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10.21 (a) Trueforn=1 and n>4. Fora =1 we have 1?2 < 11, which is true. Forn= 4 wehave 4’ =16 <
24 = 41, which is also true. Now suppose that &<k for some k> 4. Then k+1 =k(1+1/k) <
/2, since 1 + 1/k<2 < k. Thus (k+ 1) = (k+ Dk+ D < (k+DEIFY S R+ DAY =K+ DL It
follows from Theorem 10.6 that n* < ntforalln>4.
(b) True forall n € Nexceptn = 3. Verify n =1 and n = 2 separately. Then use induction on n > 4.
Note that 2k + | < 2k+ k= 3k <& when k > 3. Soiif & < 2° then
. (k+1)2=/8+2k+1Sk1+k1=21832(2")=2“'.
(c) True foralln24. Indeed, 74 = 16 < 24 = 4!, so it holds for n = 4. Now suppose 2 < k! for
some k> 4. Then

2601 = 2(2%) < 2(k!) < (k1KY = (k+ DL
1t foltows from Theorem 10.6 that 2" <n! ¥V n 2 4.
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12.5 Suppose m € S. Since m = sup S, m is an upper bound for S. Hence nr = max S. Conversely, if

m = max S, then m € S by the definition of maximun.

So suppose k> 0. Let m = sup S. Since m is an upper bound for
Now given any &> 0, since m = sup S,3seSam-glk<s.
_ £is not an upper bound for kS. Thus km is the least upper

12.7 (a) 1[k=0, then the result is trivial.
S, km is an upper bound for k5.
But then km — £ < ks, so that &m

bound for &S.

The proof that inf (&S) = k- inf S is similar.
(b) Suppose k <0 and let m = infS. Thenm<sVseS Thuskm2ks Vs e Sand km is an upper

bound for kS. Now given £>0,3s€ 83 m+ (—_‘—k-) <s. Butthen km — £< ks so thatkm — £ 1s

not an upper bound for £S. Thus km is the least upper bound for &S.
The proof that inf (kS) = k - sup S is similar.

12.12 (a) Letm =supf(D)and n=sup g(D). ThenV x € D,
(f+8)x) = fx)+gx) < m+n.
Thus m + n 1s an upper bound for (f + g)(D). It follows that the least upper bound for
(/ +g)XD) is also less than or equal to m + n. That is, sup [(f +g{D)] <m+n.
(b} LetD={0,1},f(x)=x, and g(x) =1 —x. Then /(D) =g(D)={0,1], and sup /(D) = sup g(D) =
}. ‘Buf (f +g)(D) = {1}, so that sup (f+ g)(D) =1 <2 =sup f(D) + sup g(D).
() int{(f +gXD)] = intf(D) + inf g(D). The proof is similar to part (a).

12.13 Hint in the book: Let § = {q € Q: g < x}. Then S is bounded above by x and we can let y=sup §.
Prove that y = x by showing that y <x and y > x both lead to contradictions. )
Proof: Let §= {q. € Q: g <x}. Then S is bounded above by x and we can let y =sup S. We will
prove y = x by showing y < x and x < y are not possible. .
Suppose y < x. Then by the density Theorem [2.12,3 ¢, € i i
' ; 2,12, Sv<qo<x T
being an upper bound for S. do€ @3 qocx This contradictsy
Suppose x < y. Then' by Thfeorem 12.12 again, 3¢, € Q 5 x < g, < y. Butthen V rational ¢ < x
we have g < x < ¢,. This implies ¢, is an upper bound of S that is smaller than y, a contradiction.



