The Well-Ordering Principle and its applications

- **Definition.** A nonempty subset S of \mathbb{R} is **well-ordered** if every non-empty subset of S has a smallest element.

- **The Well-Ordering Principle:** The set \mathbb{N} is well-ordered.

- **Example.** The following sets are well-ordered:
 1. $\mathbb{N} \cup \{0\}$
 2. $\mathbb{N} \cup \{-1, 0\}$
 3. $\mathbb{N} \cup \{-3, -2, -1\}$
 4. $\{n \in \mathbb{N} : n > 5\}$

- **Example.** The following sets are NOT well-ordered.
 1. \mathbb{R} (the open interval $(0, 2)$ is a non-empty subset of \mathbb{R} but it has no smallest element)
 2. \mathbb{Z} (the set of negative integers is a non-empty subset of \mathbb{Z} but with no smallest element)
 3. the interval $[0, 1]$ (because $(0, 1)$ is a non-empty subset of $[0, 1]$ without smallest element)

- **Proposition.** Every non-empty subset of a well-ordered set is well-ordered.

- **Applications**
 1. The **Division Algorithm:** Given $a, b \in \mathbb{Z}$ with $b > 0$, there exist $q, r \in \mathbb{Z}$ for which $a = qb + r$ and $0 \leq r < b$.

 Proof. Consider the set $S = \{a - xb : x \in \mathbb{Z}, a - xb \geq 0\}$.

 It holds $S \subseteq \mathbb{N} \cup \{0\}$.

 To see S is non-empty, take $x = -|a| \in \mathbb{Z}$, so

 $a - xb = a + |a|b \geq 0$

 because b is a positive integer (so $b \geq 1$), hence $a + |a|b \in S$. By the fact that $\mathbb{N} \cup \{0\}$ is well-ordered, there is a least element in S, call it r, so $r \geq 0$ and $r = a - qb$ for some $q \in \mathbb{Z}$. We now prove $r < b$. If $r \geq b$, then

 $0 \leq r - b = (a - qb) - b = a - (q + 1)b$

 would imply $r - b \in S$, which contradicts that r is the smallest in S.

 3. **Theorem.** (Principle of Mathematical Induction) For every $n \in \mathbb{N}$ let $P(n)$ be a statement. If

 (a) $P(1)$ is a true statement, and
 (b) the implication $P(k) \Rightarrow P(k + 1)$ is true for all $k \in \mathbb{N}$

 then $P(n)$ is true for all $n \in \mathbb{N}$.

 Proof. We prove by contradiction. Assume that the set $S = \{n \in \mathbb{N} : P(n) \text{ is false}\}$

 is non-empty. Then there is a least element l in S by the Well-Ordering Principle. Since $P(1)$ is true by (a), we must have $l \geq 2$. So $l - 1 \in \mathbb{N}$. Since l is the least element in S, $l - 1 \notin S$, so $P(l - 1)$ is true. Then we must have $P(l)$ is true by (b). This contradicts that $l \in S$. We conclude that $S = \emptyset$. \qed