Homework Set 2, Math 424

Due: February 5, 2014

(1) Let S be the union of the two cones $C_{1}=\left\{\left(x, y, 1-\sqrt{x^{2}+y^{2}}\right): 0<x^{2}+y^{2} \leq 1\right\}$ and $C_{2}=\left\{\left(x, y,-1+\sqrt{x^{2}+y^{2}}\right): 0<x^{2}+y^{2} \leq 1\right\}$ with the two vertices deleted. Show that S is not a regular surface in \mathbb{R}^{3}. (hint: read the solution to Exercise 2.24 in the textbook)
(2) Let $U=\{(u, v): 0<u<2 \pi, 0<v<2 \pi\}$ and $f: U \rightarrow \mathbb{R}^{3}$ be the function

$$
f(u, v)=((r \cos u+a) \cos v,(r \cos u+a) \sin v, r \sin u)
$$

where $a>r>0$.
(a) Show that $(U ; f)$ is a parametrization of the torus given by rotating, about the z-axis, of the circle $(y-a)^{2}+z^{2}=r^{2}$.
(b) At the point $p=f(\pi / 3, \pi / 6)$, find the equation that defines the tangent plane $T_{p} f(U)$.
(c) Compute the first fundamental form w.r.t. this parametrization (i.e. find $E, F, G)$.
(3) Show that the tangent planes of a surface given by the graph of $z=x f(y / x), x \neq 0$, where f is a differentiable function, all pass through the origin $(0,0,0)$.
(4) Let $F: S_{1} \rightarrow S_{2}, G: S_{2} \rightarrow S_{3}$ be diffeomorphisms between regular surfaces. Prove that $G \circ F: S_{1} \rightarrow S_{3}$ is a diffeomorphism (read the last paragraph on page 43 of the textbook).
(5) Let $\alpha:(a, b) \rightarrow S$ be a regular curve in a regular surface S in \mathbb{R}^{3}. Let $(U ; \phi)$ be a parametrization of S around a point $\alpha\left(s_{0}\right) \in S, s_{0} \in(a, b)$. Let $\beta(s)=\phi^{-1} \circ \alpha(s)$, $\beta(s)=\left(\beta_{1}(s), \beta_{2}(s)\right) \in U$. Prove

$$
\left|\alpha^{\prime}(s)\right|^{2}=E \beta_{1}^{\prime}(s)^{2}+2 F \beta_{1}^{\prime}(s) \beta_{2}^{\prime}(s)+G \beta_{2}^{\prime}(s)^{2}
$$

where E, F, G are the coefficients of the first fundamental form w.r.t. the chart $(U ; \phi)$.
(6) Show the set $\{(x, y, z): \cos x+\cos y+\cos z=0\}$ is a regular surface.

