Homework Set 3, Math 526

Due: March 17 (Tuesday), 2015

(1) Let M be a Riemannian manifold s.t. for any two points $p, q \in M$ the parallel transport from p to q does not depend on the curve connecting p, q. Prove the curvature of M is zero. (Hint: use a parametrized surface $f: U \subset \mathbb{R}^{2} \rightarrow M$ and a vector field along f. We showed $\left.\frac{D}{\partial s} \frac{D}{\partial t} V-\frac{D}{\partial t} \frac{D}{\partial s} V=R\left(f_{s}, f_{t}\right) V\right)$
(2) Let $c:[0, l] \rightarrow M$ be a geodesic and X be a vector field on M s.t. $X(c(0))=0$. Show that

$$
\nabla_{c^{\prime}}\left(R\left(c^{\prime}, X\right) c^{\prime}\right)(0)=\left(R\left(c^{\prime}, X^{\prime}\right) c^{\prime}\right)(0)
$$

where $X^{\prime}=D X / d t$. (Hint: compute $\left(\nabla_{c^{\prime}} R\right)\left(c^{\prime}, X, c^{\prime}, Z\right)$ at $\left.t=0\right)$
(3) Let M be a locally symmetric space (i.e. $\nabla R=0$). Let $c:[0, l] \rightarrow M$ be a geodesic.
(a) If X, Y, Z are parallel vector fields along c, prove that $R(X, Y) Z$ is parallel along c.
(b) Perove that if M has constant sectional curvature, then M is locally symmetric.
(4) Let M be a Riemannian manifold with nonpositive sectional curvature. Prove that the conjugate locus $C(p)$ is empty, for any $p \in M$.
(5) Let c be a geodesic in a locally symmetric space $M, V=c^{\prime}(0), p=c(0)$. Define K_{v} : $T_{p} M \rightarrow T_{p} M$ by

$$
K_{V}(X)=R(V, X) V
$$

(a) Prove that K_{V} is self-adjoint.
(b) Choose an orthonormal basis e_{1}, \ldots, e_{n} of $T_{p} M$ which diagonalize K_{V} :

$$
K_{V}\left(e_{i}\right)=\lambda_{i} e_{i}, \quad i=1, \ldots, n
$$

Parallelly translating e_{1}, \ldots, e_{n} along c, show

$$
K_{c^{\prime}(t)}\left(e_{i}(t)\right)=\lambda_{i} e_{i}(t)
$$

(c) Let $J(t)=\sum X^{i}(t) e_{i}(t)$ be a Jacobi field along c. Show the Jacobi equation is equivalent to

$$
X_{t t}^{i}+\lambda_{i} X^{i}=0, \quad i=1, \ldots, n
$$

(d) Show the conjugate points of p along c are given by $c\left(k \pi / \sqrt{\lambda_{i}}\right)$, where k is a positive integer and λ_{i} is a positive eigenvalue of K_{V}.

