Homework Set 2, Math 526
 Due: February 9

(1) P.83-85: \#7, \#8, \#9, \#11
(2) Let (M, g) be a Riemannian manifold. A vector field X on M is a Killing vector field if

$$
\left(L_{X} g\right)(Y, Z):=g\left(\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right)=0\right.
$$

for all Y, Z.
(a) If X is a Killing vector field, show that ∇X is skew-symmetric as a linear map from $T_{p} M$ to $T_{p} M$ for any $p \in M$.
(b) Show: X is a Killing vector field iff the local 1-parameter group associated to X consists of local isometries of (M, g).
Remark. Any vector field Y induces an ODE $\phi^{\prime}=Y(\phi)$. The ODE has a unique solution $\phi(t, x)$ for each $x \in M$ with $\phi(0, x)=x$ on $[0, T(x))$. For $x_{0} \in M$ there exists a neighborhood U of x_{0} s.t. $\phi(t, x)$ exists on $\left[0, T_{0}\right)$ for all $x \in U$ and $(t, x) \rightarrow \phi(t, x)$ is smooth on $\left[0, T_{0}\right) \times U$. For each $t, \phi(t, \cdot)$ is a local diffeomorphism, and $\phi\left(t_{1}, \phi\left(t_{2}, x\right)\right)=\phi\left(t_{1}+t_{2}, x\right)$. The local diffeomorphisms $\phi(t, \cdot)$ form a local 1-parameter group.
(c) The Lie bracket of two Killing vector fields is still a Killing vector field.
(d) Show that the vector fields $x^{i} \frac{\partial}{\partial x^{j}}-x^{j} \frac{\partial}{\partial x^{i}}$ are Killing vector fields on $\left(\mathbb{S}^{n}, g_{\text {can }}\right)$.

