Set 1, Due: January 28, 2020

1. p. 47: 2-1.
2. p. 48: 2-9, 2-.10 (read the definition of gradient of a function, p. 27)
3. Let ∇ be an affine connection on an n-dimensional manifold M. Let $T : TM \times \cdots \times TM \to C^\infty(M)$ be a $(r,0)$-type tensor. The covariant derivative ∇T is a tensor of $r + 1, 0$-type defined by
 \[
 \nabla T(X_1, \ldots, X_r, X) = X(T(X_1, \ldots, X_r)) - T(\nabla_X X_1, \ldots, X_r) - \cdots - T(X_1, \ldots, \nabla_X X_r).
 \]
 For $X \in \Gamma(TM)$, the covariant derivative $\nabla_X T$ of T relative to X is a $(r,0)$-type tensor given by
 \[
 \nabla_X T(X_1, \ldots, X_r) = \nabla T(X_1, \ldots, X_r, X).
 \]
 Let g be a Riemannian metric on M and ∇ be the Levi-Civita connection of (M, g). Show $\nabla g = 0$.
4. Consider two parametrizations of the 2-dim torus T^2:
 (a) $F_1(\alpha, \beta) = (e^{\sqrt{-1} \alpha}, e^{\sqrt{-1} \beta}) \subset \mathbb{R}^4$
 (b) $F_2(\alpha, \beta) = ((2 + \cos \alpha) \cos \beta, (2 + \cos \alpha) \sin \beta, \sin \alpha) \subset \mathbb{R}^3$.
 Hence T^2 is equipped with two Riemannian metrics via the pullbacks by F_1, F_2. In each case, compute $[\frac{\partial}{\partial \alpha}, \frac{\partial}{\partial \beta}], \nabla \frac{\partial}{\partial \alpha}, \frac{\partial}{\partial \beta}$ where ∇ is the Levi-Civita connection in each case.
5. p.49: 2-15
6. p.50: 2-18