Solutions & AW 10

and lim inf = 0.

(a)
$$S = \{-1, 1\}$$
, $\limsup s_n = 1$, $\liminf s_n = -1$.

(b)
$$S = \{0\}$$
, $\limsup t_n = \liminf t_n = 0$.

(c)
$$S = \{-\infty, 0\}$$
, $\limsup u_n = 0$, $\liminf u_n = -\infty$.

(d)
$$S = \{-\infty, 0, +\infty\}$$
, $\limsup v_n = +\infty$, $\liminf v_n = -\infty$.

19.5 Hints in book: the value of each limit is given, but not the derivation.

(a) This is a subsequence of
$$\left(1+\frac{1}{n}\right)^n$$
, so the limit is e .

(b)
$$\left[\left(1 + \frac{1}{n} \right)^n \right]^2 \to e^2$$

(c)
$$\left(1 + \frac{1}{n}\right)^{n-1} = \left(1 + \frac{1}{n}\right)^{-1} \left(1 + \frac{1}{n}\right)^n \to 1 \cdot e = e$$

(d)
$$\left(\frac{n}{n+1}\right)^n = \left(\frac{n+1}{n}\right)^{-n} = \left(1 + \frac{1}{n}\right)^{-n} = \left[\left(1 + \frac{1}{n}\right)^n\right]^{-1} \to e^{-1}$$

(e)
$$\left(1 + \frac{1}{2n}\right)^n = \left[\left(1 + \frac{1}{2n}\right)^{2n}\right]^{\frac{1}{2}} \rightarrow \sqrt{e}$$
 by part (a).

(f) Let
$$k = n + 1$$
. Then $s_{k-1} = \left(\frac{k+1}{k}\right)^{k+2} = \left(1 + \frac{1}{k}\right)^2 \left(1 + \frac{1}{k}\right)^k \to 1^2 \cdot e = e$.

19.6 (a) False. Let $s_n = (-1)^n n$.

- (b) True. If a sequence oscillates, then its limit inferior and limit superior are unequal. It follows that it cannot converge, for if it converged all its subsequences would converge to the same limit.
- (c) False. Let $s_n = n$.
- 19.7 (a) True. Theorem 19.7 says a bounded sequence has a convergent subsequence, and Theorem 18.12 says that the convergent subsequence is Cauchy.
 - (b) False. Let $s_n = n$.

19.11 Hint in book: Use Exercise 16.15(b).

Proof: Let (t_n) be a convergent sequence in S. By Exercise 16.15(b), it suffices to show that $t = \lim_{n \to \infty} t_n$ is in S. Since (s_n) is bounded, S is bounded, so $t \in \mathbb{R}$.

Since some subsequence of (s_n) converges to t_1 , $\exists n_1 \ni |s_{n_1} - t_1| < 1$. Likewise, $\exists n_2 > n_1 \ni$

$$|s_{n_2} - t_2| < \frac{1}{2}$$
. In general, choose $n_k > n_{k-1} \ni |s_{n_k} - t_k| < \frac{1}{k}$. It follows that

$$\left| s_{n_k} - t \right| \le \left| s_{n_k} - t_k \right| + \left| t_k - t \right| < \frac{1}{k} + \left| t_k - t \right|.$$

Thus $0 \le \lim |s_{n_k} - t| \le \lim \frac{1}{k} + \lim |t_k - t| = 0 + 0 = 0$. Hence t is the limit of the subsequence (s_{n_k}) , and so $t \in S$.

19.13 (a) Hint in book: Use Theorem 19.11.

Proof: Let $\limsup s_n = s$ and $\limsup t_n = t$. By Theorem 19.11(a), given any $\varepsilon > 0 \exists N_1 \ni n > N_1$ implies that $s_n < s + \varepsilon/2$. Likewise, $\exists N_2 \ni n > N_2$ implies that $t_n < t + \varepsilon/2$. Let $N = \max \{N_1, N_2\}$. Then n > N implies that $s_n + t_n < (s + t) + \varepsilon$. So given $\varepsilon > 0$, there are only finitely many $n \ni s_n + t_n \ge (s + t) + \varepsilon$. Thus no subsequence of $(s_n + t_n)$ can converge to anything greater than (s + t). That is, $\limsup (s_n + t_n) \le s + t$.

(b) Let $(s_n) = (1,0,1,0,...)$ and $(t_n) = (0,1,0,1,...)$.

32.4 (a) lim(-1)" does nut exist => 5(-1)" is divergent

(b)
$$\lim_{n \to 1} \frac{n}{n+1} = | \neq^{\circ} = | \leq \frac{n}{n+1}$$
 is divergent

(c)
$$\lim_{n \to +} \frac{n}{n+1} = |f^{\circ}| \Rightarrow \sum_{n \to +} \int_{n} \int_{n}$$

(d) lincos 2 dues not exist => 5 cos 2 is divergent.

(a)
$$\frac{1}{1-\frac{1}{2}}-1=\frac{3}{2}-1=\frac{1}{2}$$

(b)
$$\frac{1}{1-\frac{1}{2}}-1-\frac{1}{2}=2-1\frac{3}{4}=\frac{1}{4}$$

(f) A telescoping series with terms $\left(\frac{1/2}{2n-1} - \frac{1/2}{2n+1}\right)$. The sum is the first term: 1/2.

(h)
$$\frac{2}{n(n+2)} = \frac{1}{n} - \frac{1}{n+2}$$
. We have $\left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+2}\right) \rightarrow \frac{1}{1} + \frac{1}{2} = \frac{3}{2}$.

(i) A telescoping series with terms $\left(\frac{1}{n+1} - \frac{1}{n+2}\right)$. The sum is the first term: 1/2.

(k)
$$\frac{1}{n(n+1)(n+2)} = \frac{1/2}{n(n+1)} - \frac{1/2}{(n+1)(n+2)}$$
, so this is a telescoping series.

The sum is the first term: 1/4

(1)
$$\frac{1}{n(n+1)\cdots(n+k)} = \frac{1/k}{n(n+1)\cdots(n+k-1)} - \frac{1/k}{(n+1)(n+2)\cdots(n+k)}$$
, so this is a telescoping series.

The sum is the first term: $\frac{1/k}{1(2)(3)\cdots(1+k-1)} = \frac{1}{k(k!)}$

31.5

2

- 32.8 Since $a_n \ge 0 \ \forall n$, the sequence (s_n) of partial sums is increasing. By the Monotone Convergence Theorem 18.3, (s_n) is convergent iff it is bounded.
- 32.9 Hint in book: Rationalize the denominator and look at the partial sums. Solution: $a_n = \sqrt{n+1} - \sqrt{n}$ and $s_n = \sqrt{n+1} - 1$. Hence the series diverges to $+\infty$.
- 32.10 (a) Let s_n by the *n*th partial sum of $\sum y_n$. Then

$$s_n = \sum_{k=1}^n y_k = y_1 + y_2 + \dots + y_n$$

= $(x_1 - x_2) + (x_2 - x_3) + \dots + (x_n - x_{n+1})$
= $x_1 - x_{n+1}$.

Thus (s_n) converges iff (x_n) converges. That is $\sum y_n$ converges iff (x_n) converges.

- (b) If $\sum y_n$ converges, let $L = \lim x_n$. Then $\sum y_n = x_1 L$.
- 32.11 Hint in book: Use Theorem 32.6.

Solution: Suppose that (b_n) is bounded by M > 0 so that $|b_n| \le M$ for all n. Given $\varepsilon > 0$, Theorem 32.6 implies $\exists N \ni \text{if } n \ge m > N$, then

$$||a_m|+|a_{m+1}|+\cdots+|a_n||<\varepsilon/M.$$

Then if $n \ge m > N$ we have

$$|a_m b_m + a_{m+1} b_{m+1} + \dots + a_n b_n| \le M ||a_m| + |a_{m+1}| + \dots + |a_n|| < M(\varepsilon/M) = \varepsilon.$$

Thus $\sum a_n b_n$ is convergent by Theorem 32.6.

 33.4 (b) Let $f(x) = \chi(\ln x)(\ln \ln x)P$ f'(x) < 0 for $\chi \ge 3$. Hence, f(x) is positive and decreasing. Thus, Integral Text can be used. If $p \ne 1$, $\int_{x}^{n} \frac{d\chi}{\chi(\ln \chi)(\ln \ln \chi)P} = \frac{1}{u^{2}} \frac{du}{u^{2}} = \frac{1}{u^{2}} \frac{1}{u^{2$ = 1- ((lnlnn) - (lnln3) -) . It pollows that lim $\left(\int_{3}^{n} \frac{dx}{\chi(\ln x)(\ln \ln x)^{p}}\right)$ will be finite if p>1 and infinite if p=1. Thus, $\sum_{n=3}^{n} \frac{1}{n(\ln n)(\ln \ln n)^{p}}$ converges if pol and diverges if pol. When p=1, $\lim_{n\to\infty} \int_3^n \frac{dx}{\chi(\ln \ln x)} p =$ = lim (lorlodon n - lorlodon) = +00. Heme, the series is also divergent when p=1. by the facts whome, $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^n}$ Converges itt P>1.

4)

33.7 Hint in book: Look at the sequence (b_n/a_n) .

Solution: Since $0 < \frac{b_{n+1}}{a_{n+1}} \le \frac{b_n}{a_n} \ \forall \ n$, the sequence $\left(\frac{b_n}{a_n}\right)$ is decreasing. In particular, $\frac{b_n}{a_n} \le \frac{b_1}{a_1} \ \forall \ n$.

Thus $0 < b_n \le \frac{b_1}{a_1} a_n \ \forall \ n$, so $\sum b_n$ converges by the Comparison Test with the convergent series $\sum \frac{b_1}{a_1} a_n$.

33.9 Hint in book: Consider the series $\sum (a_{n+1} - a_n)$. Solution: The series $\sum |a_{n+1} - a_n|$ converges by comparison with $\sum b_n$, so $\sum (a_{n+1} - a_n)$ also converges by Theorem 33.5. Let $A = \sum (a_{n+1} - a_n)$. Then

$$A = \lim_{n \to \infty} \sum_{k=1}^{n} (a_{k+1} - a_k)$$

$$= \lim_{n \to \infty} [(a_2 - a_1) + (a_3 - a_2) + \dots + (a_{n+1} - a_n)]$$

$$= \lim_{n \to \infty} [a_{n+1} - a_1]$$

$$= (\lim_{n \to \infty} a_{n+1}) - a_1.$$

Thus $\lim a_n = A + a_1$ and (a_n) is convergent.

(I)