfunctions for −λ2 if λ 6= 0. Now
there is a general theorem in differential equations that asserts that if µ > 0,
then any solution of the equation

D2(f) + µf = 0
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has the form f = a cos
√
µx+ b sin

√
µx for some a, b ∈ R. Moreover, λ = 0

is an eigenvalue for eigenfunction 1 ∈ P. Note that although D2(x) = 0, x
is not an eigenfunction since x 6∈ P.

To summarize, D2 is a self adjoint operator on P such that every non
positive real number is an ev. The corresponding eigenspaces are E0 = R

and E−λ = R cos
√
λx + R sin

√
λx if λ > 0. We can also draw some other

consequences. For any positive λ1, . . . λk and any fi ∈ E−λi
, f1, . . . , fk are

linearly independent. Therefore, the dimension of P cannot be finite, i.e. P
is infinite dimensional.

Recall that distinct eigenvalues of a symmetric matrix have orthogonal
eigenspaces. Thus distinct eigenvalues of a self adjoint linear transformation
T : Rn → Rn have orthogonal eigenspaces. The proof of this goes over
unchanged to P, so if λ, µ > 0 and λ 6= µ, then

∫ 2π

0
fλ(t)fµ(t)dt = 0,

where fλ and fµ are any eigenfunctions for −λ and −µ respectively. In
particular, ∫ 2π

0
sin

√
λt sin

√
µtdt = 0,

with corresponding identities for the other pairs of eigenfunctions fλ and fµ.
In addition, cos

√
λx and sin

√
λx are also orthogonal.

The next step is to normalize the eigenfunctions to obtain an orthonor-
mal set. Clearly if λ 6= 0, |fλ|2 = (fλ, fλ) = π, while |f0|2 = 2π. Hence the
functions

1√
2π
,

1√
π

cos
√
λx,

1

π
sin

√
λx,

where λ > 0 are a family of ON functions in P. It turns out that one usually
considers only the eigenfunctions where λ is a positive integer. The Fourier

series of a function f ∈ C[0, 2π] such that f(0) = f(2π) is the infinite series
development

f(x) ≈ 1

π

∞∑

m=1

am cosmx+
1

π

∞∑

m=1

bm sinmx,

where am and bm are the Fourier coefficients encountered in §33. In partic-
ular,

am =
1√
π

∫ 2π

0
f(t) cosmtdt
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and

bm =
1√
π

∫ 2π

0
f(t) sinmtdt.

For a precise interpretation of the meaning ≈, we refer to a text on Fourier
series. The upshot of this example is that Fourier series are an important
tool in partial differential equations, mathematical physics and many other
areas.
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Exercises

Exercise 11.14. Show that if V is a finite dimensional inner product space,
then T ∈ L(V ) is self adjoint if and only if for every orthonormal ba-
sis u1, . . . ,un OF V , (T (ui),uj) = (ui, T (uj)) for all indices i and j.

Exercise 11.15. Let U and V be inner product spaces of the same dimen-
sion. Show that a linear transformation Φ : U → V is an isometry if and
only if Φ carries every orthonormal basis of U onto an orthonormal basis of
V .

Exercise 11.16. Give an example of a linear transformationΦ : R2 → R2

that isn’t an isometry.

Exercise 11.17. Show that the matrix of an isometry Φ : U → U with
respect to and orthonormal basis is orthogonal. Conversely show that given
an orthonormal basis, any orthogonal matrix defines an isometry form U to
itself.

Exercise 11.18. Give the proof of Proposition11.10 .

Exercise 11.19. Describe all isometries Φ : R2 → R2.

Exercise 11.20. Prove Proposition11.10.
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11.3 The Principal Axis Theorem Hermitian Ma-

trices

The purpose of this section is to extend the Principal Axis Theorem to
Hermitian matrices, which is one of the fundamental mathematical facts
needed in quantum theory.

11.3.1 Hermitian Inner Products and Hermitian Matrices

Let A = (αij) ∈ Cn×n.

Definition 11.4. The Hermitian transpose of A = (αij) is defined to be the
matrix

AH := A
T
,

where A is the matrix (αij) obtained by conjugating the entries of A.

Definition 11.5. A square matrix A over C is called Hermitian if AH = A.
In other words, A is Hermitian if and only if αij = αji.

Example 11.4. For example,




1 1 + i −i
1 − i 3 2
i 2 0




is Hermitian.

Clearly, real Hermitian matrices are symmetric, and Hermitian matrices
have real diagonal entries.

To extend the Principal Axis Theorem, we need to modify our notion
of an inner product to take in vector spaces over C. Indeed, the usual
real inner product extended to Cn has the problem that non-zero vectors
may have negative or zero length, e.g. (1, i)T . Instead, we introduce the
Hermitian inner product on Cn. For w, z ∈ Cn, put

w · z := w1z1 +w2z2 + · · · + wnzn.

In other words,

w · z := wT z = wHz.

Obviously the Hermitian inner product coincides with the usual inner prod-
uct if w, z ∈ Rn ⊂ Cn. It is easy to see that the distributivity property still
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holds: that is, w·(x+y) = w·x+w·y, and (w+x)·y = w·y+x·y. However,
the scalar multiplication properties are slightly different. For example,

(αw) · z = α(w · z),

but

w · (αz) = α(w · z).
Another difference is that

z ·w = w · z.
The length of z ∈ Cn can be written in several ways:

|z| := (z · z)1/2 = (zHz)1/2 =
( n∑

i=1

|zi|2
)1/2

.

Note that |z| > 0 unless z = 0 and |αz| = |α||z|. As usual, z ∈ Cn is called
a unit vector if |z| = 1. Note also that

(1, i)T · (1, i)T = (1,−i)(1, i)T = 1 − i2 = 2

so (1, i)T is no longer orthogonal to itself and has positive length
√

2.

11.3.2 Hermitian orthonormal Bases

Two vectors w and z are said to be Hermitian orthogonal if and only if
w · z = wHz = 0. For example,

(
1
i

)H (
1
−i

)
= 0.

A set of mutually Hermitian orthogonal unit vectors is called Hermitian

orthonormal. For example, 1√
2
(1, i)T and 1√

2
(1,−i)T are a Hermitian or-

thonormal basis of C2.

There is a projection formula in the Hermitian case, but it is slightly
different from the real case. Suppose u1,u2, . . . ,un form a Hermitian or-
thonormal basis of Cn. Then any z ∈ Cn can be written z =

∑n
i=1 αiui.

Then

uj · z = uj ·
n∑

i=1

αiui =

n∑

i=1

αiu
H
j ui = αj .

Thus we have
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Proposition 11.12. Let u1,u2, . . . ,un be a Hermitian orthonormal basis
of Cn and suppose z ∈ Cn. Then

z =

n∑

i=1

(ui · z)ui =

n∑

i=1

(uHi z)ui.

Projections and the Gram-Schmidt method work for complex subspaces
of Cn with the obvious modifications.

Proposition 11.13. Every complex subspace Wof Cn admits a Hermitian
orthonormal basis, which can be included in a Hermitian orthonormal basis
of Cn. If u1,u2, . . . ,um is a Hermitian orthonormal basis of W , then the
projection of z ∈ Cn onto W is given by

PW (z) =
k∑

i=1

(ui · z)ui =
n∑

i=1

(uHi z)ui.

That is, z has the unique orthogonal decomposition

z = PW (z) + (z − PW (z))

into a component in W and a component orthogonal to W .

The proof is just like the proofs of the corresponding statements in the
real case.

Definition 11.6. We will say that U ∈ Cn×n is unitary if UHU = In. The
set of all n× n unitary matrices will be denoted by U(n,C).

Proposition 11.14. U ∈ Cn×n is unitary if and only if U−1 = UH if and
only if the columns of U are a Hermitian orthonormal basis of Cn. Moreover,
U(n,C) is a matrix group containing O(n,R).

Some of the properties of unitary matrices are given in the next

Proposition 11.15. Let U be unitary. Then:

(i) every eigenvalue of U has absolute value 1,

(ii) |det(U)| = 1, and

(iii) if U is diagonal, then each diagonal entry has absolute value 1.

Proof. This is left as an exercise.
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11.3.3 Properties of Hermitian matrices

Hermitian matrices are exactly those matrices which satisfy complex ver-
sion of the fundamental property symmetric matrices (cf. Proposition11.2).
Namely,

Proposition 11.16. Let K ∈ Cn×n, Then K = KH if and only if uHKv =
vHKu if and only if u ·Kv = Ku · v for all u,v ∈ Cn. Moreover, if K is
Hermitian, then uHKu is real for all u ∈ Cn.

We also get Hermitian versions of the fundamental properties of sym-
metric matrices.

Proposition 11.17. Let K ∈ Cn×n be Hermitian. Then the eigen-values
of K are real and eigen-vectors corresponding to distinct eigen-values are
Hermitian orthogonal. Moreover, if K leaves a complex subspace W of Cn

stable, that is TK(W ) ⊂W , then K has an eigen-vector in W .

The proof is identical to that of the real case, exept that here it is more
natural, since we applied the Hermitian identity AH = A and (11.16) for
real symmetric matrices without mentioning it.

Example 11.5. Consider J =
(

0 i
−i 0

)
. The characteristic polynomial of J

is λ2 − 1 so the eigenvalues are ±1. Clearly E1 = C(−i, 1)T and E−1 =
C(i, 1)T . Normalizing gives the Hermitian orthonormal eigenbasis u1 =
1√
2
(−i, 1)T and u2 = 1√

2
(i, 1)T . Hence JU = Udiag(1,−1), where U =

1√
2

(−i i
1 1

)
. Therefore J = Udiag(1,−1)UH .

11.3.4 Principal Axis Theorem for Hermitian Matrices

Theorem 11.18. Every Hermitian matrix is similar to a real diagonal ma-
trix via a unitary matrix. That is, if K is Hermitian, there exist a unitary
U and a real diagonal D such that K = UDU−1 = UDUH . Equivalently,
every Hermitian matrix has a Hermitian ON eigen-basis.

Since the proof is exactly the same as in the real symmetric case, so we
don’t need to repeat it. It would be a good exercise to reconstruct the proof
for the Hermitian case in order to check that it does indeed work.

Note that in the complex case, the so called principal axes are actually
one dimensional complex subspaces of Cn. Hence the principal axes are real
two planes (an R2) instead of lines as in the real case.
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11.3.5 Self Adjointness in the Complex Case

A Hermitian inner product ( , ) on a general C-vector space V is defined in
the same way as a Hermitian inner product on Cn. The key difference from
the real case is that

(αx,y) = α(x,y)

and
(x, αy) = α(x,y).

Note that a Hermitian inner product is still an inner product in the real
sense. Every finite dimensional C-vector space admits a Hermitian inner
product. If ( , ) is a Hermitian inner product on V , then a C-linear trans-
formation T : V → V is said to be Hermitian self adjoint if and only
if

(T (x),y) = (x, T (y))

for all x,y ∈ V .
The Principal Axis Theorem for Hermitian self adjoint operators is the

same as in Theorem 11.11, except for the obvious modifications.
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Exercises

Exercise 11.21. Find the eigen-values of K =
(

2 3+4i
3−4i −2

)
and diagonalize

K.

Exercise 11.22. Unitarily diagonalize Rθ =
(

cos θ − sin θ
sin θ cos θ

)
.

Exercise 11.23. Show that the trace and determinant of a Hermitian ma-
trix are real. In fact, show that the characteristic polynomial of a Hermitian
matrix has real coefficients.

Exercise 11.24. Prove that the Hermitian matrices are exactly the complex
matrices with real eigen-values that can be diagonalized using a unitary
matrix.

Exercise 11.25. Show that U(n,C) is a matrix group. Can you find a
general description for U(2,C)?

Exercise 11.26. Show that two unit vectors in Cn coincide if and only if
their dot product is 1.

Exercise 11.27. Give a description of the set of all 1× 1 unitary matrices.
That is, describe U(1,C).

Exercise 11.28. Consider a 2 × 2 unitary matrix U such that one of U ’s
columns is in R2. Is U orthogonal?

Exercise 11.29. Prove assertions (i)-(iii) in Proposition11.14.

Exercise 11.30. Supppose W is a complex subspace of Cn. Show that the
projection PW is Hermitian.

Exercise 11.31. How does one adjust the formula PW = A(AAT )−1AT to
get the formula for the projection of a complex subspace W of Cn?

Exercise 11.32. Give a direct proof of the Principal Axis Theorem in the
2 × 2 Hermitian case.
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11.4 Normal Matrices and Schur’s Theorem

The result that any Hermitian matrix K can be expressed in the form K =
UDUH , where D is real diagonal and U unitary, suggests that we can ask
which other matrices A ∈ Cn×n can be unitarily diagonalized. To answer
leads us to a beautiful class of matrices.

11.4.1 Normal matrices

Theorem 11.19. An n × n matrix A over C is unitarily diagonalizable if
and only if

AAH = AHA. (11.2)

Definition 11.7. A matrix A ∈ Cn×n for which (11.2) holds is said to be
normal.

The only if part of the above theorem is straightforward, so we’ll omit
the proof. The if statement will follow from Schur’s Theorem, proved below.

Clearly Hermitian matrices are normal. We also obtain more classes
of normal matrices by putting various conditions on D. One of the most
interesting is given in the following

Example 11.6. Suppose the diagonal of D is pure imaginary. Then N =
UDUH satisfies NH = UDHUH = −UDUH = −N . A matrix S such that
SH = −S is called skew Hermitian. Skew Hermitian matrices are clearly
normal, and writingN = UDUH , the conditionNH = −N obviously implies
DH = −D, i.e. the diagonal of D to be pure imaginary. Therefore, a matrix
N is skew Hermitian if and only if iN is Hermitian.

Example 11.7. A real skew Hermitian matrix is called skew symmetric. In
other words, a real matrix S is skew symmetric if ST = −S. For example,
let

S =




0 1 2
−1 0 2
−2 −2 0


 .

The determinant of a skew symmetric matrix of odd order is 0 (see Exercise
11.33 below). The trace is obviously also 0, since all diagonal entries of a
skew symmetric matrix are 0. Since S is 3×3, t its characteristic polynomial
is determined by the sum σ2(S) of the principal 2 × 2 minors of S. Here,
σ2(S) = 9, so the characteristic polynomial of S up to sign is λ3 − 9λ. Thus
the eigenvalues of S are 0,±3i.
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Since the characteristic polynomial of a skew symmetric matrix S is real,
the nonzero eigenvalues of S are pure imaginary and they occur in conjugate
pairs. Hence the only possible real eigenvalue is 0. Recall that a polynomial
p(x) is called even if p(−x) = p(x) and odd if p(−x) = −p(x). Only even
powers of x occur in an even polynomial, and only odd powers occur in an
odd one.

Proposition 11.20. Let A be n× n and skew symmetric. Then the char-
acteristic polynomial is of A is even or odd according to whether n is even
or odd.

Proof. Since the characteristic polynomial is real, if n is even, the eigenvalues
occur in pairs µ 6= µ. Thus the characteristic polynomial pA(λ) factors into
products of the form λ2 −|µ|2, pA(λ) involves only even powers. If n is odd,
then the characteristic polynomial has a real root µ, which has to be 0 since
0 is the only pure imaginary real number. Hence pA(λ) = λqA(λ), where qA
is even, which proves the result.

Example 11.8. Let A = UDUH , where every diagonal entry of D is a
unit complex number. Then D is unitary, hence so is A. Conversely, every
unitary matrix is normal and the eigenvalues of a unitary matrix have mod-
ulus one (see Exercise 11.35), so every unitary matrix has this form. For
example, the skew symmetric matrix

U =

(
0 −1
1 0

)

is orthogonal. U has eigenvalues ±i, and we can easily compute that Ei =
C(1,−i)T and E−i = C(1, i)T . Thus

U = U1DU
H
1 =

1√
2

(
1 1
i −i

)(
−i 0
0 i

)
1√
2

(
1 −i
1 i

)
.

As a complex linear transformation of C2, the way U acts can be inter-
preted geometrically as follows. U rotates vectors on the principal axis
C(1, i)T spanned by (1, i)T through π

2 and rotates vectors on the orthogonal
principal axis spanned by (1,−i)T by −π

2 . Note, U = Rπ/2 considered as a
transformation on C2.

The abstract formulation of the notion of a normal matrix of course uses
the notion of the adjoint of a linear transformation.
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Definition 11.8. Let V be a Hermitian inner product space with inner
product ( , ), and let T : V → V be C-linear. Then T is said to be normal

if and only if TT ∗ = T ∗T , where T ∗ is the adjoint of T .

We leave it to the reader to formulate the appropriate statement of
Theorem 11.19 for a normal operator T .

11.4.2 Schur’s Theorem

The Theorem on normal matrices, Theorem 11.19, is a consequence of a
very useful general result known as Schur’s Theorem.

Theorem 11.21. Let A be any n × n complex matrix. Then there exists
an n× n unitary matrix U and an upper triangular T so that A = UTU−1.

Schur’s Theorem can also be formulated abstractly as follows:

Theorem 11.22. If V is a finite dimensional C-vector space and T : V → V
is linear over C, then there exists a Hermitian orthonormal basis U of V for
which the matrix MU

U (T ) of T is upper triangular.

We will leave the proof Theorem 11.21 as an exercise. The idea is to
apply the same method used in the first proof of the Principal Axis Theorem.
The only essential facts are that A has an eigenpair (λ1,u1), where u1 can
be included in a Hermitian orthonormal basis of Cn, and the product of
two unitary matrices is unitary. The reader is encouraged to write out a
complete proof using induction on n.

11.4.3 Proof of Theorem 11.19

We will now finish this section by proving Theorem 11.19. Let A be normal.
By Schur’s Theorem, we may write A = UTUH , where U is unitary and
T is upper triangular. We claim that T is in fact diagonal. To see this,
note that since AHA = AAH , it follows that TTH = THT (why?). Hence
we need to show that an upper triangular normal matrix is diagonal. The
key is to compare the diagonal entries of TTH and TTH . Let tii be the ith
diagonal entry of T , and let ai denote its ith row. Now the diagonal entries
of TTH are |a1|2, |a2|2, . . . |an|2. On the other hand, the diagonal entries of
THT are |t11|2, |t22|2, . . . , |tnn|2. It follows that |ai|2 = |tii|2 for each i, and
consequently T has to be diagonal. Therefore A is unitarily diagonalizable,
and the proof is complete.
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Exercises

Exercise 11.33. Unitarily diagonalize the skew symmetric matrix of Ex-
ample 11.7.

Exercise 11.34. Let S be a skew Hermitian n × n matrix. Show the fol-
lowing:

(a) Every diagonal entry of S is pure imaginary.

(b) All eigenvalues of S are pure imaginary.

(c) If n is odd, then |S| is pure imaginary, and if n is even, then |S| is real.

(d) If S is skew symmetric, then |S| = 0 if n is odd, and |S| ≥ 0 if n is even.

Exercise 11.35. Let U be any unitary matrix. Show that

(a) |U | has modulus 1.

(b) Every eigenvalue of U also has modulus 1.

(c) Show that U is normal.

Exercise 11.36. Are all complex matrices normal? (Sorry)

Exercise 11.37. Formulate the appropriate statement of Theorem 11.19
for a normal operator T .

Exercise 11.38. The Principle of Mathematical Induction says that if a
S(n) is statement about every positive integer n, then S(n) is true for all
positive integers n provided:

(a) S(1) is true, and
(b) the truth of S(n− 1) implies the truth of S(n).

Give another proof of Schur’s Theorem using induction. That is, if the
theorem is true for B when B is (n− 1)× (n− 1), show that it immediately
follows for A. (Don’t forget the 1 × 1 case.)
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11.5 The Jordan Decomposition

The purpose of this section is to prove a fundamental result about an ar-
bitrary linear transformation T : V → V , where V is a finite dimensional
vector space over an algebraically closed field F. What we will show is that T
can be uniquely decomposed into a sum S+N of two linear transformations
S and N , where S is a semi-simple and N is nilpotent and, moreover, T
commutes with both S and N . This decomposition, which is called the Jor-

dan decomposition of T , is a very useful tool for understanding the structure
of T and has many applications. One of the main applications is, in fact, the
Cayley-Hamilton Theorem, which says that T satisfies its own characteristic
polynomial .

11.5.1 The Main Result

Let T be a linear transformation from V to itself, that is, an element of L(V ).
Recall that we call T semi-simple if it admits an eigen-basis or, equivalently,
if the matrix MB

B(T ) is diagonalizable. Recall that T is called nilpotent if
T k = 0 for some integer k > 0. We will prove the following fundamental

Theorem 11.23. Let F be an arbitrary algebraically closed field, and con-
sider a linear transformation T : V → V , where V is a finite dimensional
vector space over F of dimension n, say. Let λ1, . . . , λm be the distinct
eigenvalues of T , and suppose µi denotes the multiplicity of λi. Thus

pT (x) = (−1)n(x− λ1)
µ1 · · · (x− λm)λm .

Then there exist subspaces C1, . . . , Cm of V with the following properties:

(1) dimCi = µi and V is the direct sum

V = C1 ⊕C2 ⊕ · · · ⊕ Cm.

In particular, dimV =
∑m

i=1 µi.

(2) We may define a semi-simple element S ∈ L(V ) by the condition that
S(v) = λiv if v ∈ Ci. Furthermore, the element N = T − S of L(V )
is nilpotent, that is N k = 0 for some k > 0.

(3) S and N commute, and both commute with T : SN = NS, NT = TN
and ST = TS.

(4) Finally, the decomposition T = S + N of T into the sum of a semi-
simple transformation and a nilpotent transformation which commute
is unique.
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Definition 11.9. The decomposition T = S + N is called the Jordan de-

composition of T .

For example, if T is semi-simple, then the uniqueness (4) says that its
nilpotent part N = O, while if T is nilpotent, its semi-simple part is O.
We also know, for example, that if T has distinct eigenvalues, then T is
semi-simple. The Jordan decomposition is necessary when T has repeated
eigenvalues. Of course, if F = C and T ∈ Mn(C) is a Hermitian matrix,
then we know that T is semi-simple.

Before proving the result, let’s consider an example.

Example 11.9. Let F = C take V = F3. Let T be the matrix linear
transformation

T =




5 12 6
−2 −5 −3
1 4 4


 .

The characteristic polynomial of T is −(x − 1)2(x − 2), so the eigenvalues
are 1 and 2, which is repeated. Now the matrices T − I3 and T − 2I3 row
reduce to 


1 0 −2
0 1 1
0 0 0


 and




1 0 −3
0 1 3/2
0 0 0




respectively. Hence T is not semi-simple. eigenvectors for 2 and 1 are




2
−1
1


 and




3
−3/2

1


 .

It isn’t clear how to proceed, so we will return to the example after we give
the proof.

Proof of Theorem 11.23. First of all, notice that if R : V → V is linear,
then ker(Rr) ⊂ ker(Rs) for all positive integers r < s. Since V is finite
dimensional, , it follows that for some r > 0, ker(Rr) = ker(Rr+1), and thus
ker(Rr) = ker(Rs) if r ≤ s. In this case, we say that ker(Rr) is stable. Now

define

Ci = ker(Rrii ),

where Ri = T − λiIn and ri is large enough so that ker(Rrii ) is stable.

Lemma 11.24. Let Ui = Rrii , and choose k > 0 such that (U1 · · ·Um)k =
(U1 · · ·Um)k+1. Then the element U = (U1 · · ·Um)k of L(V ) is zero.
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Proof. Let W = ker(U). Obviously, T (W ) ⊂ W , so T induces a linear
transformation T ′ : V/W → V/W . Suppose W 6= V , so that dimV/W > 0.
Since F is algebraically closed, it follows that T ′ has an eigenvalue in F,
hence an eigenvector in V/W . By definition, it follows that there is a µ ∈ F

and v ∈ V such that

T ′(v +W ) = µ(v +W ) = (µv) +W = T (v) +W.

It follows from this that x = T (v) − µv ∈ W . If µ is not an eigenvalue of
T , then (T − µIn)

−1 exists and

(T − µIn)
−1(x) ∈W,

since (T − µIn)(W ) ⊂ W (why?). But this is impossible, since it implies
(T − µIn)

−1(x) = v ∈ W , which we know is impossible (for otherwise
v + W = W ). It follows that µ is an eigenvalue of T . But then the fact
that T (v)−µv ∈W gives us that U 2(v) = 0, which again says that v ∈W .
This is another contradiction, so V = W .

Lemma 11.25. If i 6= j, then Ri is one to one on ker(Uj).

Proof. Let v ∈ ker(Ri)∩ker(Uj). By the kernel criterion for one to oneness,
it suffices to show v = 0. Note first that ker(Ri) ∩ ker(Rj) = 0. But
since RiRj = RjRi, Rj(ker(Ri) ⊂ Ri. Thus, Rj is a one to one linear
transformation of ker(Ri). Hence so is Rsj for any s > 0. Therefore ker(Ri)∩
ker(Uj) = 0.

It follows immediately that Ui is one to one on ker(Uj). We now come
to the final Lemma.

Lemma 11.26. Suppose Q1, . . . , Qm ∈ L(V ) are such that Q1 · · ·Qm = 0
in L(V ), and, for all i 6= j, ker(Qi) ∩ ker(Qj) = 0. Then

V =
m∑

i=1

ker(Qi).

Proof. We will prove the Lemma by induction. The key step is the following
Claim: Suppose P and Q are elements of L(V ) such that PQ = O and
ker(P ) ∩ ker(Q) = 0. Then V = ker(P ) + ker(Q).

To prove the claim, we will show that dim(ker(P ) + ker(Q)) ≥ dimV .
By the Hausdorff Intersection Formula,

dimker(P ) + dimker(Q) = dim(ker(P ) + ker(Q)) − dim(ker(P ) ∩ ker(Q)).
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Since dim(ker(P ) ∩ ker(Q)) = 0, all we have to show is that dimker(P ) +
dimker(Q) ≥ dimV . Now

dimV = dimker(Q) + dim Im(Q).

But as PQ = O, Im(Q) ⊂ ker(P ), so we indeed have the claim.
To finish the proof, we induct on m. If m = 1, there is nothing to prove,

so suppose the Lemma holds for m− 1. Then

ker(Q2 · · ·Qm) =

m∑

i=2

ker(Qi).

Thus the result follows from the claim applied with P = Q1.

Thus we get the crucial fact that V =
∑m

i=1Ci. In order to prove (1),
we have to show that the sum is direct. By definition, we therefore have to
show that if

m∑

i=1

vi = 0,

where each vi ∈ Ci, then in fact, every vi = 0. If there is such a sum where
some vi 6= 0, let

∑m
i=1 vi = 0 be such a sum where the number of non-zero

components is minimal, and let vr be any non-zero component in this sum.
Since there have to be at least two non-zero components, and since Ur is
one to one on Cj if j 6= r but Ur(vr) = 0, Ur(

∑m
i=1 vi) has one less non-

zero component. This contradicts the minimality of
∑m

i=1 vi, hence the sum
V =

∑m
i=1 Ci is direct. Now let νi = dimCi. Then

∑m
i=1 µi = dimV .

To finish the proof of (1), we have to show that νi is the multiplicity of
λi as an eigenvalue, i.e. νi = µi. By choosing a basis of each Ci, we get a
basis B of V for which the matrix A = MB

B(T ) has block form

A =




A1 O · · · O
O A2 · · · O
...

...
. . .

...
O · · · O Am


 , (11.3)

where Ai is νi × νi, and each O is a zero matrix. It follows from this that

pA(x) = pA1
(x) · · · pAm(x). (11.4)

But the only eigenvalue of Ai is λi since Rj = T − λjIn is one to one on Ci
if i 6= j. Thus pAi

(x) = (x − λi)
νi , so we conclude that the multiplicity of

λi is νi, which proves (1). Note that since pT (x) = pA(x), we have shown

pT (x) = (x− λ1)
µ1 · · · (x− λm)µm . (11.5)
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We next prove (2). The transformation S is well defined, and, by
definition, S(Ci) ⊂ Ci for all i. Clearly, T (Ci) ⊂ Ci also, thus N(Ci) ⊂ Ci.
To show N is nilpotent, we only need to show that N is nilpotent on each
Ci. But for v ∈ Ci, we have

N ri(v) = (T − S)ri(v) = (T − λiIn)
ri(v) = 0,

by the definition of Ci. Hence N is nilpotent.
To prove (3), it suffices to show that if v ∈ Ci, then NS(v) = SN(v).

But this is obvious, since S(v) = λiv.
To finish the proof, suppose T = S ′ + N ′ is another decomposition of

T , where S ′ is semi-simple, N ′ is nilpotent, and S ′N ′ = N ′S′. Now as S′ is
semi-simple, we can write

V =
k∑

i=1

Eµi
(S′), (11.6)

where µ1, . . . , µk are the distinct eigenvalues of S ′ and Eµi
(S′) denotes the

eigenspace of S ′ for µi. Since N ′ and S′ commute, N ′(Eµi
(S′)) ⊂ Eµi

(S′).
Therefore, we can assert that for any v ∈ Eµi

(S′),

N
′r(v) = (T − S ′)r(v) = (T − µiIn)

r(v) = 0

if r is sufficiently large. But this says µi is an eigenvalueλj of T , and further-
more, Eµi

(S′) ⊂ Cj . Thus, S = S ′ on Eµi
(S′), and therefore (11.6) implies

S′ = S. Hence, N = N ′ too, and the proof is complete.

Definition 11.10. The subspaces C1, . . . , Cm associated to T : V → V are
called the invariant subspaces of T .

Corollary 11.27. Any n× n matrix A over F can be expressed in one and
only one way as a sum A = S +N of two commuting matrices S and N in
Mn(F), where S is diagonalizable and N is nilpotent.

Proof. This follows immediately from the Theorem.

Let’s compute an example.

Example 11.10. Let T : C3 → C3 be the matrix linear transformation of
Example 11.9, and recall that pT (x) = −(x − 1)2(x − 2). We have to find
the invariant subspaces. Since 2 is a simple root, its invariant subspace is
simply the line E2(T ) = C(2,−1, 1)T . Now

(T − I3)
2 =



−2 0 6
1 0 −3
−1 0 3


 ,
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which clearly has rank one. Its kernel, which is spanned by



0
1
0


 and




3
0
1


 ,

is therefore T ’s other invariant subspace. Hence the semi-simple linear trans-
formation S is determined

S(




0
1
0


) =




0
1
0


 , S(




3
0
1


) =




3
0
1


 , S(




2
−1
1


) = 2




2
−1
1


 .

The matrix of S (as usual found by SP = PD) is therefore

MS =



−1 0 6
1 1 −3
−1 0 4


 ,

and we get N by subtraction:

N =




6 12 0
−3 −6 0
2 4 0


 .

Thus the decomposition of T as the sum of commuting diagonalizable and
a nilpotent matrices is




5 12 6
−2 −5 −3
1 4 4


 =



−1 0 6
1 1 −3
−1 0 4


+




6 12 0
−3 −6 0
2 4 0


 .

Notice that if P is the matrix which diagonalizes S, i.e.

P =




0 3 2
1 0 −1
0 1 1


 ,

then

P−1TP =



−5 −9 0
4 7 0
0 0 2


 .

This gives us the matrix MB
B(T ) of T consisting of blocks down the diagonal.

We will also see that by choosing P more carefully, we can even guarantee
that P−1TP is upper triangular.
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11.5.2 The Cayley-Hamilton Theorem

The Jordan decomposition has at least one exciting consequence.

Theorem 11.28. Let F be algebraically closed, and let V be finite di-
mensional over F. Then every T ∈ L(V ) satisfies its own characteristic
polynomial .

Proof. This follows almost immediately from the Jordan decomposition. We
have to show that for every v ∈ V ,

(T − λ1In)
µ1 · · · (T − λmIn)

µm(v) = 0. (11.7)

Since V =
∑
Ci, it is enough to show (11.7) if v ∈ Ci for some i. What we

need is

Lemma 11.29. Let W be a finite dimensional vector space and assume
T ∈ L(W ) is nilpotent. Then T dimW = O.

Proof. We will leave this as an exercise.

To finish the proof, suppose v ∈ Ci. Then as dimCi = µi, the Lemma
says that (T − λiIn)

µi(v) = 0. But this implies (11.7) for v since the
operators (T − λiIn)

µi commute. Hence the proof is complete.

Corollary 11.30. A linear transformation T : V → V is nilpotent if and
only if every eigenvalue of T is 0.

Proof. We leave this as an exercise.

One of the big questions is how do you tell whether a linear transforma-
tion T : V → V is semi-simple. In fact, there’s a very simple characterization
of this property. As usual, let λ1, . . . , λm be the distinct eigenvalues of T .

Theorem 11.31. A linear transformation T : V → V is semi-simple if and
only if

(T − λ1In) · · · (T − λmIn) = O. (11.8)

Proof. If T is semi-simple, then in the Jordan decomposition T = S + N ,
we have N = O. Therefore, by the definition of N given in the proof of
Theorem 11.23, T − λiIn = O on Ci. Hence (T − λ1In) · · · (T − λmIn) = O
on V . Conversely, if (T − λ1In) · · · (T − λmIn) = O, I claim N(v) = 0 for
all v ∈ V . As always, it suffices show this for v ∈ Ci for some i. To simplify
the notation, suppose i = 1. Then

(T − λ1In) · · · (T − λmIn)(v) = (T − λ2In) · · · (T − λmIn)(T − λ1In)(v)

= (T − λ2In) · · · (T − λmIn)N(v)

= 0.
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But (T − λ2In) · · · (T − λmIn) is one to one on C1, so N(v) = 0. Thus,
N = O and the proof is done.

Example 11.11. Let’s reconsider T : C3 → C3 from Example 11.9. By
direct computation,

(T − I3)(T − 2I2) =



−6 −12 0
3 6 0
−2 −4 0


 .

This tells us that T is not semi-simple, which of course, we already knew.

Notice that the Cayley-Hamilton Theorem tells us that there is always
a polynomial p(x) ∈ F[x] for which p(T ) = O.

Definition 11.11. Let T : V → V be a non-zero linear transformation.
Then the non-zero polynomial p(x) ∈ F[x] of least degree and leading coef-
ficient one such that p(T ) = O is called the minimal polynomial of T .

Of course, it isn’t clear that a unique minimal polynomial exists. How-
ever, let p1 and p2 each be a minimal polynomial. By a general property of
F[x], we can find polynomials q(x) and r(x) in F[x] such that

p2(x) = q(x)p1(x) + r(x),

where either r = 0 or the degree of r is less than the degree of p2. But as
p1(T ) = p2(T ) = O, it follows that r(T ) = O also. Since either r = 0 or the
degree of r is smaller than the degree of p2, we conclude that it must be the
case that r = 0. But then q(x) is a constant since p1 and p2 have to have
the same degree. Thus q = 1 since p1 and p2 each have leading coefficient
one. Hence p1 = p2.

Proposition 11.32. Suppose T : V → V is a non-zero linear transforma-
tion, and assume its distinct eigenvalues are λ1, . . . , λm. The minimal poly-
nomial p(x) of T is unique, it divides the characteristic polynomial pT (x),
and finally, (x− λ1) · · · (x− λm) divides p(x).

Proof. The uniqueness was already shown. By the Cayley-Hamilton The-
orem, pT (T ) = O. Hence writing pT (x) = q(x)p(x) + r(x) as above and
repeating the argument, we get r = 0. The fact that (x − λ1) · · · (x − λm)
divides p(x) is clear from the proof of Theorem 11.23. Indeed, we can factor
p(x) into linear factors p(x) = (x − a1) · · · (x − ak) where all ai ∈ F. If a
λj is not among the ai, we know p(T ) cannot be zero on Cj. Hence each
(x− λj) has to be a factor.
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Corollary 11.33. A nonzero linear transformation T : V → V is semi-
simple if and only if its minimal polynomial is (x− λ1) · · · (x− λm).

Proof. Just apply Theroem 11.31 and PropositionrefMINPOLYPROP.

Example 11.12. Let’s reconsider T : C3 → C3 from Example 11.9. We
have PT (x) = −(x− 1)2(x− 2). Now by direct computation,

(T − I3)(T − 2I2) =



−6 −12 0
3 6 0
−2 −4 0


 .

This tells us that T is not semi-simple, which of course, we already knew.

11.5.3 The Jordan Canonical Form

The Jordan decomposition T = S + N of a T ∈ L(V ) can be extensively
improved. The first step is to find a basis for which T is upper triangular.
In fact, it will suffice to show that there exists a basis of each Ci for which
N is upper triangular.

For this we may as well suppose Ci = V . Let k be the least positive
integer for which N k = O. Now

ker(N) ⊂ ker(N 2) ⊂ · · · ⊂ ker(Nk) = V.

Since k is the least integer such that N k = O, each of the above inclusions
is proper. Notice that for each r > 0, N(ker(N r)) ⊂ ker(N r−1). Thus we
can construct a basis of V by first selecting a basis of ker(N), extending this
basis to a basis of ker(N 2), extending the second basis to a basis of ker(N 3)
and so forth until a basis B of V = ker(N k) is obtained. Since N(ker(N r)) ⊂
ker(N r−1), it follows that the matrix MB

B(N) is upper triangular. Since S
is a multiple of λiIµi

on Ci, we can infer

Proposition 11.34. Every n× n matrix over an algebraically closed field
F is similar to a upper trianglar matrix over F.

This result is reminiscent of Schur’s Theorem and could in fact have been
proven in a similar way. We next introduce the famous Jordan Canonical
Form of a matrix.

Theorem 11.35 (The Jordan Canonical Form). As usual, let V be a
finite dimensional vector space over the algebraically closed field F, and
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suppose T ∈ L(V ). Then there exists a basis B of V for which

MB
B(T ) =




J1 O · · · O
O J2 · · · O
...

...
. . .

...
O · · · O Js


 , (11.9)

where the matrices Ji (the Jordan blocks) have the form

Ji = λIni
+Ni,

where Ni is the upper trianglar ni × ni matrix with 0’s on the diagonal, 1’s
on the super diagonal and 0’s above the super diagonal. Furthermore, we
may suppose n1 ≥ n2 ≥ · · · ≥ ns. In particular, when V = Fn, we get the
result that every A ∈Mn(F) is similar to a matrix having the form (11.9).

The proof requires that we play around a bit more in the manner of
the discussion before Proposition11.34. We will skip the details. Note that
there is no connection between the ni and the eigenvalues λj of T , except
that if Ji = λIni

+Ni, then ni cannot exceed the multiplicity of λ as a root
of pT (x). note also that each eigenvalue λi of T appears µi times on the
diagonal of MB

B(T ).

11.5.4 A Connection With Number Theory

One of the surprising conclusions that can be drawn from the Jordan Canon-
ical Form has to do with the partitions of n.

Definition 11.12. Let n be a positive integer. Then a partition of n is a non-
increasing sequence of positive integers a1, a2, · · · , ar such that

∑r
i=1 ai = n.

The partition function π(n) is the function which counts the number of
partitions of n.

Thus π(1) = 1, π(2) = 2, π(3) = 3 and π(4) = 5.

Example 11.13. The partitions of 6 are

6 = 1 + 1 + 1 + 1 + 1 + 1 = 2 + 1 + 1 + 1 = 2 + 2 + 1 + 1 = 3 + 2 + 1 =

2 + 2 + 2 = 3 + 3 = 4 + 1 + 1 = 4 + 2 = 5 + 1.

Thus there are 10 partition of 6, so π(6) = 10.
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The partition function grows very rapidly. The upshot of the Jordan
Canonical Form is that to each partition (n1, n2, . . . , nr) of n, there is a
nilpotent matrix of the form (11.9) (with only zeros on the diagonal, of
course), and every n×n nilpotent matrix is similar to one of these matrices.
This seemingly accidental connection has lead to some astoundingly deep
results in algebra

We intend to revisit the Jordan Decomposition when we take up ring
theory.
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Exercises

Exercise 11.39. Use the Cayley-Hamilton Theorem to prove directly that
the minimal polynomial of a linear transformation T : V → V divides the
characteristic polynomial of T . (Hint: write pT (x) = a(x)p(x) + r(x) where
either r = 0 or the degree of r(x) is smaller than the degree of p(x).)

Exercise 11.40. Prove Corollary 11.30 directly using the fact that

ker(T ) ⊂ ker(T 2) ⊂ ker(T 3) ⊂ · · · .

Exercise 11.41. Compute the minimal polynomials of the following matri-
ces:

Exercise 11.42. Show that if A = diag[d1, . . . , dn] is a diagonal matrix,
then for any polynomial f(x),

f(A) = diag[f(d1), . . . , f(dn)].

Use this to conclude the Cayley-Hamilton Theorem for diagonal matrices.

Exercise 11.43. Show that if F = C, the Cayley-Hamilton Theorem follows
from the fact any element of L(V ) is the limit of a sequence of semi-simple
elements of L(V ). How does one construct such a sequence?

Exercise 11.44. List all 10 6 × 6 nilpotent matrices in Jordan Canonical
Form.
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Chapter 12

Applications of Symmetric
Matrices

The purpose of this chapter is to present an assortment of results and appli-
cations for symmetric matrices. We will begin on with the topic of quadratic
forms, study the QR algorithm and finish by giving a brief introduction to
graph theory.

12.1 Quadratic Forms

12.1.1 The Definition

The most basic functions of several variables in algebra are linear functions.
A linear function is a polynomial in several variables in which every term has
degree one, such as f(x1, . . . , xn) =

∑n
i=1 aixi. The coefficients a1, . . . , an

are usually interpreted as elements of some field F. Polynomials in which
every term has degree two are called quadratic forms. An arbitrary quadratic
form over a field F has the form

q(x1, . . . , xn) =

n∑

i,j=1

hijxixj (12.1)

where each hij ∈ F. Notice that by putting

qij = 1/2(hij + hji),

we can always assume that the coefficients of a quadratic form are symmetric
in the sense that qij = qji for all indices i, j.
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The following Propositionpoints out an extremely simple yet very pow-
erful way of representing a quadratic form.

Proposition 12.1. For every quadratic form q over F, there exists a unique
symmetric matrix A ∈ Fn×n such that

q(x) = xTAx,

for all x ∈ Fn. Conversely, every symmetric matrix A ∈ Fn×n defines a
unique quadratic form over F by q(x) = xTAx.

Proof. This is left as an exercise.

12.1.2 Critical Point Theory

For the remainder of the the section, we will assume F is the reals R. Every
quadratic form q(x1, . . . , qn) has a critical point at the origin 0. That is,

∂q

∂xi
(0, . . . , 0) = 0,

for all i. One of the basic applications of quadratic forms is to the problem of
determining the nature of the citical point. In particular, one would usually
like to know if 0 is a max or a min or neither. In vector calculus, one usually
states the second derivative test, which says which of the possibilities occurs.

Let’s consider the two variable case. Let q(x, y) = ax2 + 2bxy + cy2,
where a, b, c ∈ R. Then

q(x, y) = (x y)

(
a b
b c

)(
x
y

)
.

The second derivative test says that if δ = det(

(
a b
b c

)
) > 0, then q has

a local minimum at 0 if a > 0 and a local maximum if a < 0. Moreover,
if δ < 0, there can’t be either a local max or min at 0. We can easily see
what’s going on. The first thing to do is to diagonalize our symmetric matrix

A =

(
a b
b c

)
.

In fact, suppose A = QDQT , where Q is orthogonal. Then q(x, y) > 0
for all (x, y) 6= 0 if and only if both eigenvalues of A are positive. Similarly,
q(x, y) < 0 for all (x, y) 6= 0 if and only if both eigenvalues of A are negative.
If the one eigenvalue is positive and the other is negative, then there neither
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inequality holds for all (x, y) 6= 0. Indeed, this follows easily by putting
(u, v) = (x, y)Q. For then

q(x, y) = (u v)

(
λ 0
0 µ

)(
u
v

)
= λu2 + µv2,

and (u, v) 6= 0 if and only if (x, y) 6= 0.

Example 12.1. Let f(x, y) = x2 + xy + y2. The associated symmetric
matrix is

A =

(
1 1/2

1/2 1

)
,

and f(x, y) = (x y)A(x y)T . Both rows sum to 3/2, so 3/2 is obviously an
eigenvalue. Since the trace of A is 2, the other eigenvalue is 1/2. Then A
can then be expressed as QDQ−1, where Q = 1√

2

(
1 1
1 −1

)
. Putting (u v) =

(x y)Q, gives f(x, y) = 3/2u2 + 1/2v2. Thus f(x, y) can be expressed as the
sum of squares 3/2u2 + 1/2v2, so Since the eigenvaluesare both positive f
has a local minimum at (0, 0).

Example 12.2. The analysis above also works on the question of determin-
ing the nature of the curve ax2 + 2bxy + cy2 = d. In the above example,

x2 + xy + y2 = 3/2u2 + 1/2v2,

provided x, y, u and v are related by

(u v) = (x y)Q.

The last equation gives (x y)T = Q(u v)T since Q is orthogonal. Now if we
consider the orthonormal basis of R2 defined by the columns q1 and q2 of
Q, this tells us (

x
y

)
= uq1 + vq2.

In other words, u and v are the coordinates of (x y)T with respect to the
orthonormal basis q1 and q2. What this means is that if instead of using
the x and y axis as he coordinate axes, if we use the coordinate axes along
q1 and q2, then the original curve looks like an ellipse. Even more, one can
certainly choose q1 and q2 such that det(Q) = 1. Then Q is a rotation,
and q1 and q2 are gotten by rotating e1 and e2 Notice that in this example,
det(Q) = −1, so we can for example instead use the rotation

Q∗ = Rπ/4 =
1√
2

(
1 −1
1 1

)
.
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The curve x2 + xy + y2 = 1 has its major and minor axes along the v and
u axes respectively.

Passing to the new expression for f(x, y) in terms of u and v is a change
of variables. The matrix Q is the change of variables matrix. In the new
uv-coordinates, the curve 3/2u2 + 1/2v2 = 1 is an ellipse.

What the above example shows is the following important fact:

Proposition 12.2. Every real quadratic form q(x1, . . . , xn) can be written
as a sum of squares

q(x1, . . . , xn) =

n∑

i=1

λir
2
i ,

where λ1, . . . , λn are the eigenvaluesof the matrix associated to q. The
coordinates r1, . . . , rn are obtained from a orthogonal change of variables,
(r1 · · · rn) = (x1 · · · xn)Q, i.e. r = QTx.

12.1.3 Positive Definite Matrices

Let’s start with a definition.

Definition 12.1. Suppose A ∈ Rn×n is symmetric and let q(x) = xAxT be
its associated quadratic form. Then we say A is positive definite if and only
if q(x) > 0 whenever x ∈ 0. Similarly, we say q is negative definite if and
only if q(x) < 0 whenever x ∈ 0. Otherwise, we say that q is indefinite.

Of course, if A is positive definite, then the quadratic form q has a
minimum at the origin and a maximum if A is negative definite. As in the
above examples, we have the

Proposition 12.3. Let A be an n× n symmetric matrix over R. Then the
associated quadratic form q(x) = xTAx is positive definite if and only if all
the eigenvalues of A are positive and negative definite if and only if all the
eigenvalues of A are negative.

Proof. This is an execise.

Example 12.3. Consider

A1 =

(
2 3
3 1

)
, A2 =

(
−7 4
4 −3

)
, A3 =

(
4 1
1 4

)
,

and denote the associated quadratic polynomials by f1, f2 and f3. Since
|A1| < 0, f1 has one positive and one negative ev, so f1 has neither a max
nor min at (0, 0). Here we say that f1 has a saddle point at (0, 0). Both
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eigenvalues of A2 are negative and both eigenvalues of A3 are positive. So
f2 has a local maximum at (0, 0) and f3 has a local minimum at (0, 0).

To decide when a real symmetric matrix is positive definite, we have
to test whether its eigenvalues are all positive or not. There are tests for
determining the signs of the roots of a polynomial, but they are somewhat
difficult to implement. For a satisfactory result, we need to return to the
LDU decomposition.

12.1.4 Positive Definite Matrices and Pivots

Suppose A ∈ Rn×n is symmetric. We now want to determine the signs of the
eigenvalues of A. If we recall the result that the characteristic polynomial of
A can be written in terms of the principal minors of A, we can ask if there
is a way of determining the signs of the eigenvalues from the behavior of
the principal minors. It turns out that there is indeed a way of doing this,
which involves the LDU decomposition of A.

Recall that if A has an LDU decomposition, say A = LDU , then in fact
U = LT , so A = LDLT . As a result, we can write q(x) = xTLDLTx, which
will allow us below to express q as a sum of squares but with non-orthogonal
axes. Note that the decomposition A = LDLT , which is found simply by
row operations, has nothing to do with the Principal Axis Theorem and
eigenvalues.

Before proceeding, here are a couple of examples.

Example 12.4. Let q(x, y, z) = x2 + 2xy + 4xz + 2y2 + 6yz + 2z2. The
associated symmetric matrix is

A =




1 1 2
1 2 3
2 3 2


 .

A routine calculation gives

L∗A =




1 1 2
0 1 1
0 0 −3


 =




1 0 0
0 1 0
0 0 −3






1 1 2
0 1 1
0 0 1


 .

Thus the LDU decomposition is

A =




1 0 0
1 1 0
2 1 1






1 0 0
0 1 0
0 0 −3






1 1 2
0 1 1
0 0 1


 ,
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and the pivots are 1,1,-3. Changing coordinates according to



u
v
w


 = U



x
y
z




gives the sum of squares expression

q(x, y, z) = (u v w)




1 0 0
0 1 0
0 0 −3





u
v
w


 = u2 + v2 − 3w2,

from which it is obvious that A is positive definite.

If we make a slight change, we run into a problem.

Example 12.5. Let q′(x, y, z) = x2 + 2xy + 4xz + y2 + 6yz + 2z2. The
associated matrix is

B =




1 1 2
1 1 3
2 3 2


 .

Subtracting the first row from the second and third gives




1 1 2
0 0 1
0 1 −1


 .

Thus, to get a symmetric reduction, we need to consider PBP T , where

P =




1 0 0
0 0 1
0 1 0


 .

The reader is asked to finish this example in Exercise 12.6.

In general, suppose a symmetric matrix A can be expressed as A =
LDLT with pivots d1, . . . , dn. Putting u = LTx, we have

q(x) = xTLDLTx = uTDu =

n∑

i=1

diu
2
i .

From this we easily get
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Proposition 12.4. Consider a real quadratic form q(x) with associated
symmetric matrix A, which admits an LDU decomposition A = LDLT with
pivots d1, . . . , dn. Then A is positive definite if and only if all the pivots are
positive and negative definite if and only if all the pivots are negative.

This classifies the positive definite matrices with an LDU decoposition.
We will now prove a result that implies every positive definite (or negative
definite) matrix has an LDU decomposition. Suppose A is positive definite.
We want to consider the sequence of matrices Am consisting of the first m
rows and columns of A. Thus Am is clearly a m × m symmetric matrix.
In fact, a key observation (left as an exercise) is that Am is also positive
definite on Rm.

Before proving the main result, let us make some comments on the pivots
of a matrix A ∈ Fn×n. Recall that if A can be written A = LDU , with
L,D,U as usual, then the mth pivot of A is the mth diagonal entry of D.
Moreover, it’s easy to see that Am = LmDmUm. This just uses the fact the
L is lower triangular and U is upper triangular. Hence the first m pivots of
A are just those of Am. Moreover, since det(L) = det(U) = 1, we see that
det(A) = det(D), so the determinant of A is the product of the pivots of A.
More importantly, we have

Proposition 12.5. Suppose det(Am) 6= 0 for each m between 1 and n.
Then A has an LDU decomposition, and in fact, the mth pivot dm of A is
given by dm = det(Am)/det(Am−1).

Proof. We will leave this proof as an exercise.

The main result about positive definite matrices is

Theorem 12.6. A real symmetric A ∈ Rn×n is positive definite if and only
if det(Am) > 0 for all indices m, 1 ≤ m ≤ n. Similarly, A is negative definite
if and only if (−1)mdet(Am) > 0 for all such indices.

Proof. Suppose first that A is positive definite. Then Am is positive definite
for each m with 1 ≤ m ≤ n. But every eigenvalue of a positive definite
matrix is positive, so the determinant of a positive definite matrix is positive.
Therefore, det(Am) > 0 for all m.

Conversely, suppose det(Am) > 0 for all m with 1 ≤ m ≤ n. I claim
this implies all pivots of A are positive. Let us prove this by induction.
Certainly, the first pivot d1 = a11 > 0. Since Am−1 is positive definite, our
induction assumption is that if m ≤ n, the pivots d1, . . . , dm−1 of Am−1 are
positive. We have to show that the mth pivot dm > 0 also. But the pivots of
Am are d1, . . . , dm−1 and (by Proposition12.5) dm = det(Am)/det(Am−1).
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Since each det(Am) > 0, this shows dm > 0. Therefore we can conclude
by induction that all pivots of A are positive. It follows that A is positive
definite.

The proof of the negative definite claims are similar and will be omitted.

Certainly the test for positivity in the above Theorem is much simpler
to apply than directly computing the signs of the eigenvalues of A. Keep in
mind however, that the simplest test is the positivity of the pivots.

Let us compute another example.

Example 12.6. Consider the matrix

A =




1 1 0 1
1 2 −1 0
0 −1 2 0
1 0 0 2


 .

By row operations using lower triangular elementary matrices of the third
kind, we get

L∗A =




1 1 0 1
0 1 −1 −1
0 0 1 −1
0 0 0 −1


 .

Hence A has an LDU decomposition, but only three pivots are positive.
Therefore A is indefinite. In this example, |A1| = |A2| = |A3| = 1 and
|A4| = −1. But to discover this, we already had to compute the pivots.
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Exercises

Exercise 12.1. Show that if A =

(
a b
b c

)
satisfies a > 0 and ac − b2 > 0,

then both eigenvaluesof A are positive. In other words, justify the second
derivative test.

Exercise 12.2. Put the matrices A,B,C in the last example into the form
LDLT .

Exercise 12.3. Decide whether g(x, y, z) = x2 + 6xy+ 2xz+ 3y2 − xz+ z2

has a max, min or neither at (0, 0, 0).

Exercise 12.4. Suppose A is a symmetric matrix such that |A| 6= 0 and
A has both positive and negative diagonal entries. Explain why A must be
indefinite.

Exercise 12.5. Show that if A is a positive definite 3×3 symmetric matrix,
then the coefficients of its characteristic polynomial alternate in sign. Also
show that if A is negative definite, the coefficients are all positive.

Exercise 12.6. Determine the signs of the eigenvaluesof B Example 12.5.

Exercise 12.7. Give an example of a 3 × 3 symmetric matrix A such that
the coefficients of the characteristic polynomial of A are all negative, but A
is not negative define. (Your answer could be a diagonal matrix.)

Exercise 12.8. Show that if A ∈ Rn×n is positive definite, then every
diagonal entry of A is positive. Also show that rA is positive definite if
r > 0 and negative definite if r < 0.

Exercise 12.9. Let A ∈ Rn×n be positive definite and suppose S ∈ Rn×n

is nonsingular.

(1) When is SAS−1 positive definite?

(2) Is SAST positive definite?

Exercise 12.10. Prove Proposition12.5.

Exercise 12.11. Describe the surface (x y z)A(x y z)T = 1 for the following
choices of A:




1 2 −1
2 0 3
3 −1 2


 ,




2 4 2
2 2 1
2 1 5


 .

(Be careful here.)
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Exercise 12.12. Suppose that F (x, y, z) is a real valued function that is
smooth near the origin and has a critical point at (0, 0, 0). Formulate the
second derivative test for F at (0, 0, 0).

Exercise 12.13. Suppose Ai = 0 for some i < n. Does this mean A has a
zero eigenvalue?

Exercise 12.14. Show that if A is positive definite or negative definite,
then A has an LDU decomposition.

Exercise 12.15. When is eA positive definite? Can eA ever be negative
definite or indefinite?

Exercise 12.16. A symmetric real matrix A is called positive semi-definite

if its quadratic formq satisfies q(x) ge0 for all x ∈ Rn. Prove that A is
positive semi-definite if and only if every eigenvalue of A is non-negative.
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12.2 Symmetric Matrices and Graph Theory

12.2.1 Introductory Remarks

The purpose of this section is to give a very brief introduction to the subject
of graph theory and to show how symmetric matrices play a fundamental
role. A graph is a structure that consists of a finite set of vertices and a
finite set of bonds or edges joining pairs of vertices. We will always assume
that any pair of vertices are joined by at most one edge, and no edge joins
a single vertex to itself.

Graphs arise in all sorts of situations. For example, one version of the
travelling salesman problem poses the following question: suppose a travel-
ling salesman has to visit n cities any one of which is conected to any other
city by a flight. Assuming the cost of the flight between any two cities is
the same, find the least expensive route. Another well known problem, this
one with an 18th century origin, was the question of whether there exists a
path which allows one to cross all seven bridges over the Prugel River in the
city of Königsberg without ever crossing the same bridge twice. This was
settled in the negative by L. Euler in 1736. Another problem with graph
theoretic connections is the problem of electrical networks which is solved
by Kirkhoff’s Laws. However, in this problem, one has to consider graphs in
a slightly different context. For more information about the above topics, I
suggest consulting Introduction to Graph Theory by B. Bollobás.

Here are some examples of graphs.

FIGURE

12.2.2 The Adjacency Matrix and Regular Graphs

Every graph has an symmetric matrix matrix with 0,1 entries called the
adjacency matrix of the graph. Let Γ be a graph with vertices labelled
v1, v2, . . . , vn. The adjacency matrixAΓ is the n× n matrix Aij with Aij is
1 if there exists an edge joining vi and vj and 0 if not. It’s clear from the
definition that Aij = Aji, so A is symmetric as claimed. For example, a
moment’s reflection tells us that the number of 1’s in the first row is the
number of edges containing v1. The same holds for any row, in fact. The
number of edges d(vi) at a vertex vi is called the degree of vi.

Many graphs have the property that any two vertices have the same de-
gree. Duch graphs are called regular. More particularly, a graph is called
k-regular if any every vertex has degree k. To test k-regularity, it is conve-
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nient to single out the vector 1n ∈ Rn all of whose components are 1. The
next Propositiondetermines which graphs are k-regular.

Proposition 12.7. A graph Γ with n vertices is k-regular if and only if
(k,1n) is an eigenpair for AΓ.

Proof. A graph Γ is k-regular if and only if every row of AΓ has exactly k 1’s,
i.e. each row sum is k. This is the same as saying (k,1n) is an eigenpair.

We can improve significantly on this result in the following way. A graph
Γ is said to be connected if any two of its vertices v, v ′ can be joined by a
path in Γ. That is, there exists a sequence of vertices x0, x1, . . . , xs such that
x0 = v, xs = v′, and xi and xi+1 are distinct vertices which lie on a common
edge for each i with 0 ≤ i ≤ r − 1.

Let ∆(Γ) denote the largest degree d(vi), and let δ(Γ) denote the smallest
d(vi). Then we have

Theorem 12.8. Let Γ be a connected graph with adjacency matrix AΓ,
and let ∆(Γ) and δ(Γ) denote respectively the maximum and minimum of
the degrees d(vi) over all vertices of Γ. Then we have the following.

(i) Every eigenvalue λ of AΓ satisfies |λ| ≤ ∆(Γ).

(ii) The largest eigenvalue λM satisfies δ(Γ) ≤ λM ≤ ∆(Γ).

(iii) Γ is k = ∆(Γ)-regular if and only if λM = ∆(Γ).

(iv) Finally, if Γ is regular, then multiplicity of λM = ∆(Γ) as an eigenvalue
is 1.

Proof. Let λ be an eigenvalue and choose an eigenvector u for λ with the
property the |uj | ≤ 1 for each component while us = 1 for some component
us. Then

|λ| = |λus| = |
∑

j

asjuj| ≤
∑

j

asj|uj | ≤
∑

j

asj ≤ ∆(Γ).

This proves (i). For (ii), recall the result of Exercise 11.13, namely if λm is
also the smallest eigenvalue of AΓ, then for any u ∈ Rn, we have

λmuTu ≤ uTAΓu ≤ λMuTu.

But certainly

1TnAΓ1n =
∑

i,j

aij ≥ nδ(Γ).
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Hence
nλM = λM1Tn1n ≥ 1TnAΓ1n ≥ nδ(Γ),

so we have (ii).
We now prove (iii). (This is the only claim which uses the hypothesis

that Γ is connected.) The claim that if Γ is ∆(Γ)-regular, then λM = ∆(Γ)
is obvious. Suppose that λM = ∆(Γ). Using the eigenvector u chosen above,
we have

∆(Γ) = ∆(Γ)us =
∑

j

asjuj ≤
∑

j

asj|uj | ≤
∑

j

asj ≤ ∆(Γ).

Hence for every j such that asj 6= 0, we have uj = 1. Since every vertex
can be joined to vs by a path, it follows that u = 1n. But this implies Γ is
∆(Γ)-regular. It also follows that the multiplicity of ∆(Γ) as an eigenvalue
is 1, which proves (iv).

Another nice application of the adjacency matrix is that it answers the
question of how many paths join two vertices vi and vj of Γ. Let us say that
a path vi = x0, x1, . . . , xr = vj with r edges has length r. Here, we don’t
require that vi and vj are distinct.

Proposition 12.9. The number of paths of length r ≥ 1 between two not
necessarily distinct vertices vi and vj of Γ is (AΓ)rij .

Proof. This is just a matter of applying the definition of matrix multiplica-
tion.

Example 12.7. Consider the connected graph with two vertices. Its adja-

cency matrix is A =

(
0 1
1 0

)
. Now Am = I2 if m is even and Am = A if m

is odd. Thus, as is easy to see directly, there is one path of any even length
from each vertex to itself and one of any odd length from each vertex to the
other.
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12.3 The QR Algorithm

12.3.1 Introduction to the QR Algorithm

The QR algorithm is an important technique for approximating eigenvalues
which is based on the fact that an invertible matrix A can be factored as A =
QR, whereQ is orthogonal andR is upper triangular with nonzero diagonals,
i.e. R ∈ GL(n,R). Although this was only proven for real matrices, we can
also use the Gram-Schmidt method for the Hermitian inner product on Cn

to establish the QR factorization for invertible complex matrices. Thus, any
element A ∈ GL(n,C) can be written in the form A = QR, where Q is
unitary and R ∈ GL(n,C) is upper triangular.

The QR algorithm starts from the QR factorization and uses the follow-
ing nice observation. If A and B are a pair of invertible n×n matrices, then
AB and BA have the same eigenvalues. In fact, AB and BA are similar,
since

A−1(AB)A = (A−1A)(BA) = BA.

Thus, A = QR and A1 = RQ have the same eigenvalues. Now A1 is still
invertible, so it also has a QR factorization A1 = Q1R1, and A2 = R1Q1

is similar to A1, hence A2 is also similar to A. Continuing in this manner,
we get a sequence of similar matrices A1, A2, A3, . . . , which in many cases
tends to an upper triangular matrix as i tends to ∞. Thus, the eigenvalues
of A will be the elements on the diagonal of the limit.

12.3.2 Proof of Convergence

To understand why the QR algorithm works, we first need to study conver-
gence in the unitary group U(n,C).

Definition 12.2. A sequence Um = (u
(m)
ij ) of unitary matrices is said to

converge if and only if all the component sequences u
(m)
ij converge. Suppose

all the component sequences u
(m)
ij converge, and let limm→∞ u

(m)
ij = xij .

Then we say that limm→∞ Um = X, where X = (xij).

Proposition 12.10. Let Um be a sequence of unitary matrices such that
limm→∞ Um exists, say limm→∞ Um = X. Then X ∈ U(n,C).

The following proof uses the fact that limits of sequences of matrices
behave exactly like limits of sequences of real or complex numbers. In par-
ticular, the product rule holds. (This isn’t verify, since the sum and product
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rules hold in C.) Since UH
mUm = In for all m, it follows that

In = lim
m→∞

UHmUm = lim
m→∞

UHm lim
m→∞

Um = XHX.

Hence, X is unitary.

The second fact we need to know is:

Proposition 12.11. Every sequence of n × n unitary matrices has a con-
vergent subsequence.

This proposition follows from the fact that the components of a unitary
matrix are bounded. In fact, since the columns of a unitary matrix U are
unit vectors in Cn, every component uij of U must satisfy |uij | ≤ 1. Thus,
every component sequence has a convergent subsequence, so every sequence
of unitary matrices has a convergent subsequence.

Now let us return to the QR algorithm. Let A = A0, A1, A2, . . . be the
sequence matrices similar to A defined above. Thus,

A0 = Q0R0,

A1 = Q−1
0 AQ0 = R0Q0 = Q1R1,

A2 = Q−1
1 Q−1

0 AQ0Q1 = R1Q1 = Q2R2, . . .

The (m+ 1)st term of this sequence is

Am+1 = U−1
m AUm = Qm+1Rm+1, (12.2)

where

Um = Q0Q1 · · ·Qm.

Each Um ∈ U(n,C), so a subsequence converges, say limm→∞ Um = X. By
Proposition 12.10, X ∈ U(n,C). Again taking the algebraic properties of
limits for granted, we see that

lim
m→∞

Am+1 = lim
m→∞

U−1
m AUm = X−1AX.

Now consider the limit on the right hand side of (12.2). Since Qm+1 =
U−1
m Um+1, it follows that

lim
m→∞

Qm+1 = lim
m→∞

Um lim
m→∞

Um+1 = X−1X = In.

Since limm→∞Am exists, limm→∞QmRm must also exist, so limm→∞Rm
exists. Call the limit T . It’s clear that T is upper triangular since each
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Rm is. Hence, we have found a unitary matrix X and an upper triangular
matrix T so that

X−1AX = T.

But this is exactly the conclusion of Schur’s Theorem, written in a slightly
different form, so we now have the second proof of this result. To summarize,
the argument above gives the following result.

Theorem 12.12. The sequence of unitary matrices Um obtained in the QR
algorithm for A ∈ GL(n,C) converges to a unitary matrixX so thatX−1AX
is upper triangular. Moreover, T = limm→∞Rm, so if the diagonal entries

of Rm are denoted r
(m)
ii and we put λi = limm→∞ r

(m)
ii , then λ1, λ2, . . . , λn

are the eigenvalues of A.

The above result can be modified so that it also applies when A is sin-
gular. For if r ∈ C is not an eigenvalue of A, then A′ = A−rIn is invertible,
so the result applies to A′. But the eigenvalues of A′ are just the eigenvalues
of A shifted by r.

12.3.3 The Power Method

There is another method for approximating the eigenvalues of a complex ma-
trix called the power method which can also be explained after we make a few
more definitions. First, define a flag F in Cn to be a sequence (F1, F2, . . . , Fn)
of subspaces of Cn such that F1 ⊂ F2 ⊂ · · · ⊂ Fn of Cn and, for all i,
dimFi = i. An ordered basis (v1,v2, . . . ,vn) of Cn is a flag basis for F if
v1,v2, . . . ,vi is a basis of Fi for each i. Given A ∈ GL(n,C), the associated
flag F(A) is the flag for which Fi is the span of the first i columns of A.
Using column operations, it is not hard to see

Proposition 12.13. Two matrices A and B in GL(n,C) have the same flag
if and only if A = BT for an upper triangular matrix T ∈ GL(n,C).

Each A ∈ GL(n,C) acts on a flag F = (F1, F2, . . . , Fn) by

AF = (AF1, AF2, . . . , AFn).

Thus elements of GL(n,C) permute flags. A flag F such that AF = F is
call a fixed flag or eigenflag for A.

Example 12.8. Let A be diagonal, say A = diag(α1, α2, . . . αn), where
αi 6= αj if i 6= j and all αi 6= 0. Let P be any permutation matrix. Then
the flag F(P ) is fixed by A, and since the eigenvalues of A are distinct, the
F(P ), where P runs over Πn (§22) are the only flags fixed by A. Hence A
has exactly n! fixed flags.
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Theorem 12.14. Let A ∈ GL(n,C). Then the sequence of flags F(Ak) for
k = 0, 1, . . . has the property that

lim
k→∞

F(Ak) = F(X),

where X ∈ U(n,C) is the unitary matrix of Schur’s Theorem such that
A = XTX−1. In particular,

lim
k→∞

F(Ak)

is a fixed flag for A.

Before giving the proof, we have to discuss the meaning of convergence
for flags, we will do so now before giving the proof. Every flag F is the flag
F(U) associated to some unitary matrix U . We will say that a sequence of
flags Fm, limm→∞ Fm = F if for each m ≥ 0, there exists a unitary matrix
Um such that:

(i) F(Um) = Fm,

(ii) limm→∞ Um exists, say it is U , and

(iii) F(U) = F.
Alternatively, we could say limm→∞ Fm = F if for each m, there exists a

flag basis v
(m)
1 ,v

(m)
2 , . . . ,v

(m)
n of Fm such that v

(m)
1 ,v

(m)
2 , . . . ,v

(m)
n converge

to a flag basis v1,v2, . . . ,vn of F as m tends to ∞.

Let us now prove the theorem. Let A be given as in the previous theorem,
and let Qi, Ri and Um all be as in that proof. The key point, which is
certainly not obvious, is that the QR factorization of Am+1 is

Am+1 = (Q0Q1 · · ·Qm−1Qm)(RmRm−1 · · ·R1R0). (12.3)

Hence, letting Tm := RmRm−1 · · ·R1R0, we have

Am+1 = UmTm.

Therefore

F(Am+1) = F(UmTm) = F(Um),

since Tm is upper triangular. But we may assume that

lim
m→∞

F(Um) = F(X).

Therefore limm→∞ F(Am) = F(X) as claimed. Since AX = XT , it is
immediate that F(X) is a fixed flag for A. To complete the proof, we
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must show (12.3). But this is just a matter of using the identities RiQi =
Qi+1Ri+1 for i = 0, 1, 2, . . . starting from

Am+1 = (Q0R0)
m+1.

Throughout the above discussion, there was no assumption that A is
diagonalizable. However, if F(X) is a fixed flag for A, then F1 is spanned
by an eigenvector of A for the eigenvalue with the largest modulus. This is,
roughly, the power method.

We can end the section with a comment about the LPDU decomposition.
The set of all flags in Cn is usually called the variety of flags in Cn, or, simply,
the flag variety of Cn. We will denote it by F(n). The LPDU decomposition
of a matrix A is actually a partition of the set of invertible n× n matrices
into what are called ”cells”, each cell consisting of all matrices with the
same permutation matrix P . The subsets of the form F(LPDU) = F(LP )
in F(n) are known as Schubert cells. They contain important geometrical
information about F(n).


