Homework Set 4, Math 424
 Due: March 12, 2015

(1) Let $\phi: U \subset \mathbb{R}^{2} \rightarrow S$ be a parametrization of a surface S. $E=\left\langle\phi_{u}, \phi_{u}\right\rangle, F=$ $\left\langle\phi_{u}, \phi_{v}\right\rangle, G=\left\langle\phi_{v}, \phi_{v}\right\rangle$. Let V be a vector in $T_{p} \mathbb{R}^{3}$ where $p \in \phi(U)$. Write the projection V^{T} of V to the tangent plane $T_{p} S$ in terms of E, F, G and ϕ_{u}, ϕ_{v} (but not the cross product).
(2) Read the solution in the textbook for Exercise (12), page 96 and page 89. This shows that K can be written in terms of E, F, G and their derivatives, at least in orthogonal parametrization (i.e. $F \equiv 0$), and this is true in general parameterization as well (but more complicated) hence proves Gauss's theorema egregium. Show that there does not exist a surface with $E=G=1, F=0$ and $e=1, g=-1, f=0$ for any parametrization.
(3) Given two surfaces

$$
\begin{aligned}
\phi(u, v) & =(u \cos v, u \sin v, \log u) \\
\psi(u, v) & =(u \cos v, u \sin v, v)
\end{aligned}
$$

show that $K(\phi(u, v))=K(\psi(u, v))$ but $\psi \circ \phi^{-1}$ is not an isometry.
(4) Let S be a surface of revolution defined by $F(u, v)=(f(v) \cos u, f(v) \sin u, g(v))$.
(a) Compute E, F, G, e, f, g for S.
(b) Write down formulas for the Gauss curvature K and the mean curvature H.
(c) For the curve C given by $(0, f(v), g(v))$ in the $y z$-plane, if v is the arc length parameter, simplify your formulas for K and H.
(d) Using (c), Study surfaces of revolution with $K \equiv 1$, or 0 , or -1 .
(5) Show that if a compact orientable surface S whose Gauss map $N: S \rightarrow \mathbb{S}^{2}$ is an isometry then S must be \mathbb{S}^{2}. (You can use the fact that there exists no compact surface in \mathbb{R}^{3} such that $H \equiv 0$. Note that S is not assumed to be a surface of revolution)

