(c) Recall that for a least squares fitting of data points \((p_1, w_1), \ldots, (p_n, w_n)\) with a quadratic function \(w(p) = ap^2 + bp + c\), we have the system
\[Au = w + \varepsilon; \quad A = \begin{pmatrix} p_1^2 & p_1 & 1 \\ \vdots & \vdots & \vdots \\ p_n^2 & p_n & 1 \end{pmatrix}, \quad u = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \quad w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}, \]

(1)

where the \(j \)-th element of \(\varepsilon \) is the error \(w(p_j) - w_j \). The normal equations (see notes) are then

\[A^T A u = A^T w, \]

(2)

which essentially states that \(A^T \varepsilon = 0 \) (see this for yourself by multiplying the left- and right-hand sides of (1) by \(A^T \) and comparing (2)). Therefore, \(\varepsilon \) is orthogonal to the column space of \(A \). Since \(e = (1, 1, \ldots, 1)^T \) is in the column space of \(A \), we must have that \(e^T \varepsilon = 0 \). Therefore, the sum of the errors is zero. MATLAB will give a value of \(O(10^{-16}) \).

(d) The maximum of \(w(p) \) located at \(p \) where \(2ap + b = 0 \), so \(p = -b/(2a) \). The coefficients \(a \) and \(b \) are computed from the least squares fit. You should have a value near \(p \approx 0.58 \) or 0.59.