Homework Set 2, Math 526

Due: February 24 (Tuesday), 2014
(1) Let $=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ be the upper half plane equipped with the metric $g=\frac{d x^{2}+d y^{2}}{y^{2}}$. Set $z=x+i y$ and $f(z)=\frac{a z+b}{c z+d}$, where $a, b, c, d \in \mathbb{R}, a d-b c=1$. Show that f is an isometry of M.
(2) Show that a geodesic of $\left(\mathbb{R} P^{n}, g_{c a n}\right)$, where $g_{c a n}$ is the metric given by the canonical metric on \mathbb{S}^{n} via the 2:1 Riemainnian covering, is minimal if and only if its length is less than or equal to $\pi / 2$.
(3) Let f, g be two isometries of a connected Riemannian manifold (M, g). If $f(p)=$ $g(p), d f_{p}=d g_{p}$, show that $f=g$.
(4) Let M be a Riemannian manifold of dimension n. For any $p \in M$, show that there exists a neighbourhood U of p in M and n vector fields E_{1}, \ldots, E_{n} over U such that they are orthonormal at each point in U and $\nabla_{E_{i}} E_{j}(p)=0$ (Such a family is called a geodesic frame at p). Is it true, in general, that $\nabla_{E_{i}} E_{j}=0$ everywhere in U ?
(5) Let (M, g) be a Riemannian manifold. A vector field X on M is a Killing vector field if

$$
\left(L_{X} g\right)(Y, Z):=g\left(\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right)=0\right.
$$

for all Y, Z.
(a) If X is a Killing vector field, show that ∇X is skew-symmetric as a linear map from the tangent space at a point to itself.
(b) Show: X is a Killing vector field iff the local 1-parameter group associated to X (see, page 22, 1.C. 3 in textbook) consists of local isometries of (M, g).
(c) The Lie bracket of two Killing vector fields is still a Killing vector field.
(d) Show that the vector fields $x^{i} \frac{\partial}{\partial x^{j}}-x^{j} \frac{\partial}{\partial x^{i}}$ are Killing vector fields on $\left(\mathbb{S}^{n}, g_{\text {can }}\right)$.

