(1) The upper half of an ellipse defined by
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1; \quad y > 0, \]
has density \(\rho(x, y) = 2x^2y \). Denote this region \(D \).

(a) Find its mass by computing a double integral over \(D \).
(b) Find its mass by computing the line integral
\[\oint_{\partial D} \vec{F} \cdot d\vec{r} \]
for an appropriately chosen vector function \(\vec{F} \).

(2) Consider the surface \(S \) defined as the side of the cylinder \(x^2 + y^2 = 1 \) that lies above the plane \(z = 0 \) and below the plane \(x + 2y + 3z = 12 \).

(a) Find the surface area of \(S \) by computing a double integral.
(b) Consider the integral
\[I = \iint_S \nabla \times \vec{F} \cdot \hat{n} \, dS, \]
where \(\hat{n} \) denotes the outwards oriented unit normal (away from origin) of the surface \(S \). Find a vector \(\vec{G} = \nabla \times \vec{F} \) such that \(I \) yields the area of \(S \). Explain your reasoning. Hint: \(\nabla \cdot \nabla \times \vec{F} = 0 \).
(c) Verify that if we use \(\vec{F} = (zy, -xz, 0) \) in \(I \), then \(I = \text{Area}(S) \).
(d) Use Stokes’ theorem with \(\vec{F} = (zy, -xz, 0) \) in \(I \) to compute the area of \(S \).
(e) Let \(S_1 \) denote the part of the plane that lies inside the cylinder. Compute its area.
(f) Find a vector \(\vec{G}_1 = \nabla \times \vec{F}_1 \) such that
\[I_1 = \iint_{S_1} \nabla \times \vec{F}_1 \cdot \hat{n}_1 \, dS \]
yields a multiple of the area of \(S_1 \). Here, \(\hat{n} \) is the upwards oriented unit normal of the surface \(S_1 \).
(g) For \(\vec{F}_1 = (2z, 3x - z, 0) \) in \(I_1 \), compute the area of \(S_1 \) using Stokes’ theorem.

(3) Consider the vector field \(\vec{F} = (y^3 + 3x^2y, 3x, z^2) \) and the curve \(C \) that is the intersection between the surface \(z = g(x, y) \) and the cylinder \(x^2 + y^2 = 1 \). Compute the work \(W \) done along \(C \) by \(\vec{F} \),
\[W = \oint_C \vec{F} \cdot d\vec{r} \]
\((C \) is oriented clockwise when viewed from above). Does \(W \) depend on the choice of \(g(x, y) \)?