last time, one sided difference

\[
f'(x) = \frac{f(x+h) - f(x)}{h} + \frac{h}{2} f''(x) + O(h^2)
\]

\[
\begin{array}{cccccc}
 & x_1 & x_2 & x_3 & \ldots & x_N \\
\hline
x & \downarrow & \downarrow & \downarrow & \ldots & \downarrow \\
y & \uparrow & \uparrow & \uparrow & \ldots & \uparrow \\
y_1, y_2, y_3, \ldots, y_N
\end{array}
\]

terms proportional to \(h^2 \) are and smaller

\[
f'(x_1) = \frac{y_2 - y_1}{2h} \quad f'(x_2) = \frac{y_3 - y_2}{h}
\]

In Matlab,

\[
y(2:end) = [y_2, y_3, \ldots, y_N]
\]

\[
y(1:end-1) = [y_1, y_2, \ldots, y_{N-1}]
\]

\[
\frac{1}{2}(y_{2:end}) - y_{1:end-1} = [y_2 - y_1, y_3 - y_2, \ldots, y_N - y_{N-1}]
\]

\[
\Delta x \quad \Delta x
\]
gives one-sided difference at \(x = x_1, x_2, \ldots, x_{N-1} \)

when \(f(x) \) is linear, this is exact

(error is 0)
a more accurate method is called centered difference

\[f(x+h) = f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(x) + O(h^4) \]
\[f(x-h) = f(x) - hf'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f'''(x) + O(h^4) \]

\[f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{3} f'''(x) + O(h^5) \]

\[f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{\frac{h^2}{3} f'''(x)}{2h} + O(h^5) \]

\[y(3:end) - y(1:end-1) \]

\[\frac{2\Delta x}{2\Delta x} \]

second derivative add (1) + (2).

\[f''(x) + f(x-h) = 2f(x) + h^2 f''(x) + O(h^4) \]

\[f''(x) = \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} + O(h^2) \]
A gambler starts with $0 < x < 100$ dollars and keeps making bets until either he has 0 or he has 100. The probability $p(x)$ that he walks away with 100 is given by

$$p'' - w p'(x) = 0$$

$$p(0) = 0$$

$$p(100) = 1$$

where $w < 0$ is a bias toward the casino.

Set up the system of equations for a finite difference solution for $p(x)$ (assume a uniform grid)

$$p_{i-1} - 2p_i + p_{i+1} = 0$$

$$x_1 \quad x_2 \quad x_3 \quad \ldots \quad x_N$$

$$P_1 \quad P_2 \quad \ldots \quad P_N$$

Let $p(x_j) \approx p_j$ finite difference solution. We have N unknowns p_1, p_2, \ldots, p_N for $j = 2, 3, \ldots, N-2, N-1$.
\[p(x_j - h) \xleftarrow{\text{p}(x_j)} p(x_j) \xrightarrow{\text{p}(x_j + h)} \]

\[
\frac{p_{j-1} - 2p_j + p_{j+1}}{h^2} + w \frac{p_{j+1} - p_{j-1}}{2h} = 0 \quad (j = 2, \ldots, N-1)
\]

(N-2) equations

The last two equations come from the boundary conditions:

\[p_1 = 0 \quad p_N = 1 \]

\[p(0) \quad p(100) \]

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 & 0 & 0 \\
0 & b_2 & b_3 & \cdots & b_{N-1} & b_N \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & 1 \\
\end{pmatrix}
\begin{pmatrix}
p_1 \\
p_2 \\
\vdots \\
p_N \\
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
\vdots \\
0 \\
1 \\
\end{pmatrix}
\]

\[
b_+ = \frac{1}{h^2} \\
b_- = -\frac{1}{h^2}
\]
\[b_- = \frac{1}{h^2} - \frac{w}{2h} \]

\[b_+ = \frac{1}{h^2} + \frac{w}{2h} \]

\[u'' = f \]

\[u(0) = u'(1) = 0 \]

If \(\tilde{u} \) is a solution, \(\tilde{u} + C \) is also a solution.

\[u'(0) = A, \quad u'(1) = B. \]

When the value of \(u \) at the boundaries is specified, they are called Dirichlet conditions. When the value of \(u' \) is specified at the boundaries, they are called Neumann conditions.

\[\text{for } j = 2, \ldots, N-1 \]

\[u_{j-1} - 2u_j + u_{j+1} \]

\[\frac{1}{h^2} - u_j = -1 \]

\[\text{approaches for the boundary} \]

\[1) \text{ use one-sided difference at each boundary:} \]
\[\frac{u_2 - u_0}{\Delta x} = A \quad (u'(0) = A) \]

\[u_0 \quad \text{NOT } u_1 - u_0 \text{!!! sorry!} \]

\[u_N - u_{N-1} = B \Delta x \]

\[\text{NOT } -u_0 + u_1 \text{!!! sorry again...} \]

2) centered difference at the boundaries

(ghost point)

at the left boundary,

\[\frac{u_2 - u_0}{2 \Delta x} = A \Rightarrow u'(0) = A \]

\[u_0 = u_2 - 2A \Delta x \]

Next, use \(u_0 \) to compute the finite difference approx. for \(u \) at \(x = x_1 \) (which we previously could not do because we didn't have \(u_0 \))
instead of replacing \(\oplus \) by \(u''(0) \rightarrow u(0) \)
\[
\frac{u_0 - 2u_1 + u_1}{h^2} = -u_1 = -1
\]
with \(u_0 \) given as above,
\[
\frac{u_2 - 2A \Delta x \Delta x_1 - 2u_1 + u_2}{h^2} = -u_1 = -1
\]
similarly, replace \(\oplus \) by something similar.
using the ghost point \(x_{N+1} \)

Ch. 2 subspaces, bases, dimension

\(\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3, \ldots \) are examples of vector spaces. An element in each space is called a vector.
The vectors can also be functions. The space of all functions \(f(x) \) defined on \(0 \leq x \leq 1 \) is also a vector space. Here, the "vectors" are functions.
within all vector spaces, two operations are defined.

a) addition of two vectors

b) multiplication of a vector by a scalar

they satisfy the following rules (let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) be vectors of a vector space \(V \)).

1) \(\mathbf{u} + \mathbf{v} \in V \)

2) \(\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \) (commutativity)

3) \(\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} \)

4) exists a \(\mathbf{0} \) element such that \(\mathbf{u} + \mathbf{0} = \mathbf{u} \)

5) " an inverse element \(\mathbf{-u} \) s.t. \(\mathbf{u} + (-\mathbf{u}) = \mathbf{0} \)

6) if \(\mathbf{c} \) is a scalar, \(\mathbf{c} \mathbf{u} \in V \)

7) \(\mathbf{c} (\mathbf{u} + \mathbf{v}) = \mathbf{c} \mathbf{u} + \mathbf{c} \mathbf{v} \)

8) \((\mathbf{c} + \mathbf{b}) \mathbf{u} = \mathbf{c} \mathbf{u} + \mathbf{b} \mathbf{u} \) (\(\mathbf{b} \) is a scalar as is \(\mathbf{c} \))

9) \(\mathbf{c} (\mathbf{b} \mathbf{u}) = (\mathbf{c} \mathbf{b}) \mathbf{u} \)

10) \(\mathbf{1} \mathbf{u} = \mathbf{u} \)