THE UNIVERSITY OF BRITISH COLUMBIA

Math 102 Section 101

No calculators or notes allowed Midterm begins at 10:00am and ends at 10:50am

MIDTERM 2

November 9, 2009

Solutions

NAME

STUDENT NUMBER

- 1. A certain cell culture grows exponentially. It takes 7 hours to double in size. Initially the culture weighs 5 grams and as time goes by the weight is w(t).
 - [10] (a) What is the weight of the culture after one day?

[10] (b) How long will it take until the weight is 500 grams?

a)
$$w(7) = 2w_0 = 10$$
 $w(7) = 2w_0 = w_0 e^{R(7)}$

$$2 = e^{7R} \quad ln 2 = ln e^{7R} = 7R \quad k = \frac{ln 2}{7}$$

$$w(24) = 5e^{\frac{(ln^2)}{7}24} = 5e^{\frac{(ln^2)}{7}24} \quad \text{(can also write this as with)} = 1$$

b)
$$500 = 5e^{\frac{4n^2}{7}t}$$

 $100 = e^{\frac{4n^2}{7}t}$ $en 100 = en e^{\frac{4n^2}{7}t}$
 $en 100 = \frac{2n^2}{7}t$ $en 100$
 $en 100$

[Alternatively can write $100 = (e^{4n2})^{t/7}$ and $100 = 2^{47}$ and $109_2100 = 109_22^{47} = (109_22)^{t/7} = 47$ and 109_2100]

[20] 2. Suppose that when two fish are at distance x > 0 from one another, they are attracted with force F_a and repelled with force F_r given by

$$F_a = 3e^{-\frac{4}{3}y}$$

$$F_r = 5e^{-\frac{4}{3}x}$$

Find the distance at which the forces exactly balance.

$$3e^{-x/4} = 5e^{-x/2}$$

$$e^{-x/4} = 5/3 e^{-x/2}$$

$$e^{-x/4} = 5/3 e^{-x/2+x/2} = 5/3$$

$$e^{x/4+x/2} = 5/3 e^{-x/2+x/2} = 5/3$$

$$e^{x/4} = 5/3 \qquad x/4 = ln e^{x/4} = ln 5/3$$

$$x = 4 ln 5/3$$

Afternative solution $\ln 3e^{-x/4} = \ln 5e^{-x/2}$ $\ln 3e^{-x/4} = \ln 5 + \ln e^{-x/2}$ $\ln 3 + \ln e^{-x/4} = \ln 5 + (-x/2)$ $\ln 3 - x/4 = \ln 5 + (-x/2)$ $\ln 3 - x/4 + x/2 = \ln 5 - \ln 3$ $\ln 4/4 = \ln 5/3$ $\ln 4 - x/4 + x/2 = \ln 5/3$

[20] 3. Find an equation for the tangent line to the curve

4. The **Reaction** R(x) of a patient to a drug dose of size x depends on the type of drug. For a certain drug, it was determined that a good description of the relationship is:

 $R(x) = Ax^{2}(B-x)$

Where A and B are positive constants. The Sensitivity S(x) of the patient's body to the drug is defined to be S(x) = dR/dx.

- [10] (a) For what value of x is the reaction a maximum, and what is that maximum reaction value?
- [10] (b) For what value of x is the sensitivity a maximum? What is the maximum sensitivity?

For both (a) and (b) be sure to prove that the critical points you find yield a local maximum. $R(x) = Ax^{2}(B-x) = ABx^{2} - Ax^{3}$

(a) $R'(X) = AX^{2}(-1) + (B-X)(ZAX) = -AX^{2} + ZABX - ZAX^{2}$ and $R'(x) = -3Ax^2 + 2ABX$

OR can write R'(x) = (ABX2-AX3) = ZABX-3AX2 If $R'=0=A(aBx-3x^2)$ then $aBx=3x^2$ and

X=0 OR 2B= 3X and X = 2By and, using 2nd derivating

test R"(x) = -6Ax+2AB at x=2B we have

 $R''(\frac{2B}{3}) = -6A(\frac{2B}{3}) + 2AB = -2A(2B) + 2AB = -2AB$

hence Risa maximum at [X = 2B] by 2nd derivative

ALTERNATIVELY one can use 1st derivative test for R(x) $R' = A \times (aB - 3X)$ $R = A \times (aB$

S'(X) = 2AB - 6AX = 0 for 2A(B-3X) = 0 if $X = \frac{1}{3}B$ and derivatives I(X) = -6A < 0 Thus S(X) has a maximum at $X = \frac{1}{3}$ to st for S(X) ALTERNATIVELY one can use 1st derivative test for S(X) max S(X) S' = 2A(B-3X) S' = 1NC B'_{3} $D \neq C$ S' < 0 for $X > B'_{3}$ $S(B'_{3}) = 2AB_{3}$ S' = 2A(B-3X) $S' + O_{LOC}$ max for S = 1 of $for X < B'_{3}$ $for X < B'_{3$

5. A ball is thrown from a tower of height ho. The height of the ball at time t is

$$h(t) = h_0 + v_0 t - (1/2)gt^2$$

where ho, vo, g are positive constants.

[10] When does the ball reach its highest point?

[10] How fast is it going just before it hits the ground?

(a) Ball reaches highest point when V(t)=0 $0=V_0-gt \text{ yields } t=\frac{V_0}{g}$

h(t)=0 = hotvot - 2gtz. Need to solve

$$t = -(-\frac{2v_0}{g}) \pm \sqrt{(-\frac{2v_0}{g})^2 - 4(1)(-\frac{2k_0}{g})}$$

$$t = \frac{2V_0}{g} \pm \sqrt{\frac{4V_0^2}{g^2} + \frac{8k_0}{g}} = \frac{2k_0}{g} \pm \sqrt{\frac{V_0^2}{g^2} + \frac{2k_0}{g}}$$

Now $V = V_0 - gt = V_0 - g\left(\frac{V_0}{g} \pm \sqrt{\frac{V_0^2}{g^2}} + \frac{2h_0}{g}\right)$ must choose + square root since ball hits after max, height

Alternatively can write this as V=Vo=298