last, started talking about the four fundamental subspaces of a matrix \(A \):

- column space \(\text{Col}(A) \) or \(\text{Col}(A) \)
- set of all vectors that are l.c.'s of the columns of \(A \).

nullspace \(\text{N}(A) \) or \(\text{Nul}(A) \)

- the set of all vectors \(\mathbf{x} \) s.t. \(A\mathbf{x} = \mathbf{0} \)

the other two spaces are \(\text{R}(A^T) \), \(\text{N}(A^T) \).

finding a basis for \(\text{N}(A) \)

Ex find a basis for \(\text{N}(A) \) where

\[
A = \begin{pmatrix}
1 & 3 & 4 & 5 & 1 \\
2 & 2 & 2 & 2 & 2 \\
1 & 2 & 2 & 4 & 7
\end{pmatrix}
\]

find all solutions of \(A\mathbf{x} = \mathbf{0} \) \(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \)
matlab \hspace{1cm} \text{rref} \left(\mathbf{A} \right) = \mathbf{U}

\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & -5 & U \\
0 & 1 & 0 & 5 & 18 & \leftarrow \\
0 & 0 & 1 & -2 & -12 & \end{array}

2 \hspace{1cm} \text{free variables}

\text{row 3:} \hspace{1cm} x_3 = 2x_4 + 12x_5

\text{row 2:} \hspace{1cm} x_2 = -5x_4 - 18x_5

\text{row 1:} \hspace{1cm} x_1 = 2x_4 + 5x_5

\mathbf{X} = \begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{pmatrix} = \begin{pmatrix}
2x_4 + 5x_5 \\
-5x_4 - 18x_5 \\
2x_4 + 12x_5 \\
x_4 \\
x_5
\end{pmatrix} =

x_4, x_5 \hspace{1cm} \text{are free}

so the solutions to \hspace{1cm} \mathbf{A} \mathbf{X} = \mathbf{0} \hspace{1cm} \text{are all possible}

l.c.'s of \{ \mathbf{u}, \mathbf{v} \}. \hspace{1cm} \text{so} \hspace{1cm} \{ \mathbf{u}, \mathbf{v} \} \hspace{1cm} \text{certainly span the}
null space. But are they l.i.? to show this, put \(u \) and \(v \) in matrix

\[
\mathbf{A} = \begin{pmatrix}
2 & 5 \\
-5 & -18 \\
2 & 12 \\
1 & 0 \\
0 & 1
\end{pmatrix}
\]

\[\mathbf{c} \]

and solve \(\mathbf{C} \mathbf{y} = 0 \)

\[
\begin{pmatrix}
2 & 5 \\
-5 & -18 \\
2 & 12 \\
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} = 0
\]

row 5: \(y_2 = 0 \)

row 4: \(y_1 = 0 \)

so \(\{u, v\} \) indeed are l.i. so forms a basis for \(N(\mathbf{A}) \)

notice: \(\dim N(\mathbf{A}) = 2 = \# \) of nonpivot columns in \(\mathbf{U} \).
Matlab: \(\text{null}(A) \rightarrow \text{get orthogonal basis for } \text{N}(A) \)

\(\text{null}(A, 'r') \rightarrow \text{get rational basis} \)

Recall that we ended up solving \(UX = 0 \) instead of \(AX = 0 \). Why is \(\text{N}(A) = \text{N}(U) \)?

Recall that row operations are performed by invertible elementary matrices \(E_j \) so that

\[
E_n E_{n-1} \ldots E_2 E_1 A = U
\]

\[
L^{-1}
\]

\[
\det L^{-1} = \det (E_n \ldots E_2 E_1) = \det E_n \det E_{n-1} \ldots \det E_1
\]

\(\neq 0 \)

So \(L^{-1} \) is invertible.

\[
L^{-1} A = U
\]

\[
A = LU
\]

So if we try to solve \(AX = 0 \)

\[
AX = LUx = 0
\]
\[\mathbf{Ux} = L^{-1} \mathbf{0} \Rightarrow \mathbf{Ux} = \mathbf{0} \]

So \(A \mathbf{x} = \mathbf{0} \) if \(\mathbf{Ux} = \mathbf{0} \)

Finding a basis for the column space.

In general, \(R(A) \) is not the same as the \(R(LU) \).

E.g. \(A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) \(R(A) = \text{span} \{ (1) \} \).

\[\mathbf{U} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \] \(R(LU) = \text{span} \{ (1) \} \).

Let \(\mathbf{U} = (u_1, u_1 a, u_1 b, \ldots, u_2, u_2 a, u_2 b, \ldots, u_k, \ldots, u_k) \) \(L^{n \times n} \)

\[\mathbf{A} = LU = (Lu_1, Lu_1 a, Lu_1 b, \ldots, Lu_2, Lu_2 a, Lu_2 b, \ldots, Lu_k, \ldots, Lu_k) \] \(\mathbf{n} \times \mathbf{m} \) \(\mathbf{n} \times \mathbf{m} \) invertible.

However, if \(\{u_1, \ldots, u_k\} \) forms a basis for \(R(U) \), then the corresponding columns of \(A \).
\{L y_1, L y_2, \ldots, L y_n\} forms a basis for \(R(A)\), why? Need to show it is l.i. set, and that it span \(R(A)\).

1) L.i. if \(\{u_1, \ldots, u_k\}\) is a l.i. set, and \(L\) is invertible, we showed last time that \(\{L u_1, \ldots, L u_k\}\) is also a l.i. set.

2) show \(\bigvee\) span \(R(A)\).

Since \(\{u_1, \ldots, u_k\}\) forms a basis for \(R(U)\), we can write any vector in \(R(U)\)

\[
U \begin{bmatrix} x_1 \\ \vdots \\ x_k \end{bmatrix} = d_1 u_1 + \cdots + d_k u_k
\]

\[
A \begin{bmatrix} x_1 \\ \vdots \\ x_k \end{bmatrix} = d_1 L u_1 + \cdots + d_k L u_k
\]

For any vector in \(R(A)\)
so any vector in \(R(A) \) can be written as a l.c. of \(\{Lyu, \ldots, Lu_n\} \).

\[\Rightarrow \text{spans } R(A) \]

1) + 2) \(\{Lyu, \ldots, Lu_n\} \) forms a basis for \(R(A) \).

Which columns of \(A \) form a basis for \(R(AU) \)? The pivot columns.

Conclusion: columns of \(A \) corresponding to pivot columns of \(U \) form a basis of \(R(A) \).

\[
EY \quad A = \begin{bmatrix} 1 & 2 & 3 & 4 & 14 \\ -3 & -6 & -9 & 2 & -7 \\ -2 & -4 & -6 & 0 & 7 \end{bmatrix}
\]

\[
\sim \begin{bmatrix} 1 & 2 & 3 & 0 & 4 \\ 0 & 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \in U
\]

\[
U_1 \quad U_1a \quad U_1b \quad U_2 \quad U_2a
\]
So a basis for \(R(A) \) is
\[
\{ \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 10 \end{pmatrix} \}.
\]

Notice: \(\dim R(A) = 2 = \# \text{ of pivot columns in } U \).

\text{Matlab}
\[
colspace(\text{sym}(A))
\]
returns some l.c. of what linear combination? HW.

\text{Rank: Let } A \text{ be } n \times m \text{ and } U = rref(A).
\[
\text{rank}(A) = \dim R(U) = \# \text{ of pivot columns in } U
\]
\[
\dim N(A) = \# \text{ of non pivot columns in } U
\]
\[
\text{rank}(A) + \dim N(A) = m \Leftrightarrow \# \text{ of column in } A.
\]

called the rank-nullity theorem
Basis for $R(A^T)$

one way: \(\text{rref}(A^T) \rightarrow \text{take pivot columns in } A^T \)

column space of A^T or row space of A

the column space of A^T is the set of all vectors y s.t.

\[
y = A^T x
\]

but recall that \(A = LU \rightarrow A^T = U^T \overline{(L^T)} \)

\[
y = A^T x = U^T \overline{(L^T)} x = U^T z
\]

\Rightarrow any vector in $R(A^T)$ (a d.c. of cols of A^T) can be written as a d.c. of the columns of U^T.

also

\[
y = U^T x = A^T (L^T)^{-1} x = A^T z
\]

\Rightarrow any vector that is a d.c. of columns of U^T can be written as a d.c. of the cols of A^T.
So the columns of U^T and cols of A^T span the same space. This means that a basis for $R(U^T)$ is also a basis of $\text{R}(A^T)$.

What is a basis for $R(U^T)$? They are the l.i. cols of U^T, which are the l.i. rows of U. But all nonzero rows of U are l.i. (because they all have pivots).

Example $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 14 \\ -3 & -6 & -9 & 2 & -7 \\ -2 & -4 & -6 & 10 & 17 \end{pmatrix}$

$U = \begin{pmatrix} 1 & 2 & 3 & 0 & 4 \\ 0 & 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

A basis for $R(A^T)$ is

\[\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 5 \end{pmatrix} \]

Clearly l.i.
every nonzero row in A has one and only one pivot.

$\Rightarrow \text{ rank } (A^T) = \dim \text{ R } (A^T) = \# \text{ nonzero rows in } A$

$= \# \text{ of pivots in } A$

$= \text{ Rank } (A)$

"Column rank = row rank"

Basis for $N(A^T)$ A is $n \times m$

first, from before,

$\text{ rank } (A) + \dim \text{ Nul } (A) = m$

$\text{ rank } (A^T) + \dim \text{ Nul } (A^T) = n$

$\Rightarrow \dim \text{ Nul } (A^T) = n - \text{ rank } (A^T)$.

how to find basis for $N(A^T)$?

just row reduce A^T. . .
orthogonality.

for \(\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \), \(\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \)

the inner product (or dot product) is

\[
\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x} = (x_1, \ldots, x_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = x_1 y_1 + \ldots + x_n y_n.
\]

remarks

1) \(\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x} \)

2) \((c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2) \cdot \mathbf{y} = c_1 \mathbf{x}_1 \cdot \mathbf{y} + c_2 \mathbf{x}_2 \cdot \mathbf{y} \)

3) the 2-norm of a vector can be written in terms of the dot product

\[
\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \ldots + x_n^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\mathbf{x}^T \mathbf{x}}
\]

4) Cauchy–Schwarz inequality

\[
|\mathbf{x} \cdot \mathbf{y}| \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \quad \Rightarrow \quad -1 \leq \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2} \leq 1.
\]
5) the angle between \(x \) and \(y \) is then defined as

\[
\cos \theta = \frac{x \cdot y}{\|x\| \|y\|}
\]

\[-1 \leq \cos \theta \leq 1\]

in 2-D and 3-D, this is the cosine law.

6) if \(\theta = \frac{\pi}{2} \), (i.e., when \(x \cdot y = 0 \)), then \(x \) and \(y \) are orthogonal to each other.

Any another way to see this: Pythagoras' theorem:

\[\|(x+y)\|^2 = \|x\|^2 + \|y\|^2\]

\(x \perp y \) iff \(\|(x+y)\|^2 = \|x\|^2 + \|y\|^2 \)

\[\|(x+y)\|^2 = (x+y) \cdot (x+y) = \|x\|^2 + 2x \cdot y + \|y\|^2\]
holds iff \(x - y = 0 \).

1) Cauchy-Schwarz inequality leads to
\[
\| x + y \| \leq \| x \| + \| y \|
\]
(triangle inequality)

4), 5), 7) proof will be posted online.

8) a) in Matlab
\[
x = [1; 2; 3]
y = [4; 5; 6].
\]
\[
\text{dot}(x, y)
\]
\[
x' + y
\]
5) two subspaces \(V \) and \(W \) are said to be orthogonal to each other if every vector in \(V \) is perpendicular to every vector in \(W \).
written \(V \perp W \)
9) the orthogonal complement \(V^\perp \) of \(V \) is the subspace containing all vectors \(\perp \) to all vectors in \(V \). This subspace is denoted \(V^\perp \).

(a) \(W = V^\perp \)

(b) \(W \neq V^\perp \) because it doesn't contain all vectors \(\perp \) to \(V \).