AMD-Vol. 217, Rheology and Fluid Mechanics of Nonlinear Materials

ASME 1996

THE MOTION AND INTERACTION OF SOLID
PARTICLES IN VISCOELASTIC LIQUIDS

J. Feng
Department of Chemical Engineering,
University of California, Santa Barbara, California 93106

D. D. Joseph and P. Y. Huang
Department of Aerospace Engineering and Mechanics,
University of Minnesota, Minneapolis, Minnesota 55455

ABSTRACT

In this paper we present numerical and experimental results on
the motion and interaction of solid particles in polymeric fluids. The
two-dimensional numerical work investigates the viscoelastic effects
on the sedimentation of a particle in the presence of solid walls or
another particle. The Navier-Stokes equations coupled with an
Oldroyd-B model are solved using a finite element method, and the
particles are moved according to their equations of motion. In a
vertical channel, a particle settling close to one side wall experiences a
repulsion from the wall; a particle settling farther away from the wall
is attracted to it. Two particles settling in tandem attract and form a
doublet if their initial separation is not too large. Two particles settling
side by side approach each other and the doublet also rotate till the line
of centers is aligned with the direction of fall. The experimental part
studies the behavior of single particles and suspensions in polymer
solutions in a torsional flow. Four issues are investigated: the radial
migration of a spherical particle, the rotation and migration of a
cylindrical rod, the particle-particle interaction and microstructures in
a suspension of spheres and the microstructures in a suspension of
rods. A spherical particle migrates outward at a constant velocity
unless the polymer solution is very dilute. A rod has two modes of
motion depending on its shape, initial orientation, the local shear rate
and the magnitude of normal stresses in the fluid. When a suspension
is sheared, spheres form chains along the flow direction. These chains
may connect and form circular rings, which migrate outward at a
velocity much higher than that for a single sphere. Rods interact with
each other and aggregate in much the same way, but to a less extent
than spheres. Particle interaction and aggregation can be explained by
two fundamental mechanisms discovered in the numerical simulations
of sedimentation.

1. Introduction

Solid particles are added to polymer melts to lower cost or to
achieve desirable properties. In processing such composite materials, it
has been observed that the solids tend to migrate across streamlines
and form aggregates, and fibers exhibit complex orientation depending
on the flow field. Thus, inhomogeneity and anisotropy occur in the
finished product. Experiments on these phenomena tend to be
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qualitative and the explanations offered are usually speculative (e.g.,
Toll & Andersson 1993). The main reason is that most of these studies
strive to approximate the complex geometry and flow fields in
polymer processing. Direct tracking of individual particles under these
experimental conditions is impossible, thus rendering arguments on
particle behavior tentative.

Much research effort has been expended on modeling the flow of
solid-filled polymers. Unfortunately, all models up to now fall far
short of accounting for the solid behavior mentioned above. Solid
fibers are assumed to follow the Jeffery orbit, which applies rigorously
only to creeping flows of Newtonian fluids. Fiber-fiber interaction is
modeled as a Brownian-like diffusion (Advani & Tucker 1987). Ait-
Kadi & Grmela (1994) is the only work that allows for viscoelastic
media: the extra stress of the fluid is given by a FENE-P model and the
solid contribution to the stress is given by the Dinh-Armstrong
equation (Dinh & Armstrong 1984) modified to include non-
Newtonian e‘ects on the drag. This is the most sophisticated model
that we have seen. Yet by no means can fiber aggregation and
migration be simulated because the non-linear mechanisms for these
scenarios are not understood.

Therefore, a wide gap exists between the complexity of flows
under realistic processing conditions and the capability of continuum
modeling. This points to the need for studying the local mechanisms of
particle migration and interaction. Previous work has identified
viscoelastic normal stresses and inertia as the nonlinear mechanisms
for the intriguing behavior of particles (Leal 1980). Interestingly, the
two nonlinearities almost always oppose each other in their effects on
particle motions. Here we are mainly concerned with the normal stress
effects.

Three features of particle motion have received special attention:
the lateral migration of spheres, the orientation or rotation of long
particles and the interactions between particles. These have been
observed in sedimentation and various forms of shear flows. An
elongated particle settling in a quiescent liquid rotates till its long axis
aligns with the fall (Leal 1975, Liu & Joseph 1993). A rod-like particle
in a shear flow approaches a limiting orbit of rotation with its axis
aligned with the vorticity vector (Karnis & Mason 1966, Gauthier et
al. 1971ab). If the fluid has strong normal stresses and the shear rate is



sufficiently high, the rod may align itself with the streamline (Bartram
et al. 1975). In a Poiseuille flow, a particle migrates across streamlines
to the center of the pipe (Gauthier er al. 1971b, Kamnis & Mason
1966). Two spheres sedimenting one above another may attract or
repel depending on their initial separations (Riddle et al. 1977).
Spheres form structures that are aligned with the stream in shear flows
(Highgate & Whorlow 1968, Giesekus 1981). More recently, Prieve
and co-workers studied the radial migration of a sphere in a torsional
shear flow between parallel disks. A solid sphere migrates inward in a
1% polyisobutylene in polybutene solution (Karis et al. 1984 a). Later
experiments using more dilute solutions discovered that the sphere
migrates inward if the initial position is within a critical radius and
migrates outward otherwise (Karis er al. 1984b, Prieve et al. 1985,
Choi er al. 1987). Joseph et al. (1994) studied the effects of a nearby
wall on a sedimenting sphere and the interaction between two spheres
settling side by side. In a Newtonian fluid, inertia is known to cause
repulsion between the sphere and the wall and between the two
spheres (Liu er al. 1993). In viscoelastic liquids, the sphere is pulled
toward the wall and the two spheres attract if the initial separation is
smaller than a critical value, beyond which no interaction is
discernible.

Perturbation theories based on the second-order fluid model have
achieved remarkable success in predicting the motion of particles
(Leal 1979, Brunn 1980). Qualitatively correct predictions have been
obtained for the preferred orientation of a settling long body (Leal
1975), the lateral migration of a sphere in a non-homogeneous shear
flow (Ho & Leal 1976, Chan & Leal 1977) and the evolution of the
Jeffery orbit (Leal 1975). However, when Brunn (1977) applied the
same scheme to the interaction of two sedimenting spheres, results
show that the two spheres always attract, in apparent disagreement
with the observations of Riddle et al. (1977). Caswell (1972) used a
similar perturbation procedure to study the wall effects on the
sedimentation of a sphere. His resuits show that the sphere would be
repelled by the wall, again in contradiction to experimental
observations. In a torsional shear, the theory predicts an inward
migration of particles, which is in apparent agreement with the
observations of Karis ef al. (1984 4). But the theory fails to explain the
two-way migration later observed in more dilute solutions.

In this paper, we present numerical simulations of wall-particle
an” particle-particle interactions in sedimentation and experimental
observations of the behavior of single particles and suspensions in
torsional shear. The numerical work was inspired by the failure of
perturbation theories mentioned above. The Navier-Stokes equations
coupled with an Oldroyd-B model are solved using a finite element
method, and the particles are moved according to their equations of
motion. The nonlinear inertia and normal stresses are fully taken into
account. Two problems are studied in this paper: the sedimentation of
a circular particle released in a vertical channel at various initial
distances from one side wall and the sedimentation of a pair of
particles released side by side or in tandem. Because the Newtonian
counterparts of these problems have been studied (Feng et al. 1994a,
Liu et al. 1993), the effects of normal stresses can be highlighted. The
experimental effort was inspired by the work of Prieve et al. (1985).
We will investigate the radial migration of spheres using a different
kind of polymer solution. The behavior of rods and suspensions of
spheres and rods are also studied. Microstructures in suspensions of
spheres have been previously reported (Giesekus 1981), but ours
appears to be the first well-controlled experiment in a steady non-
homogeneous shear flow. The formation of microstructures in sheared
suspensions provides direct testimony to the nonlinear mechanisms
discovered in numerical analyses.

124

2. Numerical results and discussions

Our algorithm is an extension of what was used in simulating
moving boundary problems in Newtonian fluids (Feng et al. 1994 ab).
The equations of motion and the constitutive equation are:
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At each time step, the above equations are solved using a finite
element solver POLYFLOW with an EVSS scheme. The force and
torque on the solid particle then determine the position and velocity of
the particle at the next time step. The new domain is re-meshed and the
old velocity and stress fields are projected onto the new mesh. Then
the velocity, pressure, stress and deformation gradient fields are
computed for the new time. More details of the algorithm and the
mesh are given by Huang & Feng (1995). We are currently limited to
two-dimensional simulations. Nonetheless, this is the first attempt, to
our knowledge, at dynamic simulation of particle motion in complex
flows of viscoelastic fluids.

2.1. Sedimentation of a single particle in a channel
The geometry of the problem is shown in figure 1. A cylinder of radius
a and density p; is released at an eccentric position in a channel filled
with an Oldroyd-B fluid. The cylinder is heavier than the fluid and
starts to settle under gravity. We wish to study the lateral motion of the
particle as a result of the walls.
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Figure 1. Sedimentation of a single cylinder in a channel filled with an
Oldroyd-B fluid.

Before doing dynamic simulations of the sedimentation, we first
carried out static calculations. The particle is fixed in space; a uniform
velocity U is applied at the inlet of the domain and on both side walls.
This is a Galilean transformation of a steady sedimentation without
lateral migration and rotation. The lateral force on the particle then
suggests the direction of lateral motion if the constraints are removed.
Because dynamic simulations of sedimentation usually have long
transients and require a tremendous amount of computation, we use
static calculations to explore the effects of various parameters. Then a




complete picture of the sedimentation may be constructed by doing
just a few dynamic simulations.

a. Static calculations
We use an Oldroyd-B model with A,/A4=1/8. The control

parameters are Re=pUa/t, De=UA,/a and the blockage ratio L/a. We
define a drag coefficient ( Cy) and a lift coefficient (Cy) by dividing the

forces by (p !Uaa), and a torque coefficient (C,) by dividing the torque
by 2pPa’).
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Figure 2. The drag on a cylinder at different positions. Re=0.05, L/a=8.
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Figure 3. The torque on a cylinder at different positions. Re=0.05,
L/a=8.

Results show that at relatively low Reynolds numbers, the drag
has a minimum when the cylinder is somewhere between the
centerline and the wall (figure 2). For L/a=8, this minimum occurs at
ya = 2. The minimum drag is consistent with the creeping flow results
of Dvinsky & Popel (1987). As the Deborah number is increased, the
drag is reduced. The torque on the cylinder is positive for y<l/2
(figure 3), meaning that the cylinder would rotate as if rolling up the
nearby wall. Increasing De tends to reduce the magnitude of this
torque.

The variation of the lateral force is much more intriguing.
Typically, there is a region near the wall in which strong wall
repulsion prevails. Between this wall region and the centerline of the
channel is a core region in which the cylinder experiences attraction
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Figure 4. The lift on a cylinder at various lateral positions. L/a=8. The
Deborah number tends to promote the attraction force while the
Reynolds number tends to suppress it. A curve for Newtonian flow is
also shown for comparison.

toward the nearby wall (figure 4). The effect of De is to promote wall
attraction. At De=0, a wall repulsion prevails throughout the entire
region, a well-known fact from previous study of Newtonian flows
(Feng et al. 1994a). As De increases from 0.2 to 1, the core region
becomes wider and the magnitude of the attraction force is greatly
increased. The wall region is narrowed, though the repuision force sees
an increase. The effect of Re, on the other hand, is to suppress the wall
attraction. As compared with the creeping flow (Re=0, De=1.0), the
inertial flow at Re=0.05 and De=1.0 has a smaller core region with a
weaker attraction force and a stronger repulsion in the wall region.
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Figure 5. Effects of the blockage ratio L/a on the lift force. Re=0.05,
De=0.2. The eccentricity factor =0 on the centerline; e=1 when the
cylinder touches one side wall.

The geometric parameter L/a has an unexpectedly strong effect
on the lateral force. Narrower channels have a relatively wider core
region with a larger attraction force (figure 5). To compare the lift
curves in different channels, we use the eccentricity factor e=1-d,/d,,
where d; and d, are the width of gaps on both sides of the particle. For
L/a=3.43, the core region extends to e=0.92. On the other hand, no
core region is observed for a wide channel of L/a=20; wall repulsion
prevails throughout.



The above results imply that the wall attraction is not a result of a
single wall, but rather is caused by two walls. This is different from
the concept of wall attraction derived from experiments (Joseph et al.
1994, Jones et al. 1994). There are two possibie explanations for this
apparent discrepancy: (i) our numerical results are valid in two
dimensions only, and the wall effects are markedly different in two
and three dimensions; or (ii) the present results are qualitatively valid
in three dimensions, and the previous notion of attraction toward a
single wall is misguided. Wang et al. (1996) carried out a three-
dimensional calculation in an enclosed domain. A perturbation scheme
is used to extract the leading-order viscoelastic effects on the lateral
force between a sphere and a nearby wall. A repulsion force is
obtained in a region next to the wall and an attraction force exists
further out. This result appears to be evidence for (ii). But it remains to
be seen whether the core region will dwindle or even disappear when
the other walls are moved away. Experimentally, Joseph et al. (1994)
noticed that under certain conditions, a sphere does not come into
contact with the wall but rather keeps a small stand-off distance. The
effect of blockage shown in figure 5 also seems to be consistent with
the falling-ball experiment of Tanner (1964).

b. Dynamic simulations

The transient sedimentation of particles with terminal velocity U,
depends on the Froude number Fr=ga/U,2 and the density ratio p/gy
besides Re, De and L/a. The dynamic behavior of a settling particle is
manifest of the wall-particle interaction that we have learned from
static calculations. The effect of the Deborah number is depicted in
figure 6. The curves were obtained by varying the relaxation time of
the fluid A; while keeping other parameters fixed. Because the drag on
the particle depends on De (Huang & Feng 1995), the terminal
velocity U, and thus Re and Fr also change. It is clear that larger De
results in an equilibrium position closer to the channel wall, indicating
a wider core region in which wall attraction prevails (cf. figure 4).
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Figure 6. The effect of viscoelasticity on the trajectory of a particle
settling in a channel. L/a=8, p /9=1.0007. Re, De and Fr all change as
the relaxation time of the fluid A, is changed.

2.2. Interaction of two particles settling in a channel

a. The vertical configuration

Riddle er al. (1977) observed in experiments that two spheres
released tandem in a viscoelastic liquid will attract and come into
touch if their initial separation is below a critical value that depends on
the rheological properties of the fluid. If the initial separation exceeds
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this critical value, the two spheres will become farther apart during the
settling.

We study the particle-particle interactions by static and dynamic
simulations. In the static calculations, two circular particles of radius q
are fixed on the centerline of a plane channel of width L=8a; the
channel is filled with an Oldroyd-B fluid with A/4;=1/8. The center-
to-center distance between the particles is s. In this computation, the
crucial factor is the drag forces on both particies. If the drag on the
particle on top (D) is larger than that on the particle at the bottom
(Dy), the two will separate during sedimentation. Contrarily, the
particle on top will catch up with the bottom one if D,>D,. Figure 7
shows the variation of the drag coefficient at different separations. In
the Newtonian case, the drag is essentially the same on the two
particles. This is because the inertia is small at Re=5x 10°*. At Deborah
number De=1, pariicle 1 {(on iop) experiences a smaller drag than
particle 2 if the particles are fairly close (s/a<7). In the range 7<s/a <9,
there is a reversal in the relative magnitude of the drag; the bottom
particle has a slightly smaller drag. At s/a=10, the two drag forces are
almost identical, indicating negligible interactions between particles at
this separation or farther apart. Apparently, the static results are
consistent with the experimental observations of Riddle et al. (1977).
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Figure 7. The drag forces on two particles fixed tandem in space.
Re=5x10", L/a=8.

Dynamic simulations are done for inertialess flows (Re=0). This
is in part because the behavior to be simulated has nothing to do with
inertia, as is obvious from figure 7. This is also the case in the
experiment of Riddle et al. (1977). An additional benefit is reduced

"computational cost; the nonlinear inertia requires a Newton iteration.

The inertia of solid particles is retained.

Three dynamic runs are shown in figure 8. The particles are
released at different initial separations: s,=4a, 8a and 10a. In the first
case, the particle on top rapidly catches up with the other. When they
become too close to each other, the simulation breaks down. In reality
the particles will come into contact and fall as a doublet (Riddle et al.
1977). The other two runs are intended to demonstrate the weak
repulsion force found in static calculations. This scenario turns out to
be difficult to realize dynamically. For s,=8a, the center-to-center
distance s does tend to grow at the beginning. But this trend is quickly
reversed, and the particles start to get closer slowly. For s,=10a, s
never increases; it maintains its initial value for a short time and then
starts to decrease. Finally s seems to attain an equilibrium value at
9.85a. The 'terminal’ velocity is virtually the same in the last two
cases; the doublet formed in the first case (s ,=4a) falls much faster.
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Figure 8. The interaction of two particles falling one on top of the
other. The abscissa is the vertical distance traveled by the particle on

top. L/a=8, p /p=1.0002, Re=0. (1) The initial center-to-center
distance is s,=4a. At the end of the simulation, De=0.3, Fr=2.18x10%;
(2) s,=8a. At the end of the simulation, De=0.21, Fr=4.62x105; 3)
so=10a. At the end of the simulation, De=0.21, Fr=4.62x10°.

The failure to simulate the separation of particles is probably a result
of the transient nature of the motion. During sedimentation, the
velocities of the particles change constantly. This has two effects on
the relative magnitude of the drag. Firstly, because of the unsteadiness,
the drag forces will be different from those in a steady flow at the
same velocity. Secondly, the Deborah number and Reynolds number
based on the instantaneous velocity are different from the projected
terminal values. Then the ranges of s/a corresponding to attraction and
repulsion (cf. figure 7) may also be different. Therefore, the dynamic
behavior of a pair of particles in sedimentation cannot be safely
predicted from static forces based on their initial separation and the
projected terminal velocity. Besides, the repulsion is very weak in our
two-dimensional calculation and thus easily drown out in dynamic
simulation. The situation seems to be different in three dimensions: the
separation of spheres is a fairly robust feature in the experiment of
Riddle et al. (1977).

b. The horizontal configuration

We will consider the interaction of two particles settling abreast.
Joseph et al. (1994) reported that two spheres released side-by-side in
a polymer solution attract and approach each other if their initial
separation is not too large. This is in clear contrast to the inertial
repulsion well documented for Newtonian flows (Jayaweera & Mason
1965). We again use static and dynamic simulations to study the
particle-particle interaction in this configuration. The two particles are
fixed or released symmetrically across the centerline of the channel
with a center-to-center distance of s. The width of the channel is
L=20a for static calculations.

The lateral force from static calculations is shown in figure 9. A
positive lift on the left particle implies attraction. For a Newtonian
fluid at Re=0.05, the two particles repel each other when they are
close. This repulsion force diminishes when their separation increases
and eventually gives way to an "attraction” force at s/a=10. This bogus

attraction is actually a result of repulsion from side walls; in this -

configuration the particles are much closer to the nearby wall than they
are from each other. If inertia is removed but normal stress introduced
in the calculation (Re=0, De=1), the inter-particle force is reversed. A
strong attraction force exists between the particles, and it decreases as
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the particles become farther apart. Eventually the attraction is replaced
by a "repulsion”, which is probably caused by wall attraction. When
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Figure 9. Inter-particle forces on a pair of particles fixed side by side
in a channel. A Newtonian lift curve is also shown for comparison.
L/a=20.
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Figure 10. The interaction between a pair of particles released side by
side. L/a=10, p/g=1.0005, Re=0. (a) Initial separation s,=3a. At the
end of the simulation De=1.8, Fr=1.36x10* for both particles. (b)
Initial separation s,=4a. At the end of the simulation D e=1.43,
Fr=2.17x10* for both particles. '



inertia and normal stress coexist, as is the case in the experiments, the
two mechanisms compete with each other and the outcome will
depend on their relative strength. Figure 9 shows a lift curve at
Re=0.05 and De=1; in this case the normal stress apparently has an
upper hand.

For reasons given before, the fluid inertia is put to zero in
dynamic simulations of two circular particles settling abreast. To
reduce computational cost, we use a channel of L=10a, which is
narrower than that used in the static computation. This is expected to
have only qualitative effects on the behavior of the particles. Two
simulations are shown in figure 10.

Immediately after the particles are dropped, they tend to repel
each other and move apart. This initial transient is similar to that
observed in figure 8. After that, the particles start to attract and
approach each other, rotating in the mean time as if rolling up the
vertical plane of symmetry between them. When the two particles are
close enough, they behave like a single long particle, and as such begin
to turn the line of centers toward the direction of settling. For this
configuration, the inter-particle attraction in figure 7 kicks in. The two
particles will eventually touch and fall as a long particle. The initial
center-to-center distance has a subtle effect on the scenario. For
smaller s, (figure 10a), the lateral approaching occurs first and the
turning of the doublet follows. If s,is relatively large (figure 10b), the
turning and approaching happen simultaneously. When the doublet is
slanted during the turning, it also drifts sideways as in a Newtonian
fluid. At the end of both simulations, the doublet has come close to
one side wall and wall effects start to interfere. Though the dynamic
simulations in two-dimensions cannot be rigorously compared to the
experiments (Joseph et al. 1994), they have correctly reproduced the
qualitative features observed.

In summary, the interaction of two particles in sedimentation
consists of two fundamental mechanisms: the attraction between
neighboring particles and the preferred orientation of a long body. For
a sedimenting spheroid, we have shown that viscoelastic normal
stresses modify the pressure distribution on the particle (Feng et al.
1995), and a torque results that turns the long axis to vertical. The
direct contribution of the normal stresses to the torque is relatively
small. The attraction between neighboring particles can also be traced
to a modified pressure distribution on them (Feng et al. 1996).

3. Experimental results and discussion

In this part of our study, we generate a torsional shear flow
between parallel plates and record the motion and interaction of
spheres and rods suspended in polymer solutions. Figure 11 is a sketch
of the experimental setup. A and B are glass discs aligned to within
0.07 mm at the rim. A is driven by the motor E and B is fixed. The
diameter of A is 22 cm. C is a cylindrical shroud that encloses the
liquid. The gap between the edge of A and the inner surface of Cis 0.5
cm. The gap H between A and B is measured to within 0.01 mm. Dis a
video or photo camera. After the shear is started, trajectories of single
particles are recorded onto video tapes and later read by use of a
VIA100 reticle unit. The maximum error in the radial position of the
particle is 0.2 mm. The parallax error is estimated to be negligible.
When suspensions of many particles are sheared, we use a photo-
graphic camera coupled with close-up lenses to capture the details of
the particle interactions.

The viscoelastic liquids used are aqueous solutions of
poly(ethylene oxide) (Polyox WSR301 from Union Carbide) of 0.5%,
1% and 2% concentrations. These solutions exhibit large normal stress
differences and has a strong storage modulus (Joseph et al. 1994). We
have used glycerin and Newtonian silicone fluids (Dow 200 fluids) in
certain tests as a comparison with the polymer solutions. Polystyrene
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spheres with diameters ranging from 250 pum to 850 um are used. The
density of the material is 1.05 g/t:m3 . Rod-like particles are cut from
two kinds of plastic threads with density 1 g/cm3 and 1.26 g/cm3,
respectively. The first density roughly matches that of polyox solutions
and silicone oils while the second matches that of glycerin. The
diameter of the rods ranges from 170 um to 330 um and the length
from 0.5 to 4 mm.
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Figure 11. A sketch of the experimental setup.

All experiments are done in a temperature controlled room, and
no further remedies are taken to counter viscous heating. We have
repeatedly measured the temperature of the liquid before and after one
hour of shearing at a typical shear-rate. The temperature rise is never
over 1°C. Mechanical degradation is minor in our tests because the
shear-rate is low (~ 20 s™") and the sample is used no longer than a
week. It is well known that secondary recirculations occur in the
parallel-plate type of apparatus. In our apparatus, the intensity of
secondary flow is expected to depend on the gap size H and the

angular velocity of the upper plate (2. In preliminary tests, we have

established the maximum values of H and €2 for each solution below
which secondary recirculations can be safely neglected. All subsequent
experiments were done within these limits.

3.1. Radial migration of a sphere

A sphere released in a 2% polyox solution migrates outward, and the
radial velocity does not vary significantly with the radial position.
Figure 12 shows a group of trajectories. Most part of each trajectory
falls on a straight line, and its slope does not depend on r in a
systematic way (v,‘~=4x10'4 cm/s). Also shown is a trajectory of the
same sphere in a 4,000 cst silicone oil. The viscosity of the oil matches
that of the 2% polyox solution at the shear-rate that occurs near r=5
cm for the H and £2 values used. No radial migration is detected in two
hours of shearing. This proves that the radial migration in the polyox
solution is an effect of viscoelasticity. The longitudinal speed of the
particle indicates its vertical position. Results show that the particle
approaches the mid-plane between the plates independent of its initial
location.

The results shown in figure 12 are quite different from the
observations of Karis et al. (1984b) and Prieve ez al. (1985). We
obtained only outward migrations, and the radial velocity does not
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depend on the radial position r. Prieve er al. (1985) observed inward
and outward migrations separated by a critical streamline, and the
absolute value of the radial velocity increases linearly with r inside
and outside the critical radius. The liquid used here is shear-thinning
and that used by Prieve et al. has a nearly constant viscosity in the
range of shear-rate covered; shear-thinning may play a role in the
dependence of v, on r. Choi et al. (1987) suggested that the critical
shear-rate is related to the relaxation time of the fluid such that the
critical radius would be larger for more dilute solutions. In our device
the smallest radius observable on the plate is r=3 cm, inside which the
shaft prevents visual observation. It is possible that our 2% solution is
too concentrated for the inward migration to be recorded. From this
consideration we repeated the tests in figure 12 with 1% and 0.5%
polyox solutions.
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Figure 12. Radial migration of spheres in 2% polyox solution. The
diameter of the sphere d=580 um. H=2 mm, £2=2.55 rpm. Also shown
is the radial motion of the same sphere in a silicone oil (filled circles).

Because of the reduced viscosity of the more dilute solutions,
lower angular velocity £2 has to be used lest secondary recirculation

develops between the plates. On the other hand, if 2 gets too small,
the radial migration becomes very weak and hard to measure. For the
1% solution, we have observed only outward migration. The velocity
of migration, if scaled by £2R (R is the radius of the upper disc), is
about one half of that in the 2% solution for a sphere of the same size.
Results obtained in the 0.5% solution are less repeatable than in the
other two solutions. Qualitatively speaking, slow inward migration
occurs at all radial positions with a radial velocity on the order of
5x10° cm/s. This seems to agree with the arguments of Choi et al.
(1987). We cannot confirm the existence of critical streamlines and the
discontinuous migration velocity reported by Karis et al. (1984b).

3.2. Rotation and migration of rod-like particles
We have found two modes of motion for a rod in 2% polyox solution,
depending on the local shear-rate, the initial configuration and the
fod's aspect ratio. The first mode occurs only if the shear-rate is low
and the rod is initially oriented close to the radial direction. Then the
rod executes an oscillating motion along a Jeffery orbit around the
local vorticity vector. Previous experiments in Couette flows (Gauthier
etal. 1971a) suggested that vxscoelasncny would drive the rod into a
preferred Jeffery orbit with its axis completely aligned with the
vorticity vector (orbit constant C=0). In our experiment, the rod is
initially assigned an orbit close to the preferred one. In the time of
Observation (typically 10 minutes), the rod seems to maintain the same

orbit and no evolution is detected. Perhaps, inertia has prevented
complete evolution and forced an equilibrium orbit close to C=0. The
period of rotation is in general much longer than the theoretical value
for the Jeffery orbit. The discrepancy seems to be larger at higher
shear-rates.

If the same rod is initially oriented such that it makes a relatively
large angle with the local vorticity, or if the shear-rate is high enough,
the rod immediately aligns itself with the local streamline upon start of
the flow. Then it will stay aligned and be carried along by the flow.
This is the second mode of motion, or 'aligned motion'. Rods with
larger aspect ratios align with the flow more easily. For instance, a thin
rod with L=1.8 mm and rp=10.6 aligns immediately thh the flow at
the smallest shear-rate tested in our device (~1.8 s~ ) even if it is
carefully oriented in the radial direction before the shear starts.

The same two modes of motion have been observed in 1% polyox
solution; all qualitative features of the motion are the same. The
oscillating motion, however, persists up to higher shear-rates than in
the 2% solution; the oscillation also achieves larger amplitude.
Besides, the period of rotation is shorter and closer to the theoretical
value for Newtonian fluids. These differences are consistent with the
fact that rheologically the 1% solution is between a Newtonian fluid
and the 2% solution.

To summarize, the oscillating motion prevails only if the shear-
rate and initial orientation fall into a small window. This window is
affected by the aspect ratio of the rod and the properties of the fluid.
Larger aspect ratio and larger normal stresses tend to shrink the
window, though it is not clear whether it can be completely eliminated.

. The behavior of a rod in a torsional flow appears to be qualitatively the
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same as in a Couette flow (Karnis & Mason 1966, Gauthier et al.
1971a, Bartram et al. 1975). The perturbation analyses of Leal (1975)
and Brunn (1980) showed that the second normal stress difference
causes an orbit drift toward C=0. When the shear-rate is sufficiently
large, a steady solution emerges with the rod aligned with the flow.
The rod selects one of the two solutions based on its initial orientation.
This picture is entirely consistent with our findings.
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Figure 13. Radial migration of neutrally buoyant rods in polyox
solutions. H=2 mm. (a) The length and diameter of the rod are L=1
mm and ¢=330 um. 2=3.9 rpm Aligned motion in 2% solution with
radial velocity v,=1.67 x107 cmls (b) Same as 1 except for a different
initial position; v,=1. 03x10° cms. (c) Same as 1 except that the rod is
in oscillating motion. 2=1.6 rpm, v,=-7.71 x10% cm/s, C=0.1. (d
Same as 1 but the rod is longer L=1.8 mm; 12:2.81 x10* cys. (e) Same
as 2 but in 1% polyox solution; v,=2.82x10™ cm/s.



Radial migration is observed for rods in viscoelastic fluids, being
inward if they are in the oscillating mode of motion and outward if the
aligned mode prevails. In both cases, rods migrate at a constant radial
velocity v, (figure 13). For outward migration (curve a), the non-
dimensional radial velocity v,/(R is about 8 times larger than that for
inward migration (curve ¢). The outward migration is slower for a
longer rod (curve d). This is somewhat surprising since a rod seems to
migrate much faster than a sphere of the same diameter (cf. figure 12
and curve 1 in figure 13). In 1% polyox solution, v, is about 1/4 of that
in the 2% solution, other conditions being the same (curve ¢). In both
modes of motion, the angular velocity with which the rod revolves
around the hub approaches €22, indicating that the rod drifts vertically
to the midplane between the plates.

3.3. Behavior of suspension of spheres
Polystyrene spheres are added to 2%, 1% and 0.5% aqueous polyox to

form suspensions. The diameter of the spheres ranges from 250 um to
850 um; we used the particles directly out of the bottle and the size

distribution is unknown. The solid volume fractions used are 2%, 5%
and 10%.
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Figure 14. Formation of microstructures in 2% suspension of spheres
in 2% aqueous polyox. H=2.1 mm. (a) after 2 minutes of shearing at

£2=3.5 rpm; (b) after 18 minutes of shearing.

Once the flow starts, spheres interact with one another and
microstructures form. The characteristics of this process are the same
for suspensions of various solid fractions in different solutions, Figure
14 shows snapshots of a 2% suspension in 2% aqueous polyox. The
flow direction is from bottom to top in the photographs.

Shortly after the shear starts, spheres near the outer edge, where
the shear is the strongest, start to form short chains that are aligned to
the flow. Such chains appear throughout the suspension after 2
minutes of shearing (frame a). In this picture, the chains comprise
mostly of larger spheres. After 8 minutes of shearing, the chains have
connected to form longer strings. Neighboring chains apparently
attract each other and they aggregate to make the string thicker. It may
also be noticed that smaller spheres start to form their own chains.
This size selection in particle-particle interaction agrees with previous
observations of Giesekus (1981). After 12 minutes of shearing, the
strings have further grown in length and thickness, and become
complete circular rings. These rings continue to absorb short chains
until only a few spheres are left in the clear liquid between adjacent
rings (frame b).

The rings migrate outward; the interior of the flow field will be
depleted of all solids in a certain time. One might expect spheres of
different size to migrate at different speed, therefore causing
disintegration and regrouping of rings. This does not happen. Most
rings survive the migration and reach the rim as a whole. Occasionally,
a thin ring breaks up as its diameter grows. Then all spheres will be
absorbed by the next ring; no dispersion of spheres is observed. When
rings first appear, they are more or less evenly spaced. After the first
few rings on the outside have arrived at the rim, the ring spacing on
the inside grows. After the solid concentration has dropped
considerably near the hub, thinner rings emerge. They are also closer
to one another. The rings rotate at roughly half the speed of the upper
plate, suggesting that they prefer a vertical position midway between
the plates.
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Figure 15. The outward migration of rings in 10% suspension of
spheres in 2% aqueous polyox. H=2.1 mm, £2=3.5 rpm. Ring a is a

thick ring that appears in an early stage and b is one of the thin rings
that appear later; the time has been shifted for comparison.

The radial migration of rings is measured in one case using 10%
solids in 2% aqueous polyox. Figure 15 shows the migration of two
rings: a is a thick ring that appears in an early stage and b is one of the
thin rings that appear later. Ring a starts with a high speed and then
settles into a slower speed v,=8.68x10°* cm/s. The same pattern holds



for ring b. Though its initial migration is slower, ring b later attains
essentially the same velocity as a (v,=8.40x10™ cm/s). Another
intriguing feature of the migration is that rings, comprised of spheres
of various sizes, migrate much faster than a single sphere under the
same shear (cf. figure 12).

©
Figure 16. The formation of microstructures in 2% suspension of rods
in 1% aqueous polyox. H=2.6 mm. (a) after 7.7 minutes of shearing at

£=5.75 rpm; (b) after 9 minutes of shearing at £2=12.1 rpm following

the last frame; (c¢) after 30 seconds of shearing at 2=31.1 rpm
following the last frame.

131

3.4. Behavior of suspension of rods
Plastic rods of diameter d=170 ~ 330 um and length L=0.5 ~ 4 mm are
mixed with 1% polyox solutions. The mixture is stirred thoroughly and
sits still for a few hours to let the air bubbles out before being loaded
on our parallel-plate device. Two suspensions of 2% and 5% solid
volume fractions are studied and the behavior is similar. Figure 16
shows a sequence of snapshots of the suspension.

After the flow starts, most rods align themselves with the flow
direction in a few seconds. After 7 minutes of shearing at £2=5.75 rpm
(frame a), some rods seem to have formed chains. But this is much
less obvious than with the spheres (cf. figure 14a). Also unlike
suspensions of spheres, the suspension of rods is still more or less
homogeneous; no large aggregates of particles are found. Then the
angular velocity of the upper plate is suddenly raised to £2=12.1 rpm.
At this high shear-rate, rod chaining, aggregation and outward
migration are all accelerated. After 9 minutes' shearing (frame b), more
chains have formed and the suspension becomes nonhomogeneous
with aggregates of rods and areas of clear liquid. At this point, 2 is
increased to 31.1 rpm. After 30 seconds of shearing (frame c), band-
like structures can be discerned. As compared with the rings of figure
14, these structures of assembled rods are much less conspicuous;
many thin chains and single rods fill the space between the aggregates.
The rods migrate outwards in the radial direction.

We may conclude from figure 16 that rod-like particles align with
the flow. They also associate with one another to form chains and
aggregates. These interactions are much weaker than those among
spherical particles.

3.5. Discussion on microstructures
Two major results of this experimental study are the migration of
particles in a torsional flow and interaction and aggregation among
particles. Obviously, complete interpretations of these phenomena are
not yet available. Here we will briefly discuss the local hydrodynamic
mechanisms that lead to the formation of chain-like aggregates aligned
with the flow.

Petit & Noetinger (1988) offered an explanation for the chains in
terms of the secondary flow induced by the spheres' rotation. Since a
rotating sphere in a viscoelastic fluid sucks in fluid around its equator
and ejecs fluid from its two poles, two spheres whose line of center is
parallel to the streamlines in a shear flow will attract each other. More
spheres join in to form a chain. This theory is unlikely to be true for
three reasons, Firstly, it has been observed that once the spheres form a
chain, they stop rotating (Michele ez al. 1977). Hence rotation-induced
suction cannot be the agent to hold the chain together. Secondly, the
secondary flow implies repulsion between spheres rotating side by
side. This cannot explain the rings made of several chains bundled
together (figure 14). Finally, rod-like particles do not rotate but they
do form chains and aggregates.

Since all interactions happen on the plane of uniform velocity, the
effect of shear is minimal. We believe the mechanisms for particle-
particle interaction and association are the same ones that operate in
the sedimentation and fluidization of many particles in a viscoelastic
liquid. The two basic mechanisms found in sedimentation are:

(i) Attraction force between particles falling side by side

(Joseph et al. 1994) or one on top of the other (Riddle

etal. 1977).

(ii) Preferred orientation of a long particle in sedimentation

with its long axis parallel to the direction of fall (Leal

1975, Liu & Joseph 1993).
Numerical simulations have revealed the anatomy of these
mechanisms (Feng etal. 1995, 1996). Viscoelastic normal stresses
cause a dramatic change in the pressure distribution near the particle.



This new pressure field yields forces and torque that are opposite to
those expected in a Newtonian fluid; the direct contribution of the
normal stresses to the forces is relatively small. We should also
mention that when the separation between two spheres falling one on

top of the other exceeds a threshold value (§4~104), a weak repulsion

cx1sts between them (Riddle et al. 1977). This should not affect the
picture of particle aggregation in an important way.

Thus, if a suspension in viscoelastic liquids is sheared, particles
attract each other in longitudinal and lateral directions. Primitive
arrays made of spheres joined abreast will rotate until they too are
aligned with the flow. Parallel chains attract each other and form
thicker aggregates. Inhomogeneity develops just like in sedimentation
(Allen & Uhlherr 1989, Joseph et al. 1994). Since thin rods aligned
with the stream cause little disturbance to the ambient flow, the range
of the lateral attraction force is much shorter for rods. Hence, fiber-like
particles aggregate much more slowly (figure 16).

4. Conclusions

This paper investigates the viscoelastic effects on the motion and
interaction of particles in sedimentation and torsional shear flow. The
main results of this paper may be summarized as follows.

(1) For a particle settling in a vertical channel, viscoelasticity
generates a wall repulsion if the particle is very close to the wall and a
wall attraction if they are farther apart. The particle will approach an
eccentric equilibrium position which depends on the Reynolds and
Deborah numbers.

(2) Two particles settling one on top of the other attract and
approach each other if their initial separation is not too large.

(3) Two particles settling side by side attract and approach each
other. The doublet rotates till the line of centers is aligned with the
direction of fall.

(4) In a torsional flow of viscoelastic liquids, spherical and rod-
like particles migrate radially under the action of normal stresses. The
direction of migration depends on the properties of the fluid and the
motion of the particle. The velocity of migration does not depend
strongly on the radial position.

(5) The rotation of a rod-like particle in a torsional flow is
essentially the same as in a simple shear flow.

(6) Suspensions of spheres and rods in viscoelastic liquids exhibit
microstructures under shear. Chains and aggregates of particles form
and are aligned with the flow direction. Microstructures and
inhomogeneity develop more readily for spheres than for rod-like
particles.

(7) The mechanisms for particle interaction and aggregation in
shear flows are believed to be the same ones found in sedimentation:
attraction forces among particles and preferred orientation of long
particles.
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