Math 312: Selected Solutions to Homework 7

Section 7.1

Problem 2

Find the value of the Euler phi-function at each of these integers.

(e) $10!$

(f) $20!$

2e. We have

$10! = 1 \cdot 2 \cdot 3 \cdots 8 \cdot 9 \cdot 10.$

Factoring each term, we obtain

$10! = 2 \cdot 3 \cdot 2^2 \cdot 5 \cdot (2 \cdot 3) \cdot 7 \cdot 2^3 \cdot 3^2 \cdot (2 \cdot 5).$

Grouping the primes together, we obtain the factorization of $10!$

$10! = 2^8 \cdot 3^4 \cdot 5^2.$

Hence,

$\phi(10!) = \phi(2^8)\phi(3^4)\phi(5^2)\phi(7) = (2^7)(2 - 1)(3^3)(3 - 1)(5)(5 - 1)(7 - 1) = 829440.$

2f. We have

$20! = 2 \cdot 3 \cdot 2^2 \cdot 5 \cdot (2 \cdot 3) \cdot 7 \cdot 2^3 \cdot 3^2 \cdot (2 \cdot 5) \cdot 11 \cdot (2^2 \cdot 3) \cdot 13 \cdot (2 \cdot 7) \cdot (3 \cdot 5) \cdot 2^4 \cdot 17 \cdot (2 \cdot 3^2) \cdot 19 \cdot (2^2 \cdot 5).$

Grouping the primes together, we obtain the factorization of $20!$

$20! = 2^{18} \cdot 3^8 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19.$

Hence,

$\phi(20!) = \phi(2^{18})\phi(3^8)\phi(5^4)\phi(7^2)\phi(11)\phi(13)\phi(17)\phi(19)
= (2^{17})(2 - 1)(3^7)(3 - 1)(5^3)(5 - 1)(7)(7 - 1)(11 - 1)(13 - 1)(17 - 1)(19 - 1)
= 416084687585280000.$
Problem 14

For which positive integers \(n \) does \(\phi(n) \mid n \)?

Suppose \(\phi(n) \mid n \) and consider the prime factorization \(n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \) where \(a_k \geq 1 \) and \(p_i \) are distinct primes. We have

\[
\phi(n) = \prod_{i=1}^{k} p_i^{a_i-1}(p_i - 1) = p_1^{a_1-1} p_2^{a_2-1} \cdots p_k^{a_k-1} = n.
\]

Clearly if \(n = 1 \) we have \(\phi(1) = 1 \) hence \(\phi(n) \mid n \) holds trivially. Similarly, if \(n = 2 \) we have \(\phi(n) = 1 \) and therefore \(\phi(n) \mid n \).

Suppose now that \(n > 2 \). Since \(n \) now must contain a prime factor larger than 2, by the formula

\[
\phi(n) = \prod_{i=1}^{k} p_i^{a_i-1}(p_i - 1),
\]

we observe that \(\phi(n) \) is necessarily even. Now, since \(\phi(n) \mid n \), this means that \(p_1 = 2 \) must appear as a factor of \(n \). That is, \(n = 2^{a_1} p_2^{a_2} \cdots p_k^{a_k} \).

Suppose further that \(n > 2 \) has two odd prime factors, \(p_2, p_3 \). If \(a_2 > 0 \) and \(a_3 > 0 \), then \(p_2 - 1 \) and \(p_3 - 1 \) are even and so \(\phi(n) \) has two factors of 2 as well as the factor \(2^{a_1-1} \). That is, \(\phi(n) \) has a factor of \(2^{a_1-1+2} = 2^{a_1+1} \). Since \(\phi(n) \mid n \), this means \(2^{a_1+1} \mid n \), a contradiction since \(n = 2^{a_1} p_2^{a_2} \cdots p_k^{a_k} \).

It follows that \(n = 2^{a_1} p_2^{a_2} \) for some prime \(p_2 > 2 \). Now, \(\phi(n) = 2^{a_1-1} p_2^{a_2-1}(p_2 - 1) \), where \(p_2 - 1 \) is even. Since \(\phi(n) \mid n \), the only prime factors which can show up in \(\phi(n) \) are 2 and \(p_2 \). This means that \(p_2 - 1 \) must be a power of 2, say \(p_2 - 1 = 2^l \) for some \(l \). Now,

\[
\phi(n) = 2^{a_1-1} p_2^{a_2-1}(p_2 - 1) = 2^{a_1-1+l} p_2^{a_2-1} | 2^{a_1} p_2^{a_2}.
\]

This forces \(l = 1 \) and \(p_2 = 3 \). That is, \(n = 2^{a_1} 3^{a_2} \), where \(a_2 \geq 0 \) and \(a_3 \geq 0 \).

Section 7.2

Problem 2

Find the number of positive integer divisors of each of these integers.

(e) \(2 \cdot 3^2 \cdot 5^3 \cdot 7^4 \cdot 11^5 \cdot 13^4 \cdot 17^5 \cdot 19^5 \)

(f) 20!
2e. The number of positive integer divisors is denoted by the function τ, which is a multiplicative function such that $\tau(p^a) = a + 1$. It follows that

$$\tau(2 \cdot 3^2 \cdot 5^3 \cdot 7^4 \cdot 11^5 \cdot 13^4 \cdot 17^5 \cdot 19^5) = \tau(2)\tau(3^2)\tau(5^3)\tau(7^4)\tau(11^5)\tau(13^4)\tau(17^5)\tau(19^5)$$

$$= (1 + 1) \cdot (2 + 1) \cdot (3 + 1) \cdot (4 + 1) \cdot (5 + 1) \cdot (4 + 1) \cdot (5 + 1) \cdot (5 + 1)$$

$$= 129600.$$

2f. The number of positive integer divisors is denoted by the function τ, which is a multiplicative function such that $\tau(p^a) = a + 1$. Now

$$20! = 2 \cdot 3 \cdot 2^2 \cdot 5 \cdot (2 \cdot 3) \cdot 7 \cdot 2^3 \cdot 3^2 \cdot (2 \cdot 5) \cdot 11 \cdot (2^2 \cdot 3) \cdot 13 \cdot (2 \cdot 7) \cdot (3 \cdot 5) \cdot 2^4 \cdot 17 \cdot (2 \cdot 3^2) \cdot 19 \cdot (2^2 \cdot 5).$$

Grouping the primes together, we obtain the factorization of $20!$

$$20! = 2^{18} \cdot 3^8 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19.$$

It follows that

$$\tau(20!) = \tau(2^{18})\tau(3^8)\tau(5^4)\tau(7^2)\tau(11)\tau(13)\tau(17)\tau(19)$$

$$= (18 + 1) \cdot (8 + 1) \cdot (4 + 1) \cdot (2 + 1) \cdot (1 + 1) \cdot (1 + 1) \cdot (1 + 1) \cdot (1 + 1)$$

$$= 41040.$$

Problem 4

For which positive integers n is the sum of divisors of n odd?

Let $n \in \mathbb{Z}_{>0}$ and consider its prime decomposition $n = 2^d p_1^{d_1} \cdots p_r^{d_r}$, where p_i are distinct odd primes. As σ is multiplicative, we have

$$\sigma(n) = \sigma(2^d)\sigma(p_1^{d_1}) \cdots \sigma(p_r^{d_r}).$$

Thus $\sigma(n)$ is odd if and only if all its factors above, which are of the form $\sigma(p^k)$ where p is a prime, are odd. For any prime p we have $\sigma(p^k) = 1 + p + \cdots + p^k$ which is odd if and only if $p + \cdots + p^k$ is even. This is the case when $p = 2$ or if p is odd but we have an even number of odd terms in the sum, that is k even.

Thus $\sigma(n)$ is odd if and only if each odd prime p dividing n occurs with an even exponent in the prime factorization of n. That is, the sum of the divisors of n is odd if and only if n is of the form $n = 2^d p_1^{d_1} \cdots p_r^{d_r}$ with $d_i = 2d_i'$ for all i. Equivalently, when n is of the form $2^d m^2$ for some odd integer m.

Problem 6

Find the smallest positive integer n with $\tau(n)$ equal to each of these integers.

(e) 14

(f) 100
6e. If \(n = p_1^{a_1} \cdots p_k^{a_k} \) is the prime factorization of \(n \), then

\[
14 = \tau(n) = (a_1 + 1) \cdot (a_2 + 1) \cdots (a_k + 1).
\]

Note that 14 factors into a product of positive integers in only two ways,

\[
14 = 1 \cdot 14 = 2 \cdot 7.
\]

This corresponds to \(k = 1 \) and \(a_1 = 13 \) or to \(k = 2 \) and \(a_1 = 6 \) and \(a_2 = 1 \). Hence

\[
n = p_1^{13} \quad \text{or} \quad n = p_1^6 p_2
\]

where \(p_1, p_2 \) are different primes. The smallest solution in each case is

\[
n = 2^{13} = 8192 \quad \text{or} \quad n = 2^6 \cdot 3 = 192.
\]

Hence the smallest integer such that \(\tau(n) = 14 \) is \(n = 192 \).

6f. If \(n = p_1^{a_1} \cdots p_k^{a_k} \) is the prime factorization of \(n \), then

\[
100 = \tau(n) = (a_1 + 1) \cdot (a_2 + 1) \cdots (a_k + 1).
\]

Note that 100 factors into a product of positive integers in only 9 ways,

(1) \(2 \cdot 2 \cdot 5 \cdot 5 \)
(2) \(2 \cdot 2 \cdot 25 \)
(3) \(4 \cdot 5 \cdot 5 \)
(4) \(2 \cdot 5 \cdot 10 \)
(5) \(2 \cdot 50 \)
(6) \(4 \cdot 25 \)
(7) \(5 \cdot 20 \)
(8) \(10 \cdot 10 \)
(9) \(1 \cdot 100 \)

Respectively, this corresponds to

(1) \(k = 4 \) and \(a_1 = 1, a_2 = 1, a_3 = 4, a_4 = 4 \). Hence \(n = p_1 p_2 p_3^4 p_4^2 \)
(2) \(k = 3 \) and \(a_1 = 1, a_2 = 1, a_3 = 24 \). Hence \(n = p_1 p_2 p_3^{24} \)
(3) \(k = 3 \) and \(a_1 = 3, a_2 = 4, a_3 = 4 \). Hence \(n = p_1^3 p_2^2 p_3^4 \)
(4) \(k = 3 \) and \(a_1 = 1, a_2 = 4, a_3 = 9 \). Hence \(n = p_1 p_2^2 p_3^6 \)
(5) \(k = 2 \) and \(a_1 = 1, a_2 = 49 \). Hence \(n = p_1 p_2^{49} \)
(6) \(k = 2 \) and \(a_1 = 3, a_2 = 24 \). Hence \(n = p_1^3 p_2^{24} \)
(7) \(k = 2 \) and \(a_1 = 4, a_2 = 19 \). Hence \(n = p_1^4 p_2^{19} \)
(8) \(k = 2 \) and \(a_1 = 9, a_2 = 9 \). Hence \(n = p_1^3 p_2^9 \)
(9) \(k = 1 \) and \(a_1 = 99 \). Hence \(n = p_1^{99} \)

Here, \(p_1, p_2, p_3, p_4 \) are different primes. The smallest solution in each case is

(1) \(n = 2^4 \cdot 3^4 \cdot 5 \cdot 7 = 45360. \)
(2) \(n = 2^6 \cdot 3 \cdot 5 = 25165824. \)
(3) \(n = 2^4 \cdot 3^4 \cdot 5^3 = 162000. \)
(4) \(n = 2^9 \cdot 3^4 \cdot 5 = 207360. \)
(5) \(n = 2^{49} \cdot 3. \)
(6) \(n = 2^{24} \cdot 3^4 = 452984832. \)
(7) \(n = 2^{19} \cdot 3^4 = 42467328. \)
(8) \(n = 2^9 \cdot 3^4 \cdot 5 = 10077696. \)
(9) \(n = 2^{99}. \)

Hence the smallest integer such that \(\tau(n) = 100 \) is \(n = 45360 \).
Section 7.3

Problem 18

Show that $30240 = 2^5 \cdot 3^3 \cdot 5 \cdot 7$ is 4-perfect.

Recall that an integer n is called k-perfect if $\sigma(n) = kn$. Recall further that $\sigma(p^a) = \frac{p^{a+1}-1}{p-1}$ where p is prime. Hence, we compute

\[
\sigma(30240) = \sigma(2^5)\sigma(3^3)\sigma(5)\sigma(7)
= \frac{2^6 - 1}{2 - 1} \cdot \frac{3^4 - 1}{3 - 1} \cdot \frac{5^2 - 1}{5 - 1} \cdot \frac{7^2 - 1}{7 - 1}
= 63 \cdot 40 \cdot 6 \cdot 8
= 120960
= 4 \cdot 30240.
\]