Homework 1

1. Write the following sets by listing their elements.

(a) \(A_1 = \{ x \in \mathbb{N} : x^2 < 2 \} \).
(b) \(A_2 = \{ x \in \mathbb{Z} : x^2 < 2 \} \).
(c) \(A_3 = \{ x \in \mathbb{N} : (3 \mid x) \land (x \mid 216) \} \).
(d) \(A_4 = \left\{ x \in \mathbb{Z} : \frac{x+2}{5} \in \mathbb{Z} \right\} \).
(e) \(A_5 = \{ a \in B : 6 \leq 4a + 1 < 17 \} \), where \(B = \{ 1, 2, 3, 4, 5, 6 \} \).
(f) \(A_6 = \{ x \in B : 50 < xd < 100 \text{ for some } d \in D \} \), where \(B = \{ 2, 3, 5, 7, 11, 13, \ldots \} \) and \(D = \{ 5, 10 \} \).

2. Write the following sets in set-builder notation.

(a) \(A = \{ 5, 10, 15, 20, 25, \ldots \} \).
(b) \(B = \{ \ldots, -\frac{1}{2}, 0, \frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \ldots \} \).
(c) \(C = \{ 2, 4, 16, 256, 65536, \ldots \} \).
(d) \(D = \{ 2, 3, 4, 6, 8, 9, 12, 16, 18, 24 \ldots \} \).

3. Write the following sentences in symbolic logic notation and determine whether they are true or false. Make sure to note which statements/open sentences are denoted with which letter.

Example: The sentence, “The car is red and blue but not green” can be written as \((P \land Q) \land (\sim R)\) (or \((P \land Q) \land (\sim R))\), where \(P \): “The car is red”, \(Q \): “The car is blue”, and \(R \): “The car is green”. Also, the truth value of this sentence depends on the car, so it is an open sentence, not a statement.

(a) 8 is even and 5 is prime.
(b) If \(n \) is a multiple of 4 and 5, then it is a multiple of 10.
(c) \(3 \leq x \leq 6 \).
(d) A real number \(x \) is less than \(-2\) or greater than \(2\) if its square is greater than \(4\).
(e) If a function \(f \) is differentiable everywhere then whenever \(x \in \mathbb{R} \) is a local maximum of \(f \) we have \(f'(x) = 0 \).

4. Prove the following statements.

(a) If \(n \) is even then \(n^2 + 3n + 5 \) is odd.
(b) The product of two odd numbers is odd.
(c) Let \(n, a, b, x, y \in \mathbb{Z} \). If \(n \mid a \) and \(n \mid b \), then \(n \mid (ax + by) \).
(d) Let \(n \in \mathbb{Z} \). If \(3 \mid (n - 4) \), then \(3 \mid (n^2 - 1) \).
(e) Let \(a \in \mathbb{Z} \). If \(3 \mid a \) and \(2 \mid a \), then \(6 \mid a \).

(continued)
5. Recall that *The Mean Value Theorem* states that if we have a function f which is continuous in the interval $[a, b]$ and differentiable in (a, b), then whenever $x_1, x_2 \in [a, b]$ and $x_1 \neq x_2$, we have a point $c \in (x_1, x_2)$ such that $f(x_2) = f(x_1) + f'(c)(x_2 - x_1)$.

We also say that a function, g, is *increasing* if $g(x_1) \leq g(x_2)$ whenever $x_1 \leq x_2$.

Use The Mean Value Theorem to show that if f is a differentiable function and the derivative of f is positive everywhere, then f is an increasing function.

6. **Definition**: We call a number n an *integer root* if $n^k = m$ for some $k \in \mathbb{N}$ and $m \in \mathbb{Z}$.

Use this definition to show that if a and b are integer roots, then so is ab.