Math 220. Homework 2. Due Friday September 23.

• Section 1.5: Problem 4. We are given: $A = \{b, c, d\}$, $B = \{a, b\}$. Before answering all the questions, we compute some of the simpler sets that appear:

$$\begin{split} A \times B &= \{(b,a), (b,b), (c,a), (c,b), (d,a), (d,b)\}; \\ B \times B &= \{(a,a), (a,b), (b,a), (b,b)\}; \\ A \cap B &= \{b\}; \\ \mathcal{P}(A) &= \{\varnothing, \{b\}, \{c\}, \{d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{b,c,d\}\}; \end{split}$$

 $\mathcal{P}(B) = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}.$ Now we are ready to answer all the questions.

- (a) $(A \times B) \cap (B \times B) = \{(b, a), (b, b)\}.$
- (b) $(A \times B) \cup (B \times B) = \{(b, a), (b, b), (c, a), (c, b), (d, a), (d, b), (a, a), (a, b)\}.$
- (c) $(A \times B) (B \times B) = \{(c, a), (c, b), (d, a), (d, b)\}.$
- (d) $(A \cap B) \times A = \{(b, b), (b, c), (b, d)\}.$
- (e) $(A \times B) \cap B = \emptyset$.
- (f) $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset, \{b\}\}.$
- (g) $\mathcal{P}(A) \mathcal{P}(B) = \{\{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}\}.$
- (h) The elements of this set are going to be, by definition, pairs of sets, and there will be $8 \cdot 4 = 32$ of them. Here they are:

$$\mathcal{P}(A) \times \mathcal{P}(B) =$$

$$\{ (\varnothing,\varnothing), (\{b\},\varnothing), (\{c\},\varnothing), (\{d\},\varnothing), (\{b,c\},\varnothing), (\{b,d\},\varnothing), (\{c,d\},\varnothing), (\{b,c,d\},\varnothing), (\{b,c\},\{a\}), (\{b\},\{a\}), (\{c\},\{a\}), (\{d\},\{a\}), (\{b,c\},\{a\}), (\{b,d\},\{a\}), (\{c,d\},\{a\}), (\{b,c,d\},\{a\}), (\{b,c\},\{a\}), (\{b,d\},\{a\}), (\{$$

 $(\varnothing,\{b\}),(\{b\},\{b\}),(\{c\},\{b\}),(\{d\},\{b\}),(\{b,c\},\{b\}),(\{b,d\},\{b\}),(\{c,d\},\{b\}),(\{b,c,d\},\{b\}),(\{b,c,d\},\{b\}),(\{b,c,d\},\{b\}),(\{b,d\},\{$

 $(\varnothing, \{a,b\}), (\{b\}, \{a,b\}), (\{c\}, \{a,b\}), (\{d\}, \{a,b\}), (\{b,c\}, \{a,b\}), (\{b,d\}, \{a,b\}), (\{c,d\}, \{a,b\}), (\{b,c,d\}, \{a,b\}, \{a,b\}$

• Section 1.5, Problem 8.

All boundary points are included unless otherwise specified.

Y-X

No part of the circle not included

This point not included,

The rest of the line is.

- Section 1.6: Problem 2. $A = \{0, 2, 4, 6, 8\}, B = \{1, 3, 5, 7\}.$ We get:
 - (a) $\overline{A} = \{1, 3, 5, 7\} = B$.
 - (b) $\overline{B} = \{0, 2, 4, 6, 8\} = A$.
 - (c) $A \cap \overline{A} = \emptyset$ (this is always true)
 - (d) $A \cup \overline{A} = U$ (this is also always true)
 - (e) $A \overline{A} = A$ (also always true because \overline{A} has no common elements with A)
 - (f) $\overline{A \cup B} = \emptyset$: in our case, $A \cup B$ is the whole set U, so there's nothing in its complement.
 - (g) $\overline{A} \cap \overline{B} = B \cap A = \emptyset$ (here the first equality is because of Parts (a) and (b); this is of course NOT always true).
 - (h) $\overline{A \cap B} = U$: here $A \cap B$ is empty, therefore its complement is the whole universal set.

(i)

$$\overline{A} \times B = \{(1,1), (1,3), (1,5), (1,7), (3,1), (3,3), (3,5), (3,7), (5,1), (5,3), (5,5), (5,7), (7,1), (7,3), (7,5), (7,7)\}.$$

1, + Problem 6

light shading: BUC dark shading: An (BUC)

Shading: A MB dats: Anc Shaded or dots: (ANB) U (Anc)

₩ A OB

The drawings suggest: An (BUC) = (ANB) U(ANC). Can you prove it?

1.7 Problem 8

AUB

we have: AUB = ANB Think of: why is this the same as De Morgan's law?

1.7 Problems 12, 14:

12: (A-B) u (CAB)

14: (A-(Buc)) U AMBAC

• Section 1.8: Problem 2.

(a) By definition of the union of an indexed collection of sets,

$$\bigcup_{i=1}^3 A_i = A_1 \cup A_2 \cup A_3.$$

Note that in this problem, $A_3 \subset A_1$, so $A_1 \cup A_3 = A_1$ (the set A_3 does not have any elements that are not already in A_1). Then

 $A_1 \cup A_2 \cup A_3 = A_1 \cup A_2 = \{0, 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 3, 6, 9, 15, 21\}.$

(b) The intersection of all three sets is:

$$\bigcap_{i=1}^3 A_i = A_1 \cap A_2 \cap A_3.$$

This is the set of elements that are common between all three sets. We get:

$$\bigcap_{i=1}^{3} A_i = A_1 \cap A_2 \cap A_3 = \{0, 12, 24\}.$$

• Section 1.8. Problem 4.

(a) $\bigcup_{i \in \mathbb{N}} A_i = \{\dots, -6, -4, -2, 0, 2, 4, 6\dots\}.$

This is the set of all even integers.

(b)
$$\bigcap_{i\in\mathbb{N}}A_i=\{0\}.$$

• Section 1.8. Problem 8. For each $\alpha \in \mathbb{R}$, the set $\{\alpha\} \times [0,1] = \{(\alpha,y): y \in [0,1] \text{ is the vertical segment connecting the points } (\alpha,0) \text{ and } (\alpha,1) \text{ on the plane (see the picture). So we see that the union of all these segments is a horizontal strip:$

$$\bigcup_{\alpha\in\mathbb{R}}\{\alpha\}\times[0,1]=\{(x,y)\in\mathbb{R}^2:0\leq y\leq 1\},$$

and their intersection is empty, since any two such segments do not have any common points.

