- (a) True: comment in first paragraph on page 18.
 - (b) False: it's called a contradiction.
 - (c) True: comment after Practice 3.8.
 - (d) True: end of Example 3.1.
 - (e) False: must show p(n) is true for all n.
- 3.4 (a) If all violets are blue, then all roses are red.
 - (b) If H is normal, then H is not regular.
 - (c) If K is compact, then K is closed and bounded.

(a) Any real number of with ox<-2, say x=-3.

(f) n=1 or any old n.

(g) N=2 and y=18, or X=3 and Y=12

(b) there is only one counter example: X=0. In face x3+(x-1)=x+1= x3-2x20= x20 or x=±,52. Sine + 12 are not rational numbers, X=0 is the unique rational number such that $(\chi^3_{+}(\chi + 1)^2 = \chi^2 + 1)$.

3.8 Suppose $f(x_1) = f(x_2)$. That is, $3x_1 - 5 = 3x_2 - 5$. Then $3x_1 = 3x_2$, so $x_1 = x_2$.

4.4 $\chi^2 + \chi^2 = (=)$ $2\chi^2 + 3\chi^2 - 2 = 0$ $\chi = \frac{-3\pm\sqrt{3^2 + 2(-2)}}{4}$

= X=-2 or X= 2. Hene, the retrional number X Such shat X2+ 3X=1 is NOT unique.

4.6 Sulue
$$t^2 - 6xt + 9 = 0$$
 for t

to obtain $t = 3x \pm 3\sqrt{x^2 - 1}$,

Let $y = 3x + 3\sqrt{x^2 - 1}$ and $t = 3x - 3\sqrt{x^2 - 1}$, $t = x^2 + 20$ as $t = 3x + 3\sqrt{x^2 - 1}$.

Let $t = 3x + 3\sqrt{x^2 - 1}$ and $t = 3x + 3\sqrt{x^2 - 1}$. Then

 $t = x + 3x + 3\sqrt{x^2 - 1}$ and $t = 3x + 3\sqrt{x^2 - 1}$. Then

 $t = x + 3x + 3\sqrt{x^2 - 1}$ and $t = 3x + 3\sqrt{x^2 - 1}$. Then

 $t = x + 3x + 3\sqrt{x^2 - 1}$ and $t = 3x + 3\sqrt{x^2 - 1}$.

- 4.9 Hint in book: Suppose $\log_2 7$ is rational and find a contradiction. Proof: Suppose $\log_2 7 = a/b$, where a and b are integers. We may assume that a > 0 and b > 0. We have $2^{a/b} = 7$, which implies $2^a = 7^b$. But the number 2^a is even and the number 7^b is odd, a contradiction. Thus $\log_2 7$ must be irrational.
- 4.19 It is true. We may label the numbers as n, n + 1, n + 2, n + 3, and n + 4. We have the sum S = n + (n + 1) + (n + 2) + (n + 3) + (n + 4) = 5n + 10 = 5(n + 2), so that S is divisible by 5.
 - 4.22 False. Let n = 1. Then $n^2 + 4n + 8 = 13$. Any other odd n will also work.
 - 4.25 Suppose x > 0. Then $(x + 1)^2 = x^2 + 2x + 1 > x^2 + 1$, so the first inequality holds. For the second inequality, consider the difference $2(x^2 + 1) (x + 1)^2$. We have $2(x^2 + 1) (x + 1)^2 = 2x^2 + 2 x^2 2x 1 = x^2 2x + 1 = (x 1)^2 \ge 0.$ for all x, so the second inequality also holds.