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Abstract 

In this paper, we use numerical simulations to study two-dimensional steady flows of a 
viscoelastic fluid past a circular cylinder confined by two parallel walls. The drag on the 
cylinder and the velocity profile in its wake are investigated as functions of the wall blockage 
and properties of the fluid. The interplay among wall effects, elasticity, shear thinning and 
inertia is examined in detail. Results show that wall proximity shortens the wake and 
increase the drag, and this effect is reduced by fluid elasticity. For weak wall blockage. 
elasticity increases the drag and lengthens the wake for Reynolds number Re = 0.1 10. Fo'r 
stronger blockage this trend is reversed. Shear thinning decreases the drag and shortens the 
wake for all Reynolds numbers, Weissenberg numbers and blockage ratios we have tested. A 
negative wake appears for the strongest wall blockage. 

Keywor&': Circular cylinder: Flow; Viscoelastic fluids; Wall effects 

1. Introduction 

Waiters and Tanner  [1] have reviewed the theoretical and experimental works on 
flow past a sphere with or  without  wall confinement. Almost  all the results 
ment ioned in their paper  are for creeping flows. The following tentative picture has 
emerged for mot ion  in unbounded  domains.  (i) For  a Boger fluid, the drag is not 
affected by elasticity when the Weissenberg number  We < 0.1; the drag is reduced 
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when 0.1 < We < 1. A plateau seems to exist in 1 < We < 2, after which the drag 
increases with We. (ii) The streamlines around the sphere are slightly shifted 
downstream at small We but shifted upstream at higher We. There are exceptions 
to the above "rules". For instance, Chmielewski et al. [2] obtained a virtually 
constant drag for a polybutene-based Boger fluid up to We = 0.2. Van de Brule and 
Gheissary [3] reported that the settling of a sphere in a viscoelastic fluid is always 
slower than that in a Newtonian fluid of comparable viscosity; this difference in fall 
velocity increases with the Weissenberg number in the range tested, which appears 
to be roughly 0.01 < We < 0.2. 

Wall effects are studied on the flow past a sphere moving along the axis of a 
circular cylinder. For viscoelastic fluids without shear thinning, only creeping flows 
have been studied. The ratio between the radius of the sphere and the cylinder is 
denoted by ft. For  fl < 0.15, elasticity does not interfere with the wall effect and 
Newtonian results (e.g., Fax6n's formula) can be used [2,4,5]. For stronger block- 
age, experiments [6-9] and calculations [5,10] agree that the wall effect is reduced 
by elasticity, but there is no quantitative agreement as to the magnitude of this 
reduction. In particular, Chhabra and Uhlherr [8] reported that the elastic effect is 
so strong as to virtually eliminate the wall effect! Shear thinning reduces the wall 
effect for purely viscous and viscoelastic fluids, at all Reynolds number [9,11]. 
Recently, Jones et al. [12] presented some new data on the drag coefficient for a 
sphere in a falling-ball apparatus. 

The flow of a viscoelastic liquid past a circular cylinder in an infinite domain has 
been studied extensively [13]. Two distinctive regimes exist, depending on the Mach 
number of the flow. If the relative velocity of  the liquid with respect to the cylinder 
is larger than the shear wave speed of the liquid, a shock wave of vorticity forms 
in front of the cylinder [14]. Between the shock and the solid surface is a layer of 
relatively stagnant fluid, which accounts for the increased drag and decreased heat 
transfer on the cylinder [15]. The hyperbolic nature of this regime was first 
recognized by Ultman and Denn [16]. Existence of the shock wave was later 
confirmed by numerical simulations [17,18] and LDV measurements [19]. 

Flows associated with small Reynolds numbers and Weissenberg numbers are 
amenable to perturbation analysis [16,20]. More recently, numerical computation 
was employed to treat stronger flows around a cylinder in an unbounded domain 
[21]. Experiments have been carried out for different ranges of Re and We [22-24]. 
At small Re and We, there is a downstream shift in the streamlines and the drag is 
reduced as compared with the Newtonian value; at high Re and We, the streamlines 
shift upstream and the drag is increased by elasticity. Again, there is considerable 
inconsistency among data from different sources, especially about the shifting of 
streamlines. In fact, Townsend [21] concluded, after summarizing experimental and 
theoretical results available at that time, that there is no consistent trend in the 
shifting of streamlines. For  example, Ultman and Denn [16] report a significant 
upstream shift in streamlines in a very weak flow (Re = 2 x 10 4, W(/= 3.2 x 10 3), 
while Broadbent and Mena [22] and Carew and Townsend [25] observed no 
discernible change in the streamlines due to viscoelasticity. 
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There is no systematic study of the wall effects on flow around cylinders in a 
bounded domain. Dhahir and Walters [26] measured the force on a cylinder placed 
in a channel flow. The undisturbed velocity profile is fully developed and only one 
blockage ratio ( f l=0 .6 )  is studied. For a Boger fluid and a shear thinning 
polyacrylamide solution, the drag on the cylinder is reduced by viscoelasticity. A 
lateral force arises when the cylinder is in an eccentric position, which tends to push 
the cylinder towards the closer wall. These results were later corroborated by the 
numerical simulations of  Carew and Townsend [25]. Recently, McKinley et al. [13] 
used LDV to measure the flow around a cylinder fixed in the middle of a channel. 
A downstream shift in the streamlines was reported. Baaijens et al. [27] measured 
the stress field near a cylinder in a channel flow. 

In this paper we will study wall effects on the flow around a cylinder by 
numerical simulations using POLYVLOW. The influences of elasticity and shear 
thinning will be examined. Because of the high-We difficulty in convergence, most 
of the results fall into the subsonic regime and we will not attempt to explore flow 
features related to hyperbolicity. The cylinder is fixed in space and immersed in a 
flow that is otherwise uniform. Two bounding walls are moving with the same 
uniform velocity. This is the two dimensional analog of the falling-ball viscometer. 
which has been a benchmark problem for viscoelastic simulations. 

The present problem is interesting to us primarily because it provides the 
fundamental information about the wall effects in two dimensions, which has been 
missing in the literature. This geometry has been related to certain procedures in 
polymer processing and especially flows through porous media [13]. Also, it is the 
basis for two-dimensional dynamic simulations of the motion of solid bodies in a 
viscoelastic fluid. 

2. Formulation of the problem 

The geometry of the problem is shown in Fig. 1. The equations of motion are 

p ~ + u - V u  = - V p + V "  T. 

The constitutive model used in this work is the Oldroyd-B model with a shear-rate 
dependent viscosity; it can also be seen as a White Metzner model with an added 
viscous component: 

T +  2, T =  2q(~")(D + 22D), 

where D = (Vu + VuT)/2 is the strain-rate tensor; 2~ and 22 are constant relaxation 
and retardation times. The triangle denotes the upper-convected time-derivative: 

aT 
r = = - + u ' V r - ( V u ) "  T -  r ' ( V u )  T. 

O t  
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The Carreau-Bird  viscosity law is adopted: 

_ _  __ ~ • 2 (n 1)/2 q r/~ [1+(z37) ]  
v/-- qo 

The boundary conditions are: 

u = - U ,  v=O,  T = O  at x = ~  (inflow); 

u = - U ,  v = O  a t y = O  and L (side walls); 

u = - U ,  v = 0 a t x = - ~  (outflow); 

u = 0, v = 0 on the surface of  the cylinder. 

In actual computation, the domain is taken to be a rectangle that extends a certain 
distance upstream and downstream of the cylinder. Then the outlet condition is 
relaxed to vanishing forces in both directions. 

The most important dimensionless groups include the Reynolds number 
Re = p Ud/~lo which indicates the magnitude of  the inertial effect, the Weissenberg 
number We = 22t U/d which represents the elastic effect, the power index n which 
represents the degree of shear thinning and the blockage ratio fl = d/L which 
represents the wall effect. Other parameters in the problem, 22/2~, -~3//L1 and vL,~/v/0, 
have less physical significance and are not varied systematically in the computa- 
tions. We will be primarily interested in the drag coefficient of the cylinder: 

Drag per unit length 
C d =  1 

~ p U  2. d 

and the velocity field around it, especially in the wake. 
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Fig. 2(i). 

The solution is obtained by using POLYFLOW-3, an updated version of the 
viscoelastic package developed by Prof. M.J. Crochet and co-workers. This code 
employs a finite element method with the elastic-viscous stress split scheme (EVSS). 
The EVSS scheme has been described by Rapajopalan et al. [28] and the POLYP:LOW 
algorithm by Legat and Marchal [29] and Debae et al. [30]. In our simulations we 
use an unstructured mesh with triangular elements. A typical mesh used for 
fl = 0.025 is shown in Fig. 2. Mesh refinement has been done systematically to 
ensure convergence. For  instance, refining the mesh in Fig. 2 to 4114 nodes and 
2026 elements results in a 0.74'7,, difference in the drag at Re = 1 and We = 1. For 
wider channels, we use up to 6844 nodes and 3372 elements. 

The code fails to converge when the Weissenberg number exceeds a limiting 
value. This value also depends on the Reynolds number, the blockage ratio and the 
degree of shear thinning; higher We can be reached for smaller Re, smaller [1 and 
milder shear thinning. As an example, We obtained convergent results up to 
W e = 2 . 5  at R e = l .  f l = 0 .1  and n = l ,  but failed with W e = 3 .  
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3. Results and discussions 

As mentioned before, the present problem involves the combined effects of 
inertia, elasticity, shear thinning and blockage. To characterize each factor sepa- 
rately, we approach the problem in four steps: (1) the flow of a Newtonian fluid 
around a cylinder in a bounded domain; (2) the flow of  a constant-viscosity elastic 
fluid around a cylinder in an unbound domain; (3) the flow of a shear thinning 
elastic fluid around a cylinder in an unbound domain and (4) the flow of a shear 
thinning elastic fluid around a cylinder in a bounded domain. Limited data relevant 
to (1) and (2) can be found in the literature. The flow of a Newtonian fluid around 
a cylinder in a bounded domain has been studied at vanishing R e  and extremely 
large Re  (over 104). The former allows perturbation solution (see Happel  and 
Brenner [31], p. 344); the latter has been studied in wind tunnels by civil engineers 

Fig. 2(ii). 

Fig. 2. A typical mesh used for fl = 0~025. It has 2420 nodes and 1184 elements; (iii) shows details of the 
mesh near the cylinder. 
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because of its significance in wind engineering [32]. No results were found in the 
intermediate Re range, say, 0.1 < Re < 100, which is of  interest here. For the second 
sub-problem, perturbation results exist which are valid in the limit of  vanishing Re 
and We. Townsend [21] presented a numerical simulation at non-vanishing Re and 
We. But the emphasis of  that paper was on rotating cylinders and only two data 
points (Re = 5 and 10, We = 0.6) were reported for stationary cylinders. In particu- 
lar, no data were presented for the small-Re regime, in which the drag is said to be 
decreased by elasticity. 

To approximate an unbounded domain in our numerical simulation, we use an 
extremely wide channel (L = 400d) and then relax the boundary conditions on side 
walls to vanishing forces. The computat ion domain is extended up to 150d 
upstream of  the cylinder and 250d downstream. 

3. I. Wall effbcts j o r  a Newtonian f lu id  

First let us consider the flow of a Newtonian fluid around a cylinder fixed 
between two parallel walls. This is equivalent to the steady settling of a cylinder 
through a quiescent fluid in a vertical channel [33]. For an "unbounded"  domain 
(L = 400d), the Newtonian drag on the cylinder is compared with the "standard 
drag'  of  Sucker and Brauer [34]. Our drag coefficient is 3.0'7,, larger than the 
standard drag at R e =  10, 4.9% larger at R e =  1 and 3.2% smaller at R e = O . l .  
Using wider channels or finer mesh reduces the discrepancy at higher computa- 
tional cost. We will consider L = 400d the case with zero wall effect, and will use it 
as a starting point for studying wall effects. 

As shown in Fig. 3, blockage increases the drag coefficient C d at all Reynolds 
numbers. The effect is more conspicuous at smaller Re when the disturbance of the 
cylinder is felt farther away. For  fl = 0.5, the drag coefficient is increased by 7.4 
times (as compared to the drag at fl = 0) at Re = 10 and 33.6 times at Re = 0. I. The 
Faxan formula (see Happel and Brenner [31], p. 344), when applied at Re = 0.1 and 
0.01 < D' < 0.33, gives very good agreement with our computation.  

The velocity distribution along the centerline of  the flow is shown in Fig. 4 for 
a cylinder in an unbounded domain. There is a remarkable asymmetry between the 
upstream and downstream of the cylinder, consistent with Oseen's solution. In- 
creasing the Reynolds number shortens the wake behind the cylinder. Fig. 5 shows 
the variation of the velocity along the centerline at different blockage ratios. As the 
blockage ratio [] increases, the wake gets shorter and so is the region of disturbance 
ahead of lhe cylinder: the velocity distribution becomes more fore-aft symmetric. 

3.2. Effects (~f elas'ticitv in an infinite domain 

We consider the flow of an Oldroyd-B fluid with constant viscosity around the 
cylinder in an infinite domain. The ratio between the retardation time and the rel- 
axation time is fixed at . ';~2/A1 = 0.125. The effect of  We on the drag coeffÉcient Ca at three 
different Reynolds numbers in shown in Fig. 6. At Re = O. 1, there is a slight increase in 
(d (only 0.44%) as We increase from 0 to 2. For  Re = 1. the increase in the drag 
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Fig. 3. Wall effects on the drag coefficient of  a cylinder in a Newtonian flow. Qi ~ is the standard drag 
coefficient for an infinite domain [34]. 

is more appreciable. In the case of Re = 10, the increase is even larger (up to 9'70) 
as We increases from 0 to 1. Also shown is a data point of Hu and Joseph [18] 
obtained from a finite-volume method; the discrepancy between the two studies is 
0.2%. 

The drag increase at Re = 1 and 10 agrees with the trend established in previous 
studies. For vanishing Re, perturbation theory shows that the first order effect of 
We on Ca is zero; at second order there is a negative correction term which implies 
a slight drag reduction at small We. This drag reduction is not present in our results 
at Re = 0.1. This may be because the second-order drag reduction is too small for 
the resolution of our numerical method. Another possibility is that Re = 0.1 is not 
small enough for the perturbation theory to apply. Broadbent and Mena [22] 
reported drag reduction of  up to 30% for the flow of a 2% aqueous polyacrylamide 
solution around a cylinder at Re ~ 0.1 and We ~, 0.01, which represents the upper 
bound of the range in which the drag reduction is proportional to We 2. The 
magnitude of drag reduction, however, appears suspiciously large. We feel that 
these data are not reliable because in the experiments, the wall confinement was 
corrected using a factor deduced from Newtonian flows. It is known that for a 
sphere in a cylinder tube, the wall effect is much reduced by elasticity, especially at 
large blockage ratio. Thus, using the Newtonian wall correction would yield much 
smaller drag value. In fact, Broadbent and Mena [22] admitted that they "look only 
for qualitative results" because of the rough correction of wall effects. Therefore, 
their tremendous drag reduction does not invalidate our results of a slightly 
increasing drag at Re = 0.1. 
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Fig. 7 shows the effects of elasticity on the wake of the cylinder at three Reynolds 
numbers. There is a downstream shift in the streamlnes; the wake is lengthened by 
the presence of elasticity and the velocity recovery is slower behind the cylinder. 
This effect gets stronger as the Reynolds number is increased from Re = 0.1 to 
Re= 10. As the Weissenberg number is relatively small, the downstream shill 
appears to be consistent with the general trend established in the literature [13]. In 
particular, Chilcott and Rallison [35] simulated the unbounded flow around cylin- 
ders and spheres using a constitutive equation for dumbbells with finite extensibil- 
ity. The wake is longer than that of  a Newtonian flow. Using the Maxwell model 
for a sphere in a tube, Zheng et al. [36] obtained the same wake lengthening, but 
ascribed it to wall proximity. The present results, along with Chilcott and Rallison 
[35], confirm that this is an elastic effect. The wall proximity, as to be seen in 
Section 3.4, actually tends to shorten the wake. 

3.3. Effi'c! of  shear thinning in an infinite domain 

By using the Carreau-Bird  law, we can achieve various degrees of shear thinning 
by varying the power-law index n. Other parameters are 2~/),1 =0.1 and q ,  
r/o = 0.1. For relatively large Weissenberg numbers, as n gets smaller and shear 
thinning gets more pronounced, numerical convergence becomes more difficult to 
achieve. Fig. 8 shows the effect of shear thinning on the drag coefficient. The drag 
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Fig. 5. Wall effects on the velocity distribution along the centerline of the flow field. Re = 1. 

reduction due to shear thinning is distinctive but small in magnitude, about 4.4% as 
n goes from 1 to 0.2. 

Shear thinning appears to shorten the wake behind the cylinder and cause an 
upstream shift in the streamlines (Fig. 9). A similar trend was obtained by Zheng 
et al. [37] for a sphere-in-a-tube geometry using the Phan-Thien-Tanner  model. 
This effect is opposite to that of elasticity. For  n = 0.6 and 0.2, shear-thinning 
overwhelms elasticity and the streamlines are shifted upstream as compared to the 
Newtonian wake. 

3.4. Wall effects for a viscoelastic fluid 

Our simulations indicate that wall effects are reduced by elasticity and shear 
thinning. Fig. 10 compares wall effects on the drag coefficients for a Newtonian 
fluid and a constant-viscosity Oldroyd-B fluids at two Weissenberg numbers. In an 
unbounded domain, Cd is larger for higher We (compare Fig. 6). As the blockage 
ratio fl increases, C d incerases both for the Newtonian fluid and for the viscoelastic 
fluid. For  the Oldroyd-B fluid, this wall-induced drag increase is not as steep as for 
the Newtonian fluid, and the latter catches up with the former at fl ~ 0.1 (Fig. 
10(a)). At even larger fl, the Newtonian drag is larger than the drag for the 
Oldroyd-B fluids and the difference grows with fl (Fig. 10(b)). Thus, the wall effect 
is suppressed by viscoelasticity. One may also say that the blockage reverses the 
effect of elasticity on the drag coefficient. Shear thinning tends to aggravate this 
trend. Fig. 11 shows that with shear thinning, the drag coefficient becomes 
increasingly smaller than that for the Oldroyd-B fluid without shear thinning. 
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These numerical results are consistent with experimental observations of wall 
effects on cylinders and spheres. Dhahir and Walters [26] studied a channel flow of 
a viscoelastic fluid past a cylinder confined by parallel walls. For  [] = 0.6, they 
obtained a drag that is smaller than that for a Newtonian fluid. For falling spheres 
in a tube, it has also been established that elasticity and shear thinning both reduce 
effects of blockage. For  instance, Bisgaard [7] reported that the wall correction 
factor C,t/Ca~, is a rapidly decreasing function of the Weissenberg number. Mena et 
al. [9] noted that shear-thinning suppresses the wall effects greatly. 

The confinement of side walls shortens the wake behind the cylinder and makes 
the upstream and downstream velocity variations more symmetric (Fig. 12). This is 
quite similar to the wall effect on the Newtonian wake (compare Fig. 5). Bush [38] 
obtained the same effect for an axisymmetric flow past a sphere in the center of a 
tube. 

To reveal the viscoelastic effects on the flow in the presence of wall confinement, 
we compare the Newtonian wake and the wake for an Oldroyd-B fluid at various 
blockage ratios (Fig. 13). For  small values of [], as for an unbound flow, the 
viscoelastic wake is longer than the Newtonian wake (e.g., [] = 0.05). This is also 
when the cylinder experiences a larger drag in a viscoelastic fluid (compare Fig. 
10(a)). At fl = 0.1, the two velocity profiles almost coincide. Interestingly, this is 
also when the drag coefficients coincide. Further increasing [] continues to shorten 
the viscoelastic wake as compared to the Newtonian wake (fl = 0.2): the viscoelastic 
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Fig. 6. The effect of Weissenberg number on the drag of a cylinder in an unbounded flow of an 
Oldroyd-B fluid. Cao is the drag coefficient computed for a Newtonian fluid (We = 0). A data point of 
Hu and Joseph [18] for Re = 10 is also shown for comparison. 
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Fig. 7. The velocity distribution along the centerline of the wake of  an unbounded viscoelastic flow field 
around a cylinder. (a) The wake is lengthened by elasticity. Also note the recirculation zone behind the 
cylinder ( - 0 . 7  < x / d < - 0 . 5 )  at Re = 10. (b) The elastic effect increases with Re. For Re = 0.1, the 
Newtonian and viscoelastic profiles are indistinguishable. 
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drag now falls below the Newtonian drag (Fig. 10(b)). For [] = 0.5, the strongest 
blockage computed, there is an overshoot in the viscoelastic velocity profile, giving 
rise to a negative wake. In this case, the viscoelastic drag is considerably smaller 
than the Newtonian drag. 

Somewhat surprisingly, the evolution of the viscoelastic wake is not completely 
smooth. From [~ = 0.2 to/~ = 0.33, the viscoelastic profile is not uniformly elevated 
with respect to the Newtonian profile. Instead, there appears a small region 
immediately behind the cylinder (x/d>~ - 1 )  in which the viscoelastic fluid experi- 
ences a strong acceleration. After that, the velocity recovery is suppressed and the 
viscoelastic profile again beomes entirely above the Newtonian one. The computa- 
tions for [] = 0.25 and/~ = 0.33 have been double-checked using finer mesh, and the 
peculiar shape of the velocity profile stands. 

This localized upstream shift in the streamlines was first noticed by Chilcott and 
Rallison [35]. Bush [38] confirmed the existence of this region by LDV measure- 
ments for the sphere-in-a-tube configuration using dilute polyacrylamide solutions 
in liquid glucose and water. He also employed numerical computations to examine 
the roles of wall confinement and constitutive models in this phenomenon. It was 
noted that the local acceleration is increased by wall proximity, which is consistent 
with our results, but he never obtained negative wake for [] up to 0.5. His 
simulation also revealed an intriguing effect of the solvent. For a Maxwell model, 
this acceleration region does not appear. This probably explains why using a large 
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Fig. 9. Effect of shear thinning on the velocity distribution along the center line of an unbounded flow 
field around a cylinder. Re = 1. 

retardation time (22/2~ = 0.6 and 0.8) in the Oldroyd-B model, Bush [38] obtained 
a stronger localized upstream shift in the streamlines than we do. This phenomenon 
is not yet well understood and calls for more detailed research. For  example, both 
Chilcott and Rallison [35] and Bush [38] computed inertialess flows and the effect 
of  Re is not clear. Besides, we see this effect only in an intermediate range of fl 
while Chilcott and Rallison observed it in an infinite domain. 

The negative wake is another interesting issue. For  spheres settling in a tube filled 
with quiescent polyox solutions, Sigli and Coutanceau [6] observed that the 
magnitude of the velocity overshoot in the wake increases with We and wall 
confinement, but decreases with Re. Zheng et al. [37] argued that the negative wake 
is a result of combined effects of  shear thinning and viscoelasticity, because shear 
thinning is known to induce an upstream shift in the streamlines. Our results show 
that a negative wake may also occur for a two-dimensional flow past a cylinder 
when shear thinning is absent. The overshoot in Fig. 13 seems to be related to the 
wall proximity, which also tends to shorten the wake and shift streamlines up- 
stream. The exact mechanism for the negative wake is not clear; it has been 
speculated that the negative wake may be associated with the strong elongational 
flow behind the solid obstacle [39]. Recently, Joseph and Feng [40] argued that 
normal stresses are responsible. 

The effect of  shear thinning in the bounded flow is similar to that in an 
unbounded flow: it tends to shorten the wake and shift the streamlines upstream. 
Fig. 14 shows this trend for fl = 0.33. It is expected that shear thinning will enhance 
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194 P.Y. Huang, J. Feng / J. Non-Newtonian Fluid Mech. 60 (1995) 179 198 

100- / 
--<:r---- we= l.O, n= l y 

] 

, t  we=  l .0 ,  n=0.6  

C a 

10 . . . . . .  
0.001 0.01 0.1 

Fig. 11. Wall effects on the drag coefficient for viscoelastic fluids with or without shear thinning. Re = 1. 

the overshoot for fl = 0.5, but the combination of  strong blockage and shear 
thinning renders numerical convergence impossible for this case. 

4. Concluding remarks 

The principal results of this paper can be summarized as follows: 
(1) Effects of  elasticity. For  unbounded flows or flows with weak blockage 

(fl < 0.1), elasticity increases the drag on the cylinder for all Reynolds numbers that 
we have tested. The wake is lengthened with a downstream shift of streamlines. For 
flows with stronger blockage (fl > 0.1), the trend is completely reversed. The drag is 
decreased by elasticity and the wake is shortened. 

(2) Effects of shear thinning. Shear thinning decreases the drag, shortens the 
wake and causes an upstream shift in streamlines. This is true for all Reynolds 
numbers, Weissenberg numbers and blockage ratios we have tested. 

(3) Wall effects. Wall proximity shortens the wake and increases the drag for 
flows of Newtonian fluid and viscoelastic fluids with or without shear thinning. This 
effect is reduced by elasticity and shear thinning. 

(4) A negative wake appears as a result of  the combination of  viscoelasticity and 
strong blockage. Shear thinning is believed to enhance the negative wake. 

(5) A localized upstream shift of  streamlines may occur in a small region behind 
the cylinder while the rest of  the wake is extended. The mechanism of this effect is 
not clear. 
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The basic features of  a two-dimensional flow around a cylinder in a channel arc 
similar to those for an axisymmetric flow past a sphere in a tube. Recently, Brown 
and McKinley [41] recommended using the two-dimensional flow as a benchmark 
problem for numerical algorithms because it offers more convenience in experi- 
ments than its axisymmetric counterpart.  

As mentioned before, this paper focuses on the drag coefficient of  a cylinder and 
the velocity field in it wake. These are among the most basic characteristics of  the 
flow. Recent experimental studies have already begun to explore more delicate 
aspects of  the flow, such as instability of  a steady flow past a cylinder [13] and 
arrays of  cylinders [42]. These present new challenges to numerical simulations. 
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