Homework Set 4, Math 424 Due: March 12, 2015

- (1) Let $\phi: U \subset \mathbb{R}^2 \to S$ be a parametrization of a surface S. $E = \langle \phi_u, \phi_u \rangle, F = \langle \phi_u, \phi_v \rangle, G = \langle \phi_v, \phi_v \rangle$. Let V be a vector in $T_p \mathbb{R}^3$ where $p \in \phi(U)$. Write the projection V^T of V to the tangent plane $T_p S$ in terms of E, F, G and ϕ_u, ϕ_v (but not the cross product).
- (2) Read the solution in the textbook for Exercise (12), page 96 and page 89. This shows that K can be written in terms of E, F, G and their derivatives, at least in orthogonal parametrization (i.e. $F \equiv 0$), and this is true in general parameterization as well (but more complicated) hence proves Gauss's theorema egregium. Show that there does not exist a surface with E = G = 1, F = 0 and e = 1, g = -1, f = 0 for any parametrization.
- (3) Given two surfaces

$$\phi(u, v) = (u \cos v, u \sin v, \log u)$$

$$\psi(u, v) = (u \cos v, u \sin v, v)$$

show that $K(\phi(u,v)) = K(\psi(u,v))$ but $\psi \circ \phi^{-1}$ is not an isometry.

- (4) Let S be a surface of revolution defined by $F(u,v) = (f(v)\cos u, f(v)\sin u, g(v))$.
 - (a) Compute E, F, G, e, f, g for S.
 - (b) Write down formulas for the Gauss curvature K and the mean curvature H.
 - (c) For the curve C given by (0, f(v), g(v)) in the yz-plane, if v is the arc length parameter, simplify your formulas for K and H.
 - (d) Using (c), Study surfaces of revolution with $K \equiv 1$, or 0, or -1.
- (5) Show that if a compact orientable surface S whose Gauss map $N: S \to \mathbb{S}^2$ is an isometry then S must be \mathbb{S}^2 . (You can use the fact that there exists no compact surface in \mathbb{R}^3 such that $H \equiv 0$. Note that S is not assumed to be a surface of revolution)