1) if $A \cdot x = 0$, then $A^T A \cdot x = A^T 0 = 0$

b) if $A^T A \cdot y = 0$, then $A \cdot y \in N(A^T) = R(A)^\perp$

so $A \cdot y \perp$ to every vector in $R(A)$.

$\Rightarrow (A \cdot y)^T A \cdot z = 0$ for any z

take $z = y$. Then

$$(A \cdot y)^T A \cdot y = 0$$

$\|A \cdot y\|^2 = 0 \Rightarrow A \cdot y = 0$

i.e., $A \cdot y$ must be \perp to itself, so it must be the 0 vector.

c) from a) we show that $N(A)$ is a subspace of $N(A^T A)$. from b) we show that $N(A^T A)$ is a subspace of $N(A)$.
we can conclude that \(N(A) \) and \(N(A^T A) \) are the same space.

a) If \(A x = 0 \) has only the trivial solution, then since \(A^T A \) has the same nullspace as \(A \), we must have that \(A^T A x = 0 \) has only the trivial solution. \(\Rightarrow A^T A \) is invertible.

If \(A^T A \) is invertible, \(A^T A x = 0 \) has only the trivial solution. Then \(A x = 0 \) must have only the trivial solution.

2) \(N(A) = N(A^T A) \)

But \(N(A) = R(A^T)^\perp \)

and \(N(A^T A) = R((A^T A)^T)^\perp = R(A^T A)^\perp \)

\(\Rightarrow R(A^T)^\perp = R(A^T A)^\perp \)
since \((V^\perp)^\perp = V\), take “perp” of both sides, we have then
\[R(ATA) = R(A^2A) \]

3) the columns of \(A\) must be linear combinations of the columns of \(B\), since the columns in both matrices form a basis of the same subspace.

\[\Rightarrow A = BC \]

where \(C\) is square and invertible, then
\[A(A^2A)^{-1}A^T = BC \begin{pmatrix} C^T B^T B C & \end{pmatrix}^{-1} C^T B^T \]

\[= BC C^{-1} \begin{pmatrix} B^T B \end{pmatrix}^{-1} \begin{pmatrix} C^T \end{pmatrix}^{-1} C^T B^T \]

\[= B \begin{pmatrix} B^T B \end{pmatrix}^{-1} B^T \]
the projection matrix therefore does not depend on the choice of basis.

(4) Form a matrix \(B \) whose columns are a basis for \(\text{Col}(A) \). Pick the pivot columns of \(A \):

\[
B = \begin{pmatrix}
1 & 2 \\
5 & 6 \\
-1 & 2 \\
3 & 2
\end{pmatrix}
\]

Matlab:

\[
B = \begin{bmatrix}
1 & 2 \\
5 & 6 \\
-1 & 2 \\
3 & 2
\end{bmatrix}
\]

\[
P = B \times \text{inv}(B' \times B) \times B'
\]

(1 or transpose both okay)

\[
P = \begin{pmatrix}
1/9 & 2/9 & 2/9 & 0 \\
2/9 & 7/9 & 1/9 & 3/9 \\
2/9 & 1/9 & 7/9 & -3/9 \\
\end{pmatrix}
\]
5)

a) $y - x \in N(P)$ but $N(P) = \mathbb{R}(Q)$

where $Q = I - P$ (remember that P is a projection matrix). So $y - x \in \mathbb{R}(Q)$

then $y - x = Qz$ for any vector z

\[
\begin{align*}
 y &= x + Qz \\
 y &= x + Qz
\end{align*}
\]

b) Py is the closest point. But

$Py = Px + PQz$

where $PQ = P(I - P) = P - P^2 = P - P = 0$.

so even though there are an infinity of possibilities for y, there is only one Py, i.e., one closest point in $\mathbb{R}(P)$ to x.
\[a) \quad p_i = \beta_0 + \beta_1 \log w_i \]
\[p_n = \beta_0 + \beta_1 \log w_n \]

\[
\begin{bmatrix}
\log w_1 \\
\vdots \\
\log w_n
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1
\end{bmatrix}
=
\begin{bmatrix}
p_1 \\
p_n
\end{bmatrix}
\]

\[A^T A \mathbf{c} = A^T \mathbf{p} \]

\[\mathbf{c} = (A^T A)^{-1} A^T \mathbf{p} \]

Matlab ...

\[
\begin{bmatrix}
\beta_0 = 19.5539 \\
\beta_1 = 19.6045
\end{bmatrix}
\]

\[\beta_0 + \beta_1 \log 85 = 106.6501 \]