Practice Midterm Exam Math 220

Problem 1. Use Mathematics Induction to show: $\forall n \geq 4, n \in \mathbb{N}, n! \geq n^2$. (Recall: $n! = 1 \cdot 2 \cdot ... \cdot n$)

Problem 2. For each set S below, determine:

(1) int S, (2) bd S, (3) max S, (4) sup S, (5) the set S' of the accumulation points of S.

(a)
$$S = [-1, 2) \cup (2, 3)$$

(b)
$$S = \bigcup_{n=2}^{\infty} \left[-\frac{1}{n}, \frac{2}{n} \right)$$

(c)
$$S = \left\{ 1 + \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$$

(d)
$$S = \left\{ p \in \mathbb{R} \backslash \mathbb{Q} : 2$$

Problem 3. Mark "True" or "False" to each of the following statement. If true, provide a proof; if false, provide a counterexample.

(a) Let S, T be subsets of \mathbb{R} . If $S \subseteq T$, then the set of accumulation points of S is contained in the set of accumulation points of T.

(b) Let S be a subset of \mathbb{R} and let a be a lower bound of S. If $a \in S$, then S is not open.

(c) Let S,T be subsets in [0,1) and $\sup T \in [0,1)$. Then $\sup \left\{ \frac{s}{1-t} : s \in S, t \in T \right\}$ exists in \mathbb{R} .

Problem 4. Let $S_1, S_2, ..., S_n$ be subsets of \mathbb{R} . Prove that $\operatorname{int}(S_1 \cap S_2 \cap ... \cap S_n) = (\operatorname{int} S_1) \cap (\operatorname{int} S_2) \cap ... \cap (\operatorname{int} S_n)$.