\[k'(x) = \frac{1 - 2x^2}{(x^2 + 1)^{5/2}} \Rightarrow \text{max curvature at } x = \frac{1}{\sqrt{2}}. \]

Normal and binormal vectors

(orthogonal unit vectors along each point on the curve)

all vectors that lie in the normal plane are \(\perp \) to the unit tangent vector \(\vec{T} \) at \(\vec{r} = \vec{r}_0 \).

ie, \[\left[(x, y, z) - \vec{r}_0 \right] \cdot \vec{T} = 0 \]

Jan. 13, 2016
plane is spanned by two vectors; choose them so that these two vectors and \(\vec{T} \) are mutually orthogonal; one vector, called the principal normal vector is

\[
\vec{N} = \frac{\vec{T}'(t)}{|\vec{T}'(t)|}, \quad \vec{T}'(t) = \frac{d\vec{T}/dt}{|d\vec{T}/dt|}
\]

\(|\vec{T}'| \neq 0 \)

plane curve

\(\vec{N}(t) \) points toward the "center" or concave side of the curve (the direction toward which \(\vec{T} \) is changing)
Recall $|\vec{T}| = 1 = \text{constant}$

\[\frac{d\vec{T}}{dt} \cdot \vec{T} = 0 = 2\vec{T} \cdot \vec{T}' \]

So $\vec{T} \perp \vec{N}$.

Choose other vector to be \perp to both \vec{N} and \vec{T} so

$\vec{B} = \vec{T} \times \vec{N}$

\uparrow Binormal vector

$|\vec{B}| = 1$, \vec{B}, \vec{T}, \vec{N} mutually \perp.

All unit vectors.

All vectors lying in the osculating plane are \perp to \vec{B};

\[[(x, y, z) - \vec{r}_0] \cdot \vec{B} = 0. \]

E.g. for a plane curve, this is just the plane that contains the curve
\(\mathbf{B} = (0, 0, 1) \)

\(\mathbf{B} \) is constant for a planar curve.

The osculating circle lies in the osculating plane, has the same tangent at \(\mathbf{r}_0 \), and has same curvature. The center of the circle located at

\[\mathbf{x} = \mathbf{r}_0 + \frac{1}{k} \mathbf{N} \]
Ex find equ of normal and osculating planes of \(\mathbf{r}(t) = (t, t^2, t^3) \) at \((1, 1, 1) \).

\[\mathbf{T}_t = 1. \]

Need to calculate \(\mathbf{T} \) and \(\mathbf{B} \)

\[\begin{align*}
\mathbf{T} &= \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{(1, 2t, 3t^2)}{\sqrt{1 + 4t^2 + 9t^4}} \\
\mathbf{T}(1) &= \frac{(1, 2, 3)}{\sqrt{14}}
\end{align*} \]

Eqn of normal plane is

\[[\mathbf{x}, y, z] - (1, 1, 1) \cdot \mathbf{T} = 0 \]

Eqn of osculating plane is

\[[\mathbf{x}, y, z] - (1, 1, 1) \cdot (1, 2, 3) = 0 \]
\[x + 2y + 3z - 6 = 0 \]

osc. plane \quad (\text{need } \vec{B} = \vec{T} \times \vec{N}).

\[\vec{N} = \frac{\vec{T}'}{1 + \vec{T}' \cdot \vec{T}'} \]

\[\frac{d\vec{T}'}{dt} = \frac{d}{dt} \left(\frac{1, 2t, 3t^2}{\sqrt{1 + 4t^2 + 9t^4}} \right) \]

\[\vec{T}'(1) = \frac{-2}{(14)^{3/2}} \left(11, 8, -9 \right) \]

so \(\vec{N} \) points in direction \((11, 8, -9) \)
the \(\vec{B} \) points in direction \((1, 2, 3) \times (11, 8, -9) = (42, -42, 14) \)

\[\text{direction of } \vec{T} \quad \text{direction of } \vec{N} \]

so eqn of plane is
\[(x, y, z) - (1, 1, 1) \cdot (42, -42, 14) = 0\]

\[3x - 3y + z - 1 = 0\]

Ex: find eqns of the osc. circle of \(y = x^{2/3}\) at \((0, 0)\) and \((1, 1/2)\)

\[\begin{align*}
 x & = 0 \\
 t & = 1 \\
 (t = 0)
\end{align*}\]

require \(\vec{N}\) and \(\vec{k}\) at each point.

\[\frac{1}{\sqrt{k}}\]

centers of the circle will be located at

\[\begin{align*}
 (0, 0) + \vec{N}(0) \frac{1}{\sqrt{k(0)}} \\
 (1, 1/2) + \vec{N}(1) \frac{1}{\sqrt{k(1)}}
\end{align*}\]
for \(k \), use

\[
k = \frac{|y''|}{(1+(y')^2)^{3/2}} = \frac{1}{(1+x^2)^{3/2}}
\]

\(k(0) = 1, \quad k(1) = \frac{1}{2\sqrt{2}} \)

for \(n \), first parameterize the curve

\[
\vec{r}(t) = (t, \frac{t^2}{2})
\]

\[
\vec{r}'(t) = (1, t) \quad \leftarrow \text{point is this direction}
\]

\[
\vec{T} = \frac{\vec{r}'(t)}{\sqrt{1+t^2}}
\]

\[
\vec{N} = \left(-t, 1 \right) \frac{\vec{N}}{\sqrt{1+t^2}}
\]

\[
\vec{N} \cdot \vec{T} \propto (1, t) \cdot (-t, 1) = 0
\]

why not \(\vec{N} = \left(t, -1 \right) \frac{\vec{N}}{\sqrt{1+t^2}} \)
\[\mathbf{N} = \frac{(-t, 1)}{\sqrt{1 + t^2}}. \]

So at \((0, 0)\) \((t = 0)\)

\[\mathbf{N} = (0, 1) \]

so center of circles located at

\[(0, 0) + \frac{1}{2} (0, 1) = (0, 1) \]

so osc. circle is

\[x^2 + (y-1)^2 = 1 \]

\[r = (t, t^{2/3}) \]

at \((1, 1/2)\) \((t = 1)\)

\[\mathbf{N} = \frac{(-1, 1)}{\sqrt{2}} \]

\[\kappa = \frac{1}{2\sqrt{2}} \]

radius = \(2\sqrt{2}\)

center located at

\[(1, 1/2) + 2\sqrt{2} \frac{(-1, 1)}{\sqrt{2}} = (-1, 5/2) \]
so osc. circle is

$$(x+1)^2 + (y-5/2)^2 = 8.$$