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Shear flows disrupt molecular orientation in liquid-crystalline polymers ~LCPs! through director
tumbling, and this causes difficulty in controlling the polymer structure and properties in injection
molding and extrusion. In this paper we simulate LCP channel flows using the Doi theory. A
Bingham closure is used to preserve director tumbling and wagging. The objective is to examine
how contractions and expansions in a channel affect LCP orientation and to explore the possibility
of using the channel geometry as ameans of manipulating LCP order. A finite-element method is
used to solve the coupled equations for fluid flow and polymer configuration. Results show that a
contraction aligns the director with the streamline and improves molecular order, while an
expansion drives the director away from the flow direction and reduces molecular order. If the
expansion is strong enough, an instability develops downstream as disturbances in the flow and
polymer configuration reinforce each other through the polymer stress. This instability generates a
wave that spans roughly the central half of the channel and propagates downstream at the centerline
velocity. For abrupt contractions or expansions, disclinations of 61/2 strength arise in the corner
vortex. The numerical results agree qualitatively with experiments when comparisons can be made.
In particular, the wavy pattern following a sudden expansion is remarkably similar to previous
experimental observations. The simulations suggest that using contractions and expansions may be
a feasible strategy for controlling LCP order and morphology in processing. © 1999 American
Institute of Physics. @S1070-6631~99!02710-5#
I. INTRODUCTION

Since the invention of Kevlar™, liquid-crystalline poly-
mers ~LCPs! have been used mostly as fibers. Producing
three-dimensional parts through injection molding or extru-
sion has been largely unsuccessful. The main problem is that
such processes involve pressure-driven channel flows that
are dominantly shear flows. Unlike extensional flows in fiber
spinning, where the stretching aligns the LCP molecules to
produce relatively uniform orientation, shear flows cause di-
rector tumbling that disrupts orientational order. The result is
a proliferation of orientational defects known as disclina-
tions, which eventually lead to a polydomain morphology of
the polymer.1 Since the molecular orientation cannot be con-
trolled during processing, the finished product is often
plagued with nonuniformity, anisotropy, and weldlines. The
key to solving such problems is an understanding of the re-
lationship between the material structure and the flow. Thus,
fluid mechanics plays acentral part in the processing of mi-
crostructured materials.

Owing in part to their practical importance, channel
flows of LCPs have received considerable attention in the
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past. Experimental studies, mainly using lyotropic HPC and
PBG solutions, have discovered a host of intriguing phenom-
ena peculiar to LCPs. In a straight channel, an anomalous
velocity maximum occurs near the sidewalls at low flow
rates2 but disappears at higher flow rates.3,4 Baleo and
Navard5 and Bedford et al.4,6 documented the effects of
varying the cross-sectional area of a channel on the LCP
orientational order and the flow field. In particular, a large-
scale wavy pattern appears downstream of an expansion.
This pattern is believed to result from an instability related to
upstream director orientations that are twisted away from the
flow direction by the expansion. Similar patterns also occur
for thermotropic LCPs in injection molding and extrusion
~see Fig. 1 of Ref. 6!. Kawaguchi and Denn7 observed com-
plex three-dimensional flow patterns in a conical contraction
of the thermotropic Vectra A.

Theoretical understanding of LCP channel flows has
lagged behind experimental explorations. This is not unique
to channel flows but is generally true for LCP flows. The
main obstacle is the lack of an appropriate theoretical model
for the LCP rheology in the regimes of interest. Three rheo-
logical models have been used widely: the Leslie–Ericksen
theory, a continuum theory based on the Landau–de Gennes
free energy expansion, and the Doi theory. None gives an
adequate description of complex LCP flows.
1 © 1999 American Institute of Physics
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The Leslie–Ericksen theory applies to slow flows in
which the molecular orientation distribution is not perturbed
from its equilibrium state. Its predictions for weak shear
flows, e.g., the roll-cell instability, generally agree with
observations.8 A phenomenological extension of the theory
to polydomains gives the correct scaling for the region II
dynamics.9 However, the Leslie–Ericksen theory is not ap-
plicable to processing flows of LCPs which typically are
strong enough to distort the molecular orientation distribu-
tion. These flows correspond to the Deborah number cascade
and region II I of the viscosity curve.1 In an attempt to de-
scribe changes in the molecular orientation distribution, a
continuum theory was formulated by postulating a free en-
ergy in the form of the Landau–de Gennes expansion.10–12

This approach has been criticized because the expansion is
valid only in the neighborhood of the isotropic state13 and
does not converge for the moderately high order parameters
typical of real LCP systems.14 As possible symptoms of the
fault, the theory predicts maxima in the shear and normal
stresses10 and fails to produce the second change of sign in
the normal stress at high flow rates that has been experimen-
tally documented.15 Greco16 also criticized the phenomeno-
logical nature of the theory. The unknown coefficients in the
expansion have to be fitted to the isotropic state of the ma-
terial, and once fixed, they cannot reflect the changes in the
material effected by flow. This is a particularly serious flaw
if one hopes to describe flow-induced complex structures
such as disclinations. The Doi theory17,18 differs from the
above theories in that it is a molecular theory. It models a
LCP as an ensemble of thin rigid rods that rotate as aresult
of Brownian motion, viscous torque, and intermolecular
forces. Though this may not be aprecise description of any
real LCP system, it is a physically realizable nematic fluid
and serves as a model LCP whose dynamic behavior can be
meaningfully compared with experiments. So far, such com-
parisons have been done only for the simplest flows and the
results are encouraging. For example, the theory gives quali-
tatively and sometimes quantitatively accurate predictions of
the shear rheology of certain lyotropic LCPs.19,20 It has also
been argued that a molecularly based theory is advantageous
in describing the severe distortion in orientation near
disclinations.16,21Therefore, the Doi theory appears to be the
most promising model for complex LCP flow simulations.

Unfortunately, the Doi theory has a shortcoming that
hampers its application to flow simulations: it does not con-
tain distortional elasticity, i.e., elasticity due to spatial varia-
tion of the LCP configuration. Although for certain inhomo-
geneous flows the theory permits disclinations and multiple
domains as solutions,22 in the absence of distortional elastic-
ity it is unable to predict the proliferation of disclinations
and the polydomain structure in real LCPs. The consequence
of this is well illustrated by previous attempts to use the
theory for flow calculations. In a simple shear, the Doi
theory predicts director tumbling in certain parameter ranges,
while the flow of a real LCP always appears steady. Mar-
rucci and Maffettone23 and Larson19 assumed a polydomain
structure with the tumbling of each domain determined by
the Doi theory. Then by averaging over the domains, they
obtained steady results that can be compared with experi-
Copyright ©2001. A
ments. Such an averaging scheme fails for complex flows,
however, because the orientational distribution of the do-
mains ~or equivalently, the phase difference between do-
mains! is a priori unknown. Alternatively, a quadratic clo-
sure approximation has been used to artificially suppress
director tumbling in shear-dominated flows.24–26 This treat-
ment is unsatisfactory since it attempts to mend one failing
of the Doi theory—the lack of distortional elasticity—by in-
troducing another, namely the loss of director tumbling in
shear flows due to the quadratic closure. Hence, a realistic
simulation of LCP channel flows has to contain two essential
elements: director tumbling and distortional elasticity. Direc-
tor tumbling is already in the Doi theory; it simply needs to
be brought out by a more sensible closure approximation ~or
by solving for the orientation distribution with no closure!.
Distortional elasticity has been added to the Doi theory
through a nonlocal nematic potential.21,27 However, the re-
sulting model is complex and solutions have been obtained
only in static situations, where the effects of the distortional
elasticity on disclinations has been explored.16,28 No flow
calculation has been done so far.

In the present paper we take adifferent path by simulat-
ing LCP channel flows using the original Doi theory. Distor-
tional elasticity is not included but director tumbling and
wagging are preserved by using a Bingham closure.29 In
other words, we simulate channel flows of a model LCP with
negligible distortional elasticity. The rationale for such an
approach is twofold. First, director tumbling is one of the
two major factors in such simulations, and has been excluded
in previous studies on channel flows.24–26 By including di-
rector tumbling but not distortional elasticity, we are in a
sense solving half of the problem. In view of the complexity
of the new model, this is a sensible approach at this stage and
it complements studies of the distortional elasticity in the
absence of flow.28 The present results wil l serve as abench-
mark against which the effects of distortional elasticity will
be assessed in channel flows. Second, these numerical results
may be directly relevant to the flow of a real LCP. Such
relevance may be restricted to certain areas of the flow where
distortion of the orientation field is mild or it may be re-
stricted to certain properties of the LCP that are insensitive
to the distortional elasticity. Indeed, the numerical results
wil l be seen to qualitatively agree with experiments where
comparisons can be made.

Corresponding to the twofold rationale for this study, we
hope to achieve two objectives. The first is to gain physical
insights into the coupling between flow and polymer orien-
tation that wil l help us understand the ‘‘complete solution’’
when distortional elasticity is added. The second objective is
more concrete and practical. We wish to demonstrate how
contractions and expansions in an otherwise straight channel
affect the motion of the director and the degree of order. In
homogeneous flows, director tumbling may be suppressed by
a minute amount of extensional flow.30,31 Channel flow ex-
periments indicate that contractions enhance the degree of
order, presumably by aligning either individual molecules or
domains.4,5 We wil l test the feasibility of using contractions
and expansions as a strategy for controlling LCP orienta-
tional order in flows that are relevant to extrusion and injec-
ll Rights Reserved.
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tion molding. Another outstanding question is the peculiar
wave pattern observed downstream of expansions. We will
seek an explanation for the apparent instability in the cou-
pling between fluid flow and polymer dynamics.

The rest of the paper is organized as follows. Section II
describes the theoretical model and sets up the numerical
problem. Section II I presents numerical results for a straight
channel as a validation of the numerical scheme and a pre-
requisite for later discussions. Section IV deals with channels
with gradual and abrupt contractions, and Sec. V studies
channels with gradual and abrupt expansions. Finally in Sec.
VI we summarize the results and discuss their implications
for LCP processing.

II. FORMULATION OF THE PROBLEM

A. Governin g equations

The Doi theory is a statistical-mechanical theory de-
scribing the orientation of an ensemble of rod-like LCP mol-
ecules suspended in a Newtonian solvent.17,18 The theory is
based on the orientation distribution function C(u), u being
the unit vector along each rod. Al l rods have the same length
L, and the number of polymers per unit volume is n. Follow-
ing the Prager procedure, the evolution equation of the sec-
ond moment tensor A5*uuC(u)du5^uu& can be derived:
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where d is the unit tensor,v is the fluid velocity, andD
5(“v1“vT)/2. The Peclet number is defined as Pe
5G/(6Dr), where G5uc /H is the characteristic strain rate
~see Fig. 1! and Dr is the rotational diffusivity in an isotropic
solution of the same volume concentration. U is the nematic
strength in the Maier–Saupe potential and f represents the
tube dilation effect:17

f 5~12S2!225 4
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where S5@(3A:A21)/2#1/2 is the order parameter.
The polymer stress may be written as

FIG. 1. Schematic of a channel flow geometry. The computational domain
consists of the upper half because of symmetry. H is the half-width of the
wider part of the channel, and uc is a nominal centerline velocity at the inlet
or outlet, whichever is wider, evaluated for a Stokes flow driven by the same
pressure drop. G5uc /H is the characteristic strain rate used in defining the
Peclet number of the flow.
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wheret has been scaled by 3nkT, k being the Boltzmann
constant and T the temperature. (nL3)2 is the crowdedness
factor andb5O(103) is an empirical parameter. This stress
enters the equations of motion for the fluid:

Re
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where the Reynolds number is defined as Re5rucH/ms, with
r and ms being the density of the fluid and the constant
solvent viscosity, respectively. c5nkT/(2msDr) is the con-
centration parameter. The inertia of LCP flows is typically
small; the ]v/]t term is kept to give a sense of the transie
of the flow. It is in fact insignificant since Re is small.

Hence, complex flows of LCPs are determined by the
polymer stress, which in turn depends on polymer configu-
ration, which itself is determined by the flow. However, the
theory as represented by Eqs. ~1!–~4! is not self-contained
because of the fourth moment tensor ^uuuu&. In order to
‘‘close’’ the theory at the level of the second moment tensor
A5^uu&, ^uuuu& needs to be expressed in terms of A via a
closure approximation. In this paper we use the so-called
Bingham closure, which is based on postulating a special
form for the orientation distribution function.29,32 It is exact
in the weak flow limi t and predicts the correct equilibrium
properties such as the isotropic–nematic transition. In simple
shear, it preserves director wagging and tumbling. The only
significant limitation of the Bingham closure, vis-à-vis the
unapproximated Doi model, is that it does not predict the
transition from wagging to flow aligning in simple shear at
high Peclet number, but instead substitutes a monotonic de-
crease in the amplitude of wagging as Pe increases. For most
purposes, the distinction between flow-aligning and small-
amplitude wagging wil l not be important. As far as we know,
all previous simulations of complex LCP flows used the qua-
dratic closure.24,25 That closure suppresses director tumbling
in shear which is an essential feature of channel flows. Fi-
nally, inhomogeneous flow calculations have shown the
Bingham closure to be the best among all popular second-
order closures.31

The Doi theory applies to rigid-rod LCPs, lyotropics ~so-
lutions! and thermotropics ~melts! alike. Since lyotropic
LCPs are usually more rigid than thermotropics, the Doi
theory is thought to be more pertinent to solutions, though
the tube model does not discriminate between melts and
solutions.18 For melts, the only difference is that there is no
viscous stress either from the solvent directly or from the
friction on LCP molecules. In this paper, we wil l compare
the numerical results with experiments done with lyotropics.

B. Boundar y conditions

Once the time-dependent nature of LCP dynamics is pre-
served, the channel flow becomes a uniquely difficult prob-
ll Rights Reserved.
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lem because of velocity boundary conditions at the inlet and
outlet. For the channel flow of a Newtonian fluid, it is cus-
tomary to specify a fully developed velocity profile at the
inlet and use the so-called traction-free boundary condition
at the outlet. The latter is conveniently treated as a natural
boundary condition in finite-element algorithms. For a vis-
coelastic fluid with deviatoric stresst, the traction-free con-
dition does not hold in general because the normal stress
difference varies across the channel at the exit.33 When the
finite-element weak form is written using a test function w,
there wil l be asurface integral term

E
]V

@2pn1n•~ms“v1t!#•wdG ~5!

that needs to be computed along the portion of the boundary
where the velocity is not specified. To avoid this trouble, a
fully developed velocity profile is always used on the inlet
and outlet of channel flows; see, e.g., Purnode and Crochet34

for a FENE-P fluid and Armstrong et al.24 for a nontumbling
LCP.

Because of the inherently periodic dynamics of LCPs,
the very concept of a ‘‘full y developed flow’ ’ needs to be
examined. Picture the flow in a long straight channel in
which there is no variation along the flow direction. The
director wil l tumble, wag, or align depending on the lateral
position, and this modifies the flow. As wil l be seen in Sec.
II I A, no steady state wil l be achieved that may serve as a
fully developed profile. Alternatively, one could fix the inlet
velocity profile and polymer configuration, and let the two
evolve in a long entry section. This wil l lead to a spatially
varying solution. Since the variations along a streamline
never die out, again no fully developed profile appears
downstream. To sum up, it is unreasonable to specify Dirich-
let velocity profiles at the inlet or outlet for channel flows of
our model LCP. Instead, we need to use Neumann conditions
and evaluate the surface integral of Eq. ~5!.

We require]u/]x50 andv50 at the inlet and outlet o
a channel flow ~i.e., OA and DE in Fig. 1!. Then pressures
profiles pin(y) and pout(y) need to be specified on OA and
DE by applying momentum conservation along the tangen-
tial direction on the boundary.35 The pressure values on the
centerline pE and pO are given at the outset and the pressure
profiles are computed each time step. The weak form of Eq.
~4! is

ReE
V

]v

]t
–wdV5E

V
Fp“–w2“v:“w2

c

Pe
t:“wGdV

1E
]V

n–F2pw1“v–w1
c

Pe
t–wGdG,

~6!

where the test function w is also the shape function in our
Galerkin formulation. The last term is the surface traction
that needs to be evaluated at OA and DE for the x component
of the flow. The y component has Dirichlet boundary condi-
tion v50 at all boundary segments.

To summarize, we use the following boundary condi-
tions in the channel flow simulations ~cf. Fig. 1!:
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ABCD ~solid wall!: u50, v50
OE ~centerline!: ]u/]y50, v50
OA ~inlet!: ]u/]x50, v50, p5pin(y), ]A/]x50
DE ~outlet!: ]u/]x50, v50, p5pout(y).

For Newtonian fluids, Pironneau has shown this formu-
lation to be well-posed.36 Because of the hyperbolic nature of
Eq. ~1!, an inlet condition is necessary for A and we impose
a homogeneous Neumann condition. Downstream, A evolves
along the characteristics which are streamlines. Initially there
is no flow in the channel and the LCP is at its equilibrium
order with a uniform director field. Then a pressure drop
specified by pO and pE is suddenly applied and the flow
starts. We use afinite-element method to solve the coupled
Eqs. ~1!, ~3!, and ~4!. The numerical scheme differs from that
of Feng and Leal22 only in that the surface traction term is
added here to drive the flow @see Eq. ~6!#. A triangular mesh
is used and mesh refinement has been done routinely to en-
sure convergence of the results. To avoid stress singularity,
the corner B is rounded in some of the simulations.

C. Paramete r values

The following parameter values are used:b51000, Re
51022, (nL3)2523106, c5100, U58, and Pe540. The
small Reynolds number ensures a short initial transient of the
fluid flow after the startup. The crowdedness factor is typical
of lyotropic systems used in experiments. It is not clear what
c values are representative of real LCPs. Doraiswamy and
Metzner37 and Mori et al.25 fitted the approximate Doi theory
based upon the quadratic closure to measured values of the
steady shear viscosity for LCP solutions. However, this pro-
cedure is problematic. The model produces a steady-state
shear viscosity because the quadratic closure artificially sup-
presses director tumbling. In the experiment, however, the
steady state is a manifestation of the polydomain structure,
perhaps with each domain tumbling continuously. Here we
use a moderate c so that the flow and polymer dynamics are
coupled yet the polymer stress does not distort the flow ki-
nematics beyond recognition. The U and Pe values are cho-
sen based on the solution diagrams for the Bingham
closure.31 The closure does not allow steady alignment be-
yond a certain U, and asmall U would therefore be needed to
simulate director alignment at the wall. Then tumbling would
be confined to a narrow strip at the center of the channel.
Since in this work we are more interested in director tum-
bling than alignment, the current values of U and Pe are
chosen such that the director tumbles in the central part of
the channel and wags near the wall.

D. Simplifications

We assume that the flow field is two-dimensional in the
x–y plane and the director orientation is symmetric with
respect to that plane. This symmetry assumption excludes
director kayaking from this work. Kayaking is a rather ex-
ceptional regime of director motion38 and its inclusion would
make the flow three-dimensional and much more costly to
compute. Now the configuration tensor A has three unknown
components:
ll Rights Reserved.
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and may be graphically represented by an ellipsoid. The
longest axis is along the director, and the relative magnitude
of the axes indicates the degree of orientational order.

Considering the above assumptions and the lack of dis-
tortional elasticity in the Doi theory, one should be cautious
in interpreting the numerical results. The simulations none-
theless bear on real LCP flows in two ways. First, the physi-
cal mechanisms that the simulations reveal, for instance the
coupling between director tumbling and flow, operate in the
real flow, albeit moderated perhaps by distortional elasticity
or out-of-plane orientations. Second, the results may apply
more directly in certain cases. Strong orientational distortion
may be restricted to certain regions of the flow such as wall
layers and domain boundaries. And then in other regions the
predictions wil l be directly applicable. Comparisons with ex-
periments indeed seem to vindicate such expectations.

III. PLANA R POISEUILLE FLOW

A simulation of the flow in a straight channel ~or a Poi-
seuille flow! serves two purposes. First, it validates the nu-
merical scheme, especially the formulation of the surface
traction as the driving force of the flow. Though inhomoge-
neous in the transverse direction, the flow is everywhere
shear and the simulation can be compared with known be-
havior of the LCP in simple shear flow. For this reason, we
have computed the Poiseuille flow using a two-dimensional
mesh although the problem itself is one-dimensional. Sec-
ond, the straight channel simulation serves as abase line for
studying more complex channel flows in the following sec-
tions.

Initially the director is uniformly aligned with the x axis.
After the pressure gradient is applied, a Newtonian velocity
field quickly develops. The relaxation time of the LCP is
much longer, and as the polymer configuration evolves the
flow field deviates from the Newtonian one. For the nematic

FIG. 2. Motion of the director at different y in a straight channel. The
centerline is at y50 and the solid wall at y51. Wagging prevails in the
upper part of the channel and gives way to tumbling closer to the centerline
at y'0.2.
Copyright ©2001. A
strength U58 and the nominal Peclet number ~defined using
the characteristic strain-rate uc /H; see Fig. 1! Pe540, the
shear rate at the wall corresponds to director wagging. As the
shear-rate decreases toward the centerline, the wagging am-
plitude increases and the frequency decreases until wagging
becomes tumbling. Figure 2 shows that this transition occurs
somewhere between y50.2 and 0.4, in agreement with esti-
mation based on the solution diagram of the Bingham
closure31 and a parabolic velocity profile.

The configuration tensor A can be graphically repre-
sented by an ellipsoid, with its major axis along the director
and its shape indicating the order parameter. Figure 3shows
snapshots of the A field as represented by projection of the
ellipsoids on the flow plane. The ellipsoids are not axisym-
metric in general and their third axis cannot be shown here.
As in a simple shear flow,19 the local order parameter de-
creases when the director is along the axis of compression of
the shear and the ellipse becomes plumper. Since the fre-
quency of wagging and tumbling scales with the local shear
rate, the director rotation occurs sooner on one streamline
than on the next inside. This gives rise to ‘‘wave fronts’’ of
plump ellipses propagating toward the centerline. No matter
is transported across the stream, of course, and there is no
interference between neighboring streamlines in terms of the
director motion. As the flow continues, more and more strips
are generated and their spacing becomes narrower. As astrip

FIG. 3. Snapshots of the A field at different times: ~a! t52.5—the director
turns toward the axis of compression of the flow; ~b! t534—the first tum-
bling wave emerges above y50.2; ~c! t546—the waves accumulate and
their spacing narrows.
ll Rights Reserved.
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approaches the centerline the ‘‘wave speed’’ decreases and it
wil l never reach the centerline. Because the tumbling and
wagging period varies continuously with y, the entire flow
field is aperiodic. No steady state wil l be achieved.

Figure 4 shows the variation of velocity as a conse-
quence of the director motion. Initially there appears to be
concerted flow reduction and subsequent recovery across the
channel. Later the undulation becomes less prominent. The
key to understanding the flow modification is the polymer
shear stresstxy , which has three contributions from the
Brownian, nematic, and viscous terms of Eq. ~3!, each de-
pending on the polymer configuration. The nematic part os-
cillates in phase with u and the Brownian part out of phas
with u. The viscous part behaves precisely as in a suspen
of rods and is much smaller than the other two. So the total
stress is determined by the competing nematic and Brownian
contributions and the former is larger. Hence, the total shear
stress is roughly in phase with u. When the director is along
the compression axis of the flow ~u.0!, the polymer contrib-
utes a positive shear stress to the flow and effectively the
fluid viscosity is increased. When the director is stretched
~u,0!, the polymer contributes a negative shear stress to
flow and the viscosity is effectively reduced. Since the nem-
atic term contributes the most to the total stress, the behavior
of the LCP solution, e.g., the viscosity reduction, cannot be
intuitively inferred from that of a suspension of rods.

After the flow starts, the director first rotates into the
compression axis of the flow throughout the channel @Fig.
3~a!#. This increases the effective shear viscosity in the chan-
nel. Since the pressure gradient along x is fixed, the flow rate
drops across the channel as seen in Fig. 4. Later as the first
wagging wave propagates away from the wall toward the
centerline, a layer of ‘‘effectively thinned’’ fluid trails be-
hind, causing the recovery of the velocity. As more waves
appear, the ‘‘thinned’’ and ‘‘thickened’’ layers tend to cancel
each other and the fluctuation in velocity dies out in ampli-
tude. The unusual peaks near the centerline at t534 reflect
the birth of the low-viscosity layer behind the first tumbling
wave @cf. Fig. 3~b!#. Afterwards the high-viscosity layer
above the centerline narrows as the tumbling wave front
progresses, yielding the gradual increase in u near the cen-

FIG. 4. Variation of the velocity component u at different y in the straight
channel. The oscillations are caused by director wagging and tumbling.
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terline. Because of the unsteady director motion, no steady
‘‘full y developed velocity profile’’ wil l obtain in the channel.

The pattern in Fig. 3 can be seen as a one-dimensional
polydomain structure, although in the absence of distortional
viscosity, the ‘‘domain size’’ shrinks indefinitely. The pat-
tern also resembles the wind-up picture in simple shear.39 In
a real flow, as the spatial gradient of polymer configuration
grows, distortional elasticity would drive the director out of
the flow plane and generate three-dimensional roll cells and
eventually disclinations.1 Such processes cannot be repre-
sented in our simulations since we assume a two-
dimensional flow and negligible distortional elasticity. The
simulation also differs from reality in the near-wall region.
Since closure models based on the second moment tensor A
generally fail to predict flow-aligning in simple shear,31 we
could not predict steady alignment at the wall. With distor-
tional elasticity added, wall anchoring should help remove
this difficulty. With that caveat, the wagging region next to
the wall can be related to the well-aligned wall layer ob-
served in experiments ~zone I in Fig. 2 of Baleo and Navard,5

see also Ref. 40!. The tumbling region close to the centerline
is readily identified with zone II of Ref. 5 in which director
tumbling prevails and the birefringence is low.

IV. CONTRACTIONS

We have simulated channel flows with a single gradual
or abrupt contraction, or a single gradual or abrupt expan-
sion. In all four cases, the characteristic strain rate ~cf. Fig. 1!
is held fixed at a value which corresponds to Pe540. Initially
the director is uniformly aligned in the horizontal direction
and the order parameter is at the equilibrium value. There is
no flow in the channel and a pressure drop is suddenly ap-
plied between the inlet and the outlet at t50. The initial
condition on the director field affects the phase of wagging
and tumbling but not the main features of the solution.

The qualitative effects of converging and diverging
flows on director orientation are, in some respects, easy to
anticipate. Specifically, we expect a converging flow to in-
duce alignment in the flow direction and increase the orien-
tational order. In contrast, a diverging flow wil l tend to in-
duce alignment perpendicular to the flow direction, and in
the process decrease the degree of orientational order. We
shall see that our results conform to these expectations. Our
emphasis, however, is on how the flow kinematics affects
director tumbling. We have already noted that a motivation
for the present study of converging and diverging channels is
the potential of introducing such modifications into the ge-
ometry of injection molds in order to suppress director tum-
bling and thus reduce disclination density in molded parts.
For this potential application, the details of director dynam-
ics cannot be ignored. For example, a contraction is useful
only if the alignment produced propagates far enough down-
stream and is relatively uniform across the channel. In many
cases, it would be necessary to follow a contraction with an
expansion or vice versa, and so the efficacy of modifying the
mold geometry would depend on the combined effect of
both.
ll Rights Reserved.
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A. Gradua l contractions

We begin by considering a 1:0.5 gradual contraction
over an axial distance of 2. Figure 5 shows the streamlines
and the flow type parameter41 in the channel at t50.05. At
this time the kinematics of the flow has developed but the
LCP configuration has hardly responded to the flow. For the
parameters used, flow modification is mild throughout the
simulation and the qualitative characteristics of the flow field
are unaltered by the polymer stress. The contraction causes
an extensional flow region, as expected, but this extends
from the centerline to only about one-half of the channel
width. In the part of the channel closer to the walls, the flow
is mostly shear, even within the contraction zone, and there
is only a weak extensional component superposed on this
base flow. Finally, upstream and downstream of the contrac-
tion, there are two small rotational areas near the centerline.
Although these appear in Fig. 5 to include the centerline, this
is clearly an artifact due to the finite mesh size since rotation
on the centerline is nil because of symmetry.

Figure 6 shows the temporal variation of the horizontal
velocity component at three points in the contraction. These
curves resemble Fig. 4 for a straight channel. The initial
oscillation is well defined and represents fluctuations in the
overall flow ratedue to director wagging near thewall. Later,
multiple frequencies set in because of wagging and tumbling
at various locations throughout the channel.

Figure 7 illustrates the behavior of the LCP correspond-
ing to the kinematics of Fig. 5. We divide the channel into
four areas with distinct features of the polymer dynamics,

FIG. 5. Streamlines ~curves! and contours of the flow-type parameter ~gray-
scale shading! in achannel with a 1:0.5 gradual contraction. The inlet of the
channel is at x523 and the outlet is at x510. The three open circles
indicate spatial points ~i!–~ii ! at which the velocity is analyzed in Fig. 6.

FIG. 6. Variation of the velocity component u at points ~i!–~iii ! in the 1:0.5
gradual contraction. The points are indicated by the three circles in Fig. 5
that fall roughly on a streamline.
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and these are roughly delineated in the plot by solid lines. In
area A, which is upstream of the contraction, the polymer
does not ‘‘feel’ ’ the imminent contraction except through
flow modification, which is small, and the LCP behavior is
essentially the same as in astraight channel ~cf. Sec. III !. At
the Peclet number Pe540 considered here, director tumbling
occurs from the centerline up to y'0.2 and wagging from
there to the walls. Inside the contraction, the flow in region B
nearest the walls is approximately simple shear with a shear
rate that increases in the flow direction. Thus, it is no sur-
prise that the director simply continues to wag about the flow
direction with an increasing frequency and slightly decreased
amplitude as we move downstream. This gives rise to spatial
variations of director orientation along a streamline. We may
note, however, that the prediction of wagging over the whole
of region B is likely an artifact of the Bingham closure. As
discussed earlier, the Doi model with the Bingham closure
predicts wagging of decreasing amplitude in simple shear
flow as the Peclet number is increased, rather than the tran-
sition to flow aligning that is predicted by the exact Doi
model. We may thus anticipate that an exact solution of the
Doi model for this flow would show the near-wall portion of
region B to be flow aligning, rather than exhibiting small
amplitude wagging. The weak extensional component of the
flow in area B would enhance the tendency toward alignment
in the flow direction.

It is in the region close to the centerline within the con-
traction, denoted as area C, that the effect of contraction is
felt most strongly. Here, the flow is primarily extensional.
Hence, as anticipated qualitatively, the director tumbling and
wagging which appears near the centerline in the upstream
area A is suppressed. The result is a director field that is
highly aligned in the flow direction toward the end of Area
C. It is noteworthy that the small rotational flow area at x
521.5 does not have any noticeable downstream effect on
the suppression of director tumbling. For the particular com-
bination of Pe and U used in this case, the 1:0.5 gradual
contraction is sufficient to suppress tumbling at all cross-
channel positions. In any ‘‘designed’’ use of a contraction
within a mold, an important parameter would be the mini-
mum contraction ratio to suppress tumbling at all point
across channel. Of course, this would depend not only on Pe
and U, but also on the geometry of the contraction.

Downstream of the contraction, in the region denoted as
area D, the flow returns to simple shear, and director tum-
bling must ultimately resume near the channel centerline,
albeit in a thinner section than in area A since the average
shear rate in D is higher. However, because the convection is

FIG. 7. The A field in the 1:0.5 gradual contraction at t550. The solid
straight lines delineate four regions A–D based on the local polymer dy-
namics.
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fast close to the centerline, the aligned state appears to per-
sist for a considerable distance downstream before the effect
of tumbling reappears. It may be noted, however, that the
order parameter Sstarts to relax almost immediately after the
fluid enters the narrow channel @see Fig. 8~b!#. This is in
interesting contrast to the visual persistence of the uniform
state into area D in Fig. 7. Clearly, the degree of alignment
relaxes faster than the orientation of the director.

To quantify the effect of contractions, we have also com-
puted a milder 1:0.8 gradual contraction over an axial dis-
tance of 2. As compared with the 1:0.5 contraction in Fig. 7,
the area C in which flow aligning prevails is thinner, though
tumbling is still suppressed across the whole channel. Also,
the relatively uniform state does not extend as far into area
D, partly because the centerline velocity is lower. Figure 8
compares the extension rate and order parameter along the
centerline of the two contractions. The stronger contraction
generates a maximum extension rate ~near x50! about four
times that of the weaker contraction. This, not surprisingly,
causes a stronger increase in the order parameter.

The qualitative features of these numerical simulations
agreewell with experiments. Baleo and Navard5 and Bedford
and Burghard4 observed that contractions enhance stream-
wise alignment and molecular order, and the uniform state

FIG. 8. Effects of the contraction ratio: comparison between the 1:0.8 and
1:0.5 gradual contractions. t550. ~a! The extension rate]u/]x on the cen-
terline; ~b! the order parameter S on the centerline. The contraction is be-
tween x521 and x51.
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persists downstream for a considerable distance. Further-
more, the profiles of extension rate and order parameter in
Fig. 8 are very similar to the measurements of Bedford and
Burghardt, though these authors believed that the increasing
birefringence was due to alignment of domains, not in-
creased molecular order. Since their flow cell is three-
dimensional with strong shear in the third dimension, the
birefringence, measured along an optical path through the
third dimension, relaxes downstream to a higher value than
that far upstream. This effect does not exist in the simula-
tions, and S relaxes toward the equilibrium value on the cen-
terline. Given that our theoretical model does not contain
distortional elasticity and our flow is two-dimensional, the
agreement with experiments may seem surprising. A plau-
sible explanation is that the contraction flow produces a
rather homogeneous LCP configuration in which distortional
elasticity is relatively unimportant. For similar reasons, the
director alignment and order enhancement predicted here for
the converging channel are qualitatively similar to predic-
tions by Armstrong et al.,24 who used a nontumbling version
of the Doi theory.

In injection molded parts, the ‘‘ski n layer’’ near the
walls is usually well aligned.42 This is caused by a combina-
tion of the fountain flow effect and the high shear rate at the
wall. It is in the center of the channel that the LCP orienta-
tion is not easily controlled and defects abound. A contrac-
tion flow suppresses tumbling and induces a highly aligned
state in just that region. This is a hopeful sign for the devel-
opment of effective strategies for control of tumbling and
disclinations in injection molding.

B. Abrup t contractions

For an abrupt contraction, the flow kinematics near the
centerline is qualitatively the same as that for a gradual con-
traction. The main feature is an extensional region sand-
wiched by two rotational regions ~Fig. 9!. However, a new
feature is the development of a corner vortex. Its size is
somewhat larger than the Stokes flow vortex, but the vortex
enhancement is much weaker than that typical of flexible
polymers.34 In terms of maximizing streamwise alignment
and orientational order in the extensional flow region at the
center of the channel, the abrupt contraction is found to be
more effective than a gradual one with the same contraction
ratio. Figure 10 compares a 1:0.5 sudden contraction with the
1:0.5 gradual contraction of Fig. 5. The stronger 1:0.25 sud-
den contraction is also shown. The abrupt contraction causes

FIG. 9. Streamlines and contours of the flow-type parameter ~gray-scale
shading! in a channel with a 1:0.25 abrupt contraction. t534. The flow is
rotational in the center of the vortex. The corner at the lip of the contraction
has been rounded to avoid stress singularity. The contraction is at x50. The
inlet is at x523 and outlet is at x53.
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a stronger but shorter extensional flow and ahigher degree of
orientational order than the gradual contraction. The 1:0.25
contraction is even stronger and covers more or less the same
length as the 1:0.5 sudden contraction. These predictions
agree with qualitative observations of Bedford and
Burghardt.4

As apractical means of improving polymer orientation,
however, a gradual contraction is probably preferable to an
abrupt one since the former produces a relatively uniform
orientation and high order over a wider region, and also
avoids the corner vortex, which is a source of disclinations.
Director tumbling is induced by the rotational flow in the
center of the vortex. Since the rotation is spatially inhomo-
geneous, the director field is distorted and disclination cores
of 61/2 strength are generated ~Fig. 11!. A 21/2 defect stays
at the upper left-hand corner of the recirculating area and
another at the lower right-hand corner. In the center of the
vortex, defects of 61/2 strength move as if convected by the
flow; they interact and annihilate while new defects are con-
tinually created. The scenario is similar to that in an eccen-
tric cylinder flow that we studied earlier.22 It is important to
note that distortional elasticity is neglected in the current
model and symmetry of the director orientation is imposed
about the flow plane. In a real LCP, the generation and sub-
sequent evolution of disclinations probably contain addi-
tional physics.

FIG. 10. Comparison between the 1:0.25 and 1:0.5 sudden contractions and
the 1:0.5 gradual contraction. t550. ~a! The extension rate ]u/]x on the
centerline; ~b! the order parameter Son the centerline. For the 1:0.5 sudden
contraction, the inlet is at x523 and the outlet is at x56.
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V. EXPANSIONS

A. Gradua l expansion

We have also computed the flow in a channel with a
0.5:1 gradual expansion. The geometry is the reverse of that
in Fig. 5, except that now the inlet is at x526 and the outlet
at x58. Subject to a weak flow modification by the polymer,
streamlines and flow-type parameter contours are also a re-
verse of those in Fig. 5. This reversal, of course, completely
changes the deformation history and hence the polymer dy-
namics.

Figure 12 illustrates the dynamics of the LCP in this
flow field. As in Fig. 7, we can divide the flow domain
roughly into four areas. In the narrow channel upstream of
the expansion, the polymer again behaves as in a straight
channel, with director tumbling near the centerline. Within
the expansion, director wagging is found in the near-wall
region B with a frequency that decreases in the flow direc-
tion.

The effect of the expansion is most notable in the region
near the centerline ~area C!. The expansion generates a com-
pressive flow, and as may be expected, this tends to turn the

FIG. 11. Disclinations in the corner vortex. ~a! t534; ~b! t546. The
sketches show the director lines in the corner, open and closed circles indi-
cating 21/2 and 11/2 defects cores, respectively. The thick curve represents
a streamline. There is a 21/2 defect at the upper left-hand corner of the
recirculating area and another at the lower right-hand corner. In the center of
the vortex, defects of 61/2 strength are generated and annihilated continu-
ally.
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director orthogonal to the streamlines. What is perhaps not
so obvious is that the orientational order is also strongly
reduced. Furthermore, unlike the contraction flow, the exten-
sional flow due to the channel expansion does not fully sup-
press periodic motions of the director. Large amplitude wag-
ging occurs in the upstream part of area C. Tumbling starts at
x'0 and extends downstream into the wide channel. This
onset of tumbling near x'0 may seem counter-intuitive be-
cause the flow is extensional immediately upstream of this
area. However, the principal axis of extension in this com-
pression flow is orthogonal to the flow direction, and the
resultant rotation of the director away from the flow direction
produces an increase in the amplitude of wagging, rather
than a decrease as in the contraction flow. This increased
amplitude eventually results in tumbling at x'0. Down-

FIG. 12. The A field in the 0.5:1 gradual expansion at different times. ~a!
t524. Four regions A–D are delineated based on the local polymer dynam-
ics; ~b! t528; ~c! t530; note the tumbling layer above the centerline that
starts at about x50 and extends downstream. ~d! t532.5. The tumbling
layer propagates toward the centerline as in Fig. 3.

FIG. 13. The compression rate (]u/]x) and order parameter profiles alon
the centerline in the 0.5:1 gradual expansion, t530.
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stream of the expansion ~area D!, wagging and tumbling oc-
cur in the near-wall and near-centerline parts of the wide
channel, respectively.

Figure 13 shows the reduction in S along the centerline
because of the compression. The fluctuations in the flow and
the order parameter downstream of the expansion are similar
to those in Fig. 8 but more prominent. These are results of
flow modifications due to director wagging and tumbling in
the wide channel. The spatial variation of the polymer stress
changes the flow and that in turn affects A. Thus, even in the
absence of distortional elasticity, director tumbling and wag-
ging off the centerline can affect the order parameter on the
centerline through flow modification.

Experimentally, Baleo and Navard5 and Bedford and
Burghardt4 both found that an expansion reduces flow bire-
fringence. While acontraction creates a region of relatively
uniform and steady orientation and high order, an expansion
of the same strength, measured by the strain rate, is not able
to maintain an area of uniform and steady orientation ~see
Fig. 2 of Baleo and Navard5!. These observations are consis-
tent with our numerical results. In fact, area C in Fig. 12~a!,
where director wagging and tumbling occur, can be likened
to zone II of Baleo and Navard5 following a gradual expan-
sion. Wang et al.26 used a nontumbling Doi model to simu-
late the extrusion of LCP. Though they could not detect the
tendency toward director wagging or tumbling following an
expansion, they observed reduction in Sand til t of the direc-
tor away from the streamline. These are consistent with our
results.

B. Abrup t expansion

Finally, we consider a channel with a 0.25:1 sudden ex-
pansion at x50; the inlet is at x523 and the outlet at x
58. The kinematics is similar to the 1:0.25 sudden contrac-
tion in Sec. IV B except that the deformation history is
sampled backward by the polymer. There are two interesting
areas in this flow. One is the corner vortex that contains

FIG. 14. The corner vortex and two pairs of disclinations in the 0.25:1
abrupt expansion at t533.62. The corner at the lip of the expansion has
been rounded to avoid stress singularity. Open and closed circles indicates
21/2 and 11/2 defects cores in the sketch. The thick curve represents a
streamline.
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FIG. 15. The A field in the 0.25:1 abrupt expansion at t58.02. On the centerline, the director is vertical and the order parameter, as indicated by the shape
of the ellipses, varies periodically. Above the centerline there is a wave pattern in the orientation angle which extends to y'0.5.
n-
rotational flow. Disclination cores are generated as inhomo-
geneous tumbling distorts the director field. Figure 14 is a
snapshot of the corner vortex. There are two pairs of half-
strength defects and they wil l rotate and interact with one
another. Positive and negative defects annihilate each other
and new ones are created as in Fig. 11.

The other interesting area is the wide channel down-
stream of the expansion. A large-scale wave pattern develops
and propagates downstream; the waves are roughly periodic
temporally and also spatially along x. Figure 15 shows the
configuration tensor A field at t58.02. Because of the com-
pression associated with the expansion, the ellipses are
squeezed on the centerline; the director turns vertical and the
order parameter becomes rather large. After the compression
region ends at about x51 ~cf. contours of flow-type param-
eter in Fig. 9!, one would expect the order parameter to relax
gradually to the equilibrium value. In reality, however, the
order parameter oscillates downstream with littl e relaxation;
this gives rise to the cyclic ‘‘squeeze-stretch’’ pattern of the
ellipses on the centerline.

The A field above the centerline also exhibits a wave
pattern, although there it is the orientation angle u that is
readily seen to oscillate between large and small negative
values. Figure 16 plots profiles of u and the horizontal ve-
locity component u along x at different elevations. Based on
these and other numerical results, the following observations
can be made.

~i! The u(x) profiles show a wavy pattern that is sy
chronized with the Swave on the centerline. Theu(x) waves
are phase locked at different y until about y50.5. Above that
the usual wagging behavior prevails.

~ii ! The u(x) profiles also show a wavy pattern with the
same wave number as the u waves.

~iii ! By plotting such profiles at different times, we find
that the S wave on the centerline and the u andu waves off
the centerline all travel with the mean centerline velocity,
which is unity in this case, regardless of y and the local fluid
velocity.

~iv! When the flow rate is doubled in the simulation, the
wave number does not change and the onset of the waves
stays roughly at the same position x'2.

~v! Once in every few periods, the wave is distorted as
near x55.5 in Fig. 16. This modulation is probably an effect
of the upstream wagging or tumbling that is not entirely
eliminated by the expansion.

These waves bear remarkable similarity to an instability
observed experimentally in channel flows following
expansions.4–6,40 That instability manifests itself as large-
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scale waves across the central part of the channel. The waves
travel downstream at the centerline velocity. With increasing
flow rate, the onset of the instability stays in the same posi-
tion for HPC solutions6 but moves upstream toward the ex-
pansion for PBG solutions.40 The wave number is indepen-
dent of the flow rate for both solutions. Bedford et al.6

concluded that ‘‘th e wavy textures apparently emerge as a
result of an inhomogeneous transition of orientation back to
the flow direction, trapping thin bands of fluid in the twisted
configuration.’’ Considering that their ‘‘twist’ ’ refers to ori-
entation orthogonal to the flow brought about by the expan-
sion, this statement is an apt description of our Fig. 16~a!.
Since the experimental and simulated waves share these pe-

FIG. 16. The orientation angle profiles u(x) and velocity profilesu(x) at
different y following the 0.25:1 sudden expansion. t58.02. ~a! The wavy
pattern in u persists toy'0.5. At y50.7 the usual wagging prevails.~b! The
wavy pattern in u. The oscillation is strongest on the centerline and reverses
phase at y'0.2.
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culiar features, one is tempted to assume that the two are of
the same origin. Next we wil l first seek an explanation for
the simulated waves and then see how that may apply to the
experiments.

Because of the phase locking of the waves at different y,
they must not be caused by the inherent wagging and tum-
bling tendencies since the time scale for such motion scales
as the reciprocal of the local shear rate and thus varies with
y. We propose that the waves are an instability caused by the
coupling between the fluid flow and polymer dynamics on the
centerline. Fig. 17~a! compares the S(x) and u(x) profiles on
the centerline. The oscillation in S appears to be a conse-
quence of the oscillating u; the maxima of Soccur where the
fluid is being squeezed (]u/]x,0) and the minima ofS
occur where the fluid is stretched (]u/]x.0). Therefore, if
there is an initial disturbance in u(x), it wil l cause a distur-
bance in S(x) through the gradient]u/]x. This grows into
an instability because the disturbance in S(x) in turn rein-
forces the u(x) disturbance through the polymer stress. On
the centerline, the equation of motion for the fluid is

Re
]u

]t
52

]p

]x
1

]2u

]x2 1
c

Pe

]txx

]x
. ~8!

FIG. 17. The reinforcing disturbances on the centerline as the cause for the
wavy pattern downstream of the 0.25:1 sudden expansion. t58.02. ~a! Fluc-
tuations in u produces fluctuations in S through stretching and squeezing. ~b!
Through the normal stress, the polymer configuration in turn reinforces fluc-
tuations in the velocity. Normal stress profiles at y50.1 for the 0.25:1
sudden expansion and at y50 for the 0.5:1 gradual expansion ~at t530! are
also shown for comparison.
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With small inertia,txx modifies the flow mainly through the
viscous term; this can be seen as astress balance:

]u

]x
'2

c

Pe
txx1p1const. ~9!

Figure 17~b! plots the polymer normal stresstxx(x) against
u(x). The downward slopes of u correspond to positive dis-
turbances in txx and so the magnitude of the compression
rate wil l grow according to Eq. ~9!. By the same token, the
upward slopes of u are enhanced by the negative distur-
bances in txx and the extension rate wil l also grow. Hence
the disturbances of u and S wil l reinforce each other on the
centerline and an instability results. S is bounded by unity
and rotary diffusion prevents perfect alignment of LCP mol-
ecules. Note that the fluid particles convect with more or less
the wave speed and so they basically ride along on the
waves. The small deviation of u(x) from the wave speed
implies that the fluid particles slide slowly on the slopes of
the u wave. At any rate the polymer has ample time to
sample the local deformation.

The most intriguing feature of Fig. 16 is that the wavy
pattern persists well off the centerline. Owing to mass con-
servation, the squeezing–stretching on the centerline causes
oscillation of the velocity field across the entire channel.
This is effected by pumping the fluid toward the wall where
the centerline is squeezed and toward the centerline where
the centerline is stretched. Thus, there is a layer above y
50 in which the longitudinal velocity u varies in phase with
the centerline velocity; above this layer, u varies opposite in
phase to the centerline velocity. From Fig. 16~b!, this layer
exists in y<0.2. Obviously, it cannot be the streamwise ex-
tension ]u/]x that causes the waves inu(x) beyond
y50.2: u(x) reverses phase at y50.2 but u(x) keeps the
same phase through y50.5.

The key to this puzzle is that the flow is two-dimensional
away from the centerline. A disturbance in v affects the poly-
mer configuration A through two components]u/]x and
]v/]x; the shear component]u/]y probably has little to do
with the waves since their frequency does not scale with the
local shear rate. Though v!u, their gradients along x are
comparable in magnitude. Results show that the oscillations
of ]v/]x along x are phase locked throughout the chann
and these oscillations do correlate with the u waves. An up-
ward slope of v(x) represents a ‘‘counterclockwise’’ shear
and that corresponds to a u maximum. Conversely downward
slopes of v(x) correspond to u minima. Hence, the instability
on the centerline, as depicted in Fig. 17, generates waves
beyond the centerline by means of cross flow. This explains
why the waves propagate downstream with the centerline
velocity. Away from the centerline the influence of the poly-
mer stress on the flow is secondary; the normal stress profile
at y50.1 in Fig. 17~b! illustrates how rapidly txx diminishes
away from the centerline. It should be noted that at y.0, the
fluid particle slides backward on the wave forms of Fig. 16.
This does not compromise the explanation of theu waves by
]v/]x since the most recent deformation has the grea
effect on the LCP configuration.
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Approaching the top wall, the velocity disturbances di-
minish and the natural tendency of director wagging quells
the instability. This natural tendency can be discerned even
closer to the centerline, for instance, in the gradual return of
u to the shear direction in Fig. 16~a!. On the centerline, the
instability shows no signs of sagging downstream ~Fig. 17!.

The final question about the simulated wave is why it
does not occur following contractions and the 0.5:1 gradual
expansion. The answer is that a strong expansion is needed
to turn the director to vertical on the centerline such that the
order parameter reacts to the stretching and squeezing in the
way shown in Fig. 17~a!; this reaction sets up the polymer
stress that in turn reinforces the velocity disturbance. For the
0.5:1 gradual expansion, the director remains horizontal on
the centerline. The polymer normal stress txx is much
smaller than that in the 0.25:1 sudden expansion @Fig. 17~b!#,
and the slight fluctuation downstream is caused by director
tumbling and wagging off the centerline ~cf. Fig. 13!.

Now how relevant is the above explanation to the ex-
perimentally observed instability? The simulation differs
from the experiments in two major aspects. First, the flow is
three dimensional in the experiments, due not so much to roll
cells as to the slit-flow geometry. The top and bottom walls,
separated by a small gap, impose shearing orthogonal to the
flow plane containing the expansion. Second, the theoretical
model does not account for distortional elasticity and poly-
domains. Nonetheless, there are indications that the simu-
lated and experimental waves may have the same origin in
the flow-polymer coupling mechanism that we have pro-
posed. Baleo and Navard10 surmised that the expansion turns
the director away from the streamline and that may lead to
the instability. Based on quantitative data, Bedford et al.6

further established the relationship between the director ori-
entation at the expansion and the instability downstream. An
ingenious ‘‘twisted optical model’’ represents the upstream
orientational structure well. In addition, both Baleo and
Navard5 and Bedford and Burghard4 found that a subsequent
contraction in the channel removes the instability, presum-
ably by realigning the director to the flow direction. Bedford
et al.6 also demonstrated that the instability is confined to the
midplane of the slit flow where there is littl e complication
from the orthogonal shear.

A definitive test of our proposal is the correlation be-
tween velocity and birefringence disturbances on the center-
line of the channel. Bedford et al.6 confirmed oscillations in
the birefringence, though the amplitude is smaller than in
Fig. 17. LDV measurements of the centerline velocity turned
out rather random fluctuations, from which no signature of
the wavy pattern could be found. As the authors remarked,
‘‘given the inevitable coupling between liquid crystal orien-
tation, rheological properties and velocity fields, one must
assume that at some level the structural waves do influence
the velocity field.’’ Hence the lack of correlation may be due
to limitations of LDV instrumentation. Note that the ampli-
tude of velocity oscillation in Fig. 16~b! is only about 5% of
the mean. As the measured oscillation in birefringence is
much smaller than that in Fig. 17~a!, the actual velocity fluc-
tuation may be even smaller than 5%. The amplitude of ve-
locity fluctuation in Fig. 10 of Ref. 6 is more than 5% of the
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mean. This issue unresolved, it is impossible to test the idea
that the centerline communicates with the rest of the channel
through cross flow. In particular, the experimental channels
are rather wide and the velocity is essentially flat in the cen-
tral region on the midplane. Thus, the cross-flow mechanism
may be unnecessary for the synchronization of the wave
across the width of the channel.

The experimental waves have three mysterious features
that cannot be explained based on our simulations. The first
is the strong dependence of the wave number on the thick-
ness of the channel ~cf. Fig. 7 of Bedford et al.6!. Since the
wave number is independent of the flow rate, and there is no
shear on the midplane in any event, the orthogonal shear
cannot be the answer. Since the Ericksen number is high, and
the flow is definitely in a polydomain regime, it cannot be
distortional elasticity originating from director anchoring at
the solid walls. The Reynolds number in the experiments is
estimated at 0.02, so fluid inertia cannot be responsible for
the gap-width dependence, either. The second mystery is the
narrow centerline disturbance that occurs for HPC solutions
but not PBG solutions, and the third mystery is the sensitiv-
ity of the onset point to flow rate for PBG but not for HPC.
The key to the last two puzzles is probably related to the
differing flexibility of the molecules. Donald and Windle43

listed the persistent length of both polymers. HPC has a
shorter persistence length but a somewhat larger persistence
ratio than PBG. It is interesting that our simulations, based
on the Doi theory for thin and rigid rods, have shown no
dependence of the onset position on the flow-rate.

VI. CONCLUSIONS

This paper is an attempt at simulating channel flows of
LCPs while preserving the time-periodic nature of the poly-
mer dynamics. Two simplifications are made: the distortional
elasticity is neglected, and the flow is two-dimensional with
director orientation symmetric about the flow plane. The
main results of this paper can be summarized as follows.

~i! A contraction aligns the director with the streamline
and improves the order parameter. The effects are stronger
for larger contraction ratio. With the same contraction ratio,
an abrupt contraction has stronger effects than agradual con-
traction.

~ii ! An expansion turns the director away from the flow
direction and reduces the order parameter. As compared with
a contraction having the same velocity gradient on the cen-
terline, an expansion is ineffective in suppressing director
wagging or tumbling and maintaining a relatively uniform
director field.

~iii ! If an expansion is strong enough to turn the director
vertical on the centerline, an instability develops downstream
because disturbances to the flow and polymer configuration
reinforce each other through the polymer stress. This insta-
bility generates a wave that spans roughly the central half of
the channel and propagates downstream at the centerline ve-
locity.

~iv! Downstream of either an expansion or a contraction,
the order parameter relaxes and director tumbling or wag-
ging resumes.
ll Rights Reserved.
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~v! For abrupt contractions or expansions, disclinations
of 61/2 strength arise in the corner vortex. They rotate and
annihilate each other periodically; new disclinations are gen-
erated continually.

Despite the simplifications in the theoretical model, most
of the above results enjoy experimental support. For contrac-
tion flows this is perhaps expected since the extensional flow
aligns the domains and makes distortional elasticity unim-
portant. The simulated instability is remarkably similar to
experimental observations. Our explanation via the flow-
polymer coupling mechanism is consistent with the clues
that the experimenters have gathered, but the theory cannot
be definitively validated by existing data.

The simulations indicate that using contraction/
expansion is a feasible strategy for controlling LCP order
and morphology in injection molding and extrusion. Con-
tractions effectively suppress director tumbling in the center
of the channel, precisely where ordering aid is needed. Ex-
pansions are problematic because they are less effective in
controlling the motion of the director and are conductive to
flow-structural instability. However, experiments show that a
contraction following an expansion removes the instability.
Since an expansion is less potent than a contraction in chang-
ing the LCP orientation and morphology, an expansion–
contraction pair may achieve good ordering without con-
straining the dimensions of the product. Similarly, multiple
contractions and expansions may be useful in designing
channel flows.
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