2.4 - Crazy Clocks and Checking out Bars

3. a) \[16 \mod 7 = 2\] \[(7 \times 2) + 2\]
 b) \[29 \mod 7 = 3\] \[(7 \times 3) + 3\]
 c) \[16 \times 29 \mod 7\]
 \[= 16 \times 3\]
 \[= (14 + 2) \times 3\]
 \[= 2 \times 3\]
 \[= 6\]
 d) \[2 \times 3 \equiv 6\]
 e) The last two quantities are the same, which means that it doesn't matter when numbers are converted into modular equivalents.

7. a) \[3724 \mod 7 = 0\], so it will be Saturday again.
 \[
 \begin{align*}
 3724 + 200 + 24 \equiv 0 \\
 200 + 48 + 3 \\
 238 \equiv 60 + 3 \\
 63 \equiv 0
 \end{align*}

 b) \[365 \mod 7 = 1\], so it will be Sunday.
 \[
 \begin{align*}
 365 + 15 \equiv 1 \\
 380 \equiv 1
 \end{align*}

12. 0 1 6 9 0 0 0 0 3 0 3 4 is the correct UPC.
 Using \[3d_1 + d_2 + 3d_3 + d_4 \ldots \equiv 0 \mod 10:\]
 \[
 \begin{align*}
 & 0 24001 10691 3 = \\
 & 3(0 + 4 + 0 + 1 + 6 + 1) + (2 + 0 + 1 + 0 + 9 + 3) = 51 \equiv 1 \mod 10 \text{(incorrect)} \\
 & 0 10610 20110 5 = \\
 & 3(0 + 0 + 1 + 1 + 4) + (1 + 0 + 0 + 0 + 0 + 1 + 5) = 19 \equiv 9 \mod 10 \text{(incorrect)}
 \end{align*}

13. \[3d_1 + d_2 + 3d_3 \equiv 0 \mod 10\]
 \[
 \begin{align*}
 & 3(0 + 8 + 0 + 1 + 0 + 0) + (2 + 3 + 0 + 1 + 7 + \square) = 0 \mod 10 \\
 & 42 + \square = 0 \mod 10 \\
 & \text{missing digit is 8}
 \end{align*}

14.
2.6 - The Irrational Side of Numbers

12. Assume that \(\sqrt{7} \) equals a rational number \(\frac{a}{b} \), where \(a \) and \(b \) are reduced (don't have a common factor).

\[
\sqrt{7} = \frac{a}{b} \Rightarrow (\sqrt{7})^2 = \left(\frac{a}{b} \right)^2 \Rightarrow 7 = \frac{a^2}{b^2} \Rightarrow 7b^2 = a^2
\]

Therefore \(a^2 \) and \(b \) have 7 as a factor.

If \(a \) has a factor of 7, we can rewrite it as \(7n \):

\[
7b^2 = (7n)^2 = (7n)(7n) = 49n^2 \Rightarrow \frac{7b^2}{7} = 49n^2 \Rightarrow b^2 = 7n^2
\]

Therefore \(b^2 \) and \(b \) have 7 as a factor.

This is a contradiction, since we originally assumed that \(a \) and \(b \) don't have any common factors, thus \(\sqrt{7} \) must be an irrational number.

18. Assume \(E \) is a rational number \(\frac{a}{b} \).

\[
(\frac{a}{b})^2 = 8 \Rightarrow (\frac{a^2}{b^2})^2 = 8^2 \Rightarrow 13^2 = 8^2
\]

Regardless of \(a \), \(13^2 \) will always be odd, since an odd number multiplied by another odd number is always odd.

Regardless of \(b \), \(8^2 \) will always be even, since an even number multiplied by another even number is always even.

This is a contradiction, since an even number cannot equal an odd number, thus \(E \) must be an irrational number.

28. \(\pi^2 = (\pi)(\pi) \)

\(\pi \) must either be rational or irrational. Assuming that it is rational \(\left(\frac{a}{b} \right) \), where \(a \) and \(b \) represent whole numbers, \(\pi^2 = \frac{a^2}{b^2} \). \(\frac{a^2}{b^2} \) must be rational, since any whole numbers remain rational when squared; the fact that \(\pi^2 \) is irrational is then a contradiction, so \(\pi \) must also be irrational.

Rational • Rational = Rational \(\Rightarrow \pi \) cannot be rational, given that \(\pi^2 \) is irrational.
16. \[\begin{array}{c}
15.3 \text{ over} 1,500 \\
\underline{15} \\
6.5 \\
6.0 \\
\underline{5.0} \\
4.5 \\
\underline{5.0} \\
4.5 \\
\underline{5} \\
\end{array} \]
remainder is the same, so pattern repeats

\[\frac{21.5}{15} = 1.43 \]

22. \[\sqrt{5.6312} = W \]

\[\begin{array}{c}
10,000W = 56312.12 \\
- 100W = 563.12 \\
9,900W = 55,749.0 \\
9,900 \\
\end{array} \]

\[W = 5.6312 = \frac{55,749}{9,900} = \frac{18,583}{3,200} \]

24. \[\sqrt{71.239} = W \]

\[\begin{array}{c}
1000W = 71239.9 \\
- 100W = 7123.9 \\
900W = 64,116 \\
\end{array} \]

\[W = 71.239 = \frac{64,116}{900} = \frac{10,686}{150} = \frac{5343}{75} = \frac{1781}{25} \]

24. \[\sqrt{71.239} = 71.24 \]

\[\frac{7124}{100} = \frac{1781}{25} \]