1. Let R be a symmetric and transitive relation on a set A. (These assumptions apply to both parts (a) and (b) of this problem.)
 1. Show that R is not necessarily reflexive.
 2. Suppose that for every $a \in A$, there exists $b \in A$ such that aRb. Prove that R is reflexive.

2. Let R be a relation on a set A. Then $R = (A \times A) - R$ is also a relation on A. Prove or disprove each of the following statements:
 1. If R is reflexive, then \overline{R} is reflexive.
 2. If R is symmetric, then \overline{R} is symmetric.
 3. If R is transitive, then \overline{R} is transitive.

There is one additional problem, quite a challenging one, that we suggest you think about; however, you do not need to hand in your solution (it will not be graded). Talk to your instructor about your solution to this problem if you like!

- Hammack, Section 11.2, #14