Homework Set 1, Math 526 Due: January 29, 2014

(1) Let ∇ be an affine connection on an *n*-dimensional manifold M. Let $T:TM \times$ $\cdots \times TM \to C^{\infty}(M)$ be a (r, 0)-type tensor. The covariant derivative ∇T of T is a tensor of (r+1, 0)-type defined by

 $\nabla T(X_1, ..., X_r, X) = X(T(X_1, ..., X_r)) - T(\nabla_X X_1, X_2, ..., X_r) - \dots - T(X_1, ..., \nabla_X X_r).$ For $X \in \Gamma(TM)$, the covariant derivative $\nabla_X T$ of T relative to X is a (r, 0)-type tensor given by

$$\nabla_X T(X_1, \dots, X_r) = \nabla T(X_1, \dots, X_r, X).$$

Now let ∇ be the Levi-Civita connection of (M, q). Show $\nabla q = 0$.

- (2) Write a detailed proof of Proposition 2.56 in the textbook (the proof there is almost complete).
- (3) 2.57 and write down the Riemannian metrics in the given coordinates for both a) and b).
- (4) The Klein bottle K: take a square $\{0 \le x, y \le 1\}$ in \mathbb{R}^2 and identify the opposite sides by $(0, y) \sim (1, y), (x, 0) \sim (1 - x, 1)$, the result is a closed surface.
 - (a) Prove the Klein bottle is nonorientable. (hint: consider the change of the orientation in the tangent planes along the loop $c(y) = (1/2, y), y \in [0, 1]$.
 - (b) Let M be the submanifold in the Klein bottle defined by $1/4 \le x \le 3/4, 0 \le 1/4$ y < 1. Is M orientable? Can M be embedded in \mathbb{R}^3 ?
 - (c) Read (you do not need to write it down) the discussion in the textbook (page 82-83) on geodesics of K with the flat metric.
- (5) Let $(M, \tilde{g}), (M, g)$ be two Riemannian manifolds of the same dimension. A map $p: M \to M$ is a Riemannian covering map if (i) p is a smooth covering map and (ii) p is a local isometry. For a Riemannian covering map p, \tilde{g} is necessarily the pullback metric of g by $p: \widetilde{g}(X,Y) = g(p_*X,p_*Y), \forall X,Y \in T_x\widetilde{M}, \forall x \in \widetilde{M}$ (see p.59).

Let a_1, a_2 be a basis of \mathbb{R}^2 . The basis defines a lattice $\Gamma = \{k_1a_1 + k_2a_2 : k_1, k_2 \in \mathbb{Z}\}.$ Define $T_{\Gamma} = \mathbb{R}^2 / \Gamma$ (elements in Γ are viewed as translations) and $p : \mathbb{R}^2 \to \mathbb{T}^2$ by

$$p(x_1a_1 + x_2a_2) = (e^{2\sqrt{-1}\pi x_1}, e^{2\sqrt{-1}\pi x_2}).$$

- (a) Show p induces a diffeomorphism \hat{p} from \mathbb{R}^2/Γ to \mathbb{T}^2 .
- (b) Let $\pi: \mathbb{R}^2 \to \mathbb{R}^2/\Gamma$ be the smooth covering map given by the projection. Let \hat{g}_{Γ} be the metric on \mathbb{R}^2/Γ such that π is a Riemannian covering map when \mathbb{R}^2 is equipped with \langle , \rangle . Then \hat{p} is isometric from $(\mathbb{R}^2/\Gamma, \hat{g}_{\Gamma}) \to (\mathbb{T}^2, g_{\Gamma})$ where $g_{\Gamma} = (\hat{p}^{-1})^* \hat{g}_{\Gamma}$. Check that $p^* g_{\Gamma} = \langle, \rangle$. (c) If there exists a diffeomorphism $f : (\mathbb{T}^2, g_{\Gamma_1}) \to (\mathbb{T}^2, g_{\Gamma_2})$ that satisfies

$$f^*g_{\Gamma_2} = \varphi g_{\Gamma_1}$$

where φ is a positive function on T_{Γ_1} (such a f is called a *conformal* diffeomorphism), what can you conclude about Γ_1, Γ_2 ?