Problem 1

Find all solutions to

(a) $57x \equiv 87 \mod 105$

(b) $49x \equiv 5000 \mod 999$

1a. Using the Euclidean algorithm, we have

\[
\begin{align*}
105 &= 57 + 48 \\
57 &= 48 + 9 \\
48 &= (9)(5) + 3 \\
9 &= (3)(3) + 0.
\end{align*}
\]

Therefore $\gcd(57,105) = 3 \mid 87$, and hence there are 3 incongruent solutions.

Using back substitution, we find

\[
\begin{align*}
3 &= 48 - (9)(5) \\
&= 48 - (57 - 48)(5) = (6)(48) - (57)(5) \\
&= (6)(105 - 57) - (57)(5) \\
&= (6)(105) + (-11)(57).
\end{align*}
\]

It follows that $3 = (6)(105) + (-11)(57)$ and hence, multiplying by $\frac{87}{3} = 29$, we obtain

\[
87 = 105(6 \cdot 29) + 57(-11 \cdot 29) = 105(174) + 57(-319).
\]

Modulo 105, this is

\[
57 \cdot (-319) \equiv 57 \cdot 101 \equiv 87 \mod 105.
\]

In other words, $x_0 = 101$ is a solution to $57x \equiv 87 \mod 105$. Now, all other solutions are given by

\[
x \equiv x_0 - \frac{105}{\gcd(57,105)} t = 101 - 35t \mod 105, \quad 0 \leq t \leq 2.
\]

Now, all solutions are given by

\[
x \equiv 101 \mod 105, \quad x \equiv 66 \mod 105, \quad x \equiv 31 \mod 105.
\]
1b. Using the Euclidean algorithm, we have

\[
\begin{align*}
999 &= (49)(20) + 19 \\
49 &= (19)(2) + 11 \\
19 &= (11)(1) + 8 \\
11 &= (8)(1) + 3 \\
8 &= (3)(2) + 2 \\
3 &= (2)(1) + 1 \\
2 &= (1)(2) + 0.
\end{align*}
\]

Therefore \(\gcd(49, 999) = 1 \mid 5000 \), and hence there is 1 incongruent solution.

Using back substitution, we find

\[
1 = 3 - 2 = 3 - (8 - (3)(2)) = 3(3) - 8
\]

\[
= 3(11 - 8) - 8 = 3(11) - 4(8)
\]

\[
= (3)(11) - 4(19 - 11) = (7)(11) - 4(19)
\]

\[
= 7(49 - 19(2)) - 4(19) = 7(49) - 18(19)
\]

\[
= 7(49) - 18(999 - (20)(49))
\]

\[
= (-18)(999) + (367)(49).
\]

It follows that \(1 = (-18)(999) + (367)(49) \) and hence, multiplying by \(\frac{5000}{1} = 5000 \), we obtain

\[
5000 = (999)(-18 \cdot 5000) + (49)(367 \cdot 5000) = (999)(-90000) + (49)(1835000).
\]

Modulo 999, this is

\[
49 \cdot 1835000 \equiv 49 \cdot 836 \equiv 5000 \mod 999.
\]

In other words, \(x_0 = 836 \) is a solution to \(49x \equiv 5000 \mod 999 \). Now, all solutions are given by

\[
x \equiv 836 \mod 105.
\]

Problem 2

Find all integers \(x \) which satisfy all of the following congruences simultaneously

\[
\begin{align*}
x &\equiv 1 \mod 4 \\
2x &\equiv 3 \mod 5 \\
4x &\equiv 5 \mod 7.
\end{align*}
\]

(Hint: first solve each congruence for \(x \) and then use the Chinese Remainder Theorem.)
Method 1.
Since \(x \equiv 1 \mod 4 \), we have that \(x = 1 + 4k \) for some \(k \in \mathbb{Z} \). Now, since \(2x \equiv 3 \mod 5 \), we have
\[
2x \equiv 2(1 + 4k) \equiv 2 + 3k \equiv 3 \mod 5.
\]
That is,
\[
3k \equiv 1 \mod 5
\]
so that \(k \equiv 2 \mod 5 \). Now, \(k = 2 + 5l \) for some integer \(l \). It follows that
\[
x = 1 + 4k = 1 + 4(2 + 5l) = 9 + 20l.
\]
Lastly, since \(4x \equiv 5 \mod 7 \), we have
\[
4x \equiv 4(9 + 20l) \equiv 1 + 3l \equiv 5 \mod 7,
\]
so \(3l \equiv 4 \mod 7 \). Solving this yields \(l \equiv 6 \mod 7 \) and hence
\[
x = 9 + 20l = 9 + 20(6 + 7m) = 129 + 140m
\]
for some integer \(m \). That is
\[
x \equiv 129 \mod 140.
\]

Method 2. Solving
\[
x \equiv 1 \mod 4
\]
\[
2x \equiv 3 \mod 5
\]
\[
4x \equiv 5 \mod 7.
\]
is equivalent to solving
\[
x \equiv 1 \mod 4
\]
\[
x \equiv 3 \cdot 3 \equiv 4 \mod 5
\]
\[
x \equiv 5 \cdot 2 \equiv 3 \mod 7.
\]
Let \(n_1 = 4, n_2 = 5 \) and \(n_3 = 7 \). Now, let \(m = n_1n_2n_3 = 140 \). Since \(4, 5, 7 \) are pairwise coprime, the Chinese Remainder Theorem tells us that a unique solution modulo \(m \) exists. In particular,
\[
x = b_1m_1y_1 + b_2m_2y_2 + b_3m_3y_3 \mod m,
\]
where \(b_1 = 1, b_2 = 4 \) and \(b_3 = 3 \). Further, \(m_i = m/n_i \) for \(i = 1, 2, 3 \) so that \(m_1 = 140/4 = 35, m_2 = 140/5 = 28, \) and \(m_3 = 140/7 = 20 \). Now, for \(i = 1, 2, 3 \) we have to solve \(m_iy_i \equiv 1 \mod n_i \).
\[
i = 1 : \quad 35y_1 \equiv 1 \mod 4 \implies y_1 \equiv 3 \mod 4
\]
\[
i = 2 : \quad 28y_2 \equiv 1 \mod 5 \implies y_2 \equiv 2 \mod 5
\]
\[
i = 3 : \quad 20y_3 \equiv 1 \mod 7 \implies y_3 \equiv 6 \mod 7.
\]
It follows that
\[
x = (1)(35)(3) + (4)(28)(2) + (3)(20)(6) = 689 \equiv 129 \mod 140.
Problem 3

(a) Determine whether 209 passes Miller’s test to the base 2.

(b) Determine whether 2821 is a Carmichael number.

3a. We must first determine whether 209 is a pseudoprime to the base 2. That is, we check whether

\[2^{208} \equiv 1 \mod 209. \]

Note that

\[208 = 2^7 + 2^6 + 2^4. \]

Using fast modular exponentiation, we find

\[2^2 \equiv 4 \mod 209 \]
\[2^4 \equiv 4^2 \equiv 16 \mod 209 \]
\[2^8 \equiv 16^2 \equiv 47 \mod 209 \]
\[2^{16} \equiv 47^2 \equiv 119 \mod 209 \]
\[2^{32} \equiv 119^2 \equiv 158 \mod 209 \]
\[2^{64} \equiv 158^2 \equiv 93 \mod 209 \]
\[2^{128} \equiv 93^2 \equiv 80 \mod 209. \]

Now

\[2^{208} = 2^{2^7+2^6+2^4} = 2^{128} \cdot 2^{64} \cdot 2^{16} \equiv 80 \cdot 93 \cdot 119 \equiv 36 \mod 209. \]

It follows that 209 is not a pseudoprime to the base 2, and hence fails Miller’s test.

3b. First observe that 2821 = 7 \cdot 13 \cdot 31 so that 2821 is squarefree. Now, to appeal to Korset’s criteria, we must show that for every \(p \mid 2821 \), we have that also \(p - 1 \mid 2821 - 1 \). Indeed

\[7 \mid 2821, \quad \frac{2820}{6} = 470 \]
\[13 \mid 2821, \quad \frac{2820}{12} = 235 \]
\[31 \mid 2821, \quad \frac{2820}{30} = 94. \]

Therefore, by Korset’s criteria, 2821 is a Carmichael number.

Problem 4

Let \(\phi(x) \) be the Euler \(\phi \) function.

(a) Find \(\phi(945) \) and \(\phi(144) \)

(b) Find all integers such that \(\phi(x) = 10 \).
4a.

\[\phi(945) = \phi(3^3 \cdot 5 \cdot 7) = \phi(3^3)\phi(5)\phi(7) = (3^2)(3 - 1)(5)(6) = 432. \]

Similarly,

\[\phi(144) = \phi(2^4 \cdot 3^2) = \phi(2^4)\phi(3^2) = (2^3)(2 - 1)(3)(3 - 1) = 48. \]

4b.
Suppose \(x = p_1^{a_1} \cdots p_n^{a_n} \) such that \(\phi(x) = 10 \). By definition,

\[\phi(x) = \prod_{i=1}^{n} p_i^{a_i-1}(p_i - 1) = 10. \]

Suppose first that for some \(i \in \{1, \ldots, n\} \), we have \(p_i > 11 \). Then \(10 = \phi(x) \geq p_i - 1 > 11 - 1 = 10 \), which is a contradiction. Hence, \(p_i \) must be among the primes \(\{2, 3, 5, 7, 11\} \).

Suppose further that \(p_i = 7 \). Then \(7^{a_i-1}(6) \mid 10 \), which again is a contradiction, so that \(p_i \neq 7 \). Similarly, suppose that \(p_i = 5 \). Then \(5^{a_i-1}(4) \mid 10 \), which is a contradiction so that \(p_i \neq 5 \).

Now, we have \(x = 2^a 3^b 11^c \). If \(b \geq 2 \), then \(3^{b-1} \mid 10 \), which is a contradiction, so \(b \in \{0, 1\} \). Similarly, if \(c \geq 2 \), then \(11^{c-1} \mid 10 \), a contradiction. Hence \(c \in \{0, 1\} \). Lastly, if \(a \geq 3 \), then \(2^{a-1} \mid 10 \), a contradiction, so \(a \in \{0, 1, 2\} \).

Suppose in addition that \(c = 0 \) so that \(x = 2^a 3^b \). Then \(\phi(x) = 2^{a-1}3^{b-1}(3) = 10 \), which is a contradiction as 5 clearly does not divide the left-hand-side. Hence \(c = 1 \). Now, checking all possibilities, we are left with

\[
\begin{align*}
x &= 2^0 3^0 11 = 11, \quad \Rightarrow \quad \phi(x) = \phi(11) = 10 \\
x &= 2^1 3^0 11 = 22, \quad \Rightarrow \quad \phi(x) = \phi(22) = 10 \\
x &= 2^0 3^1 11 = 33, \quad \Rightarrow \quad \phi(x) = \phi(33) = 20 \\
x &= 2^1 3^1 11 = 66, \quad \Rightarrow \quad \phi(x) = \phi(66) = 20.
\end{align*}
\]

It follows that \(x = 11, 22 \) are the only integers such that \(\phi(x) = 10 \).
Problem 5

Suppose that one digit, indicated with a question mark, in each of the following ISBN10 codes has been smudged and cannot be read. What should this missing digit be? Show your work.

(a) \(91 - 554 - 212? - 6\)
(b) \(0 - 19 - 8?3804 - 9\)

5a. For the code to be valid we need

\[
\sum_{i=1}^{10} i \cdot a_i \equiv 0 \pmod{11} \iff \begin{align*}
9 \cdot ? + 2 \cdot 1 + 3 \cdot 5 + 4 \cdot 5 + 5 \cdot 4 + 6 \cdot 2 + 7 \cdot 1 + 8 \cdot 2 + 9 \cdot ? + 10 \cdot 6 &\equiv 0 \pmod{11} \\
giving \quad 9 \cdot ? &\equiv 4 \pmod{11} \iff ? \equiv 9 \pmod{11}.
\end{align*}
\]

5b. For the code to be valid we need

\[
\sum_{i=1}^{10} i \cdot a_i \equiv 0 \pmod{11} \iff \begin{align*}
1 \cdot 0 + 2 \cdot 1 + 3 \cdot 9 + 4 \cdot 8 + 5 \cdot ? + 6 \cdot 3 + 7 \cdot 8 + 8 \cdot 0 + 9 \cdot 4 + 10 \cdot 9 &\equiv 0 \pmod{11} \\
giving \quad 5 \cdot ? &\equiv 3 \pmod{11} \iff ? \equiv 5 \pmod{11}.
\end{align*}
\]