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Abstract 

This paper focuses on the settling on one sphere near another or near a wall. We find 
maximum differences between Newtonian and viscoelastic liquids, with repulsion between 
nearby bodies in the Newtonian case and attraction in the viscoelastic case. Side-by-side 
arrangements of sedimenting spheres are unstable in exactly the same way that broadside-on 
settling of long bodies is unstable at subcritical speeds in a viscoelastic fluid. The line of centers 
between the spheres rotates from across to along the stream as the spheres are sucked together. 
The resulting chain of two spheres is a long body which is stable when the line between centers 
is parallel to the fall, but this configuration breaks up at subcritical speeds where inertia again 
dominates. To explain the orientation of particles in the supercritical case, we correlate the 
aggregative power of a viscoelastic fluid with a zero shear value of the coefficient of ratio of 
the first normal stress difference to the shear stress and for exceptional cases we introduce the 
idea of the memory of shear-thinning leading to corridors of reduced viscosity. 

Keywords: Aggregation of spheres; Dispersion of spheres; Elastic stress ratio; Newtonian 
liquids; Numerical simulation; Settling of spheres; Sphere-sphere interaction; Viscoelastic 
liquids; Wall-sphere interaction 

1. Introduction 

Liu and Joseph [l] discussed the sedimentation of cylinders and flat plates in 
viscoelastic and Newtonian liquids, noting that the flow-induced anisotropy of 
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sedimenting spherical particles is associated with the natural orientation of long 
bodies, longside parallel to the stream when viscoelasticity dominates and perpen- 
dicular to the stream when inertia dominates. They reviewed the literature in the 
sedimentation of long bodies. Joseph and Liu [2] did further experiments on the 
orientation of a cylinder settling in viscoelastic and pseudoplastic fluid and at- 
tempted to identify the main mechanisms controlling orientation. They stressed the 
fluid’s ability to remember where it was thinned and introduced the notion of 
evanescent corridors of reduced viscosity. In this paper we highlight the importance 
of the elastic stress ratio N,/z, which turns out to be a sublet measure of fluid 
elasticity. 

This paper focuses on the settling of one sphere near another or near a wall. 
Again we find maximum differences between Newtonian and viscoelastic liquids, 
with repulsion between nearby bodies in the Newtonian case and attraction in the 
viscoelastic case. This observation has applications for manipulative strategies 
addressing the problem of placements of particles by flowing liquids. 

Christopherson and Dowson [3] took notice of a tendency for balls to rotate and 
fall off-center while settling in Newtonian liquids in a cylindrical container. Tanner 
[4] noticed that this tendency is enhanced in non-Newtonian liquids, stating that “if 
one carefully drops the balls axially in the fall tube, there appears to be a critical 
ball/tube radius after which the ball is seen to fall off-center and rotate.” The 
critical radius ratio may possibly be associated either with a critical fall speed or 
with other critical values associated with instability. The effects of eccentricity on 
the precision of falling ball viscometry were discussed by Caswell [5]. 

Many papers treat problems of sedimentation of spheres in Stokes flow (Lea1 
[6,7] are convenient references). Goldman, et al. [S] treat the problem of interaction 
between a sphere and a wall. They also consider the problem of a sphere “rolling” 
down an inclined wall and find that the sphere cannot be in physical contact with 
the wall and that it slips, giving rise to anomalous rotation when forced into close 
approach. Bungay and Brenner [9] showed that the rotation of a tightly fitting ball 
falling down a vertical tube would change sign as the distance between the ball and 
the tube wall tends to zero. These Stokes flow predictions involve neither inertia nor 
elasticity. The phenomenon of anomalous rolling predicted by these authors 
appears in the experiments of Humphrey and Murata [lo] who found that the 
rotation of a sphere gradually changes from positive (opposite to downhill rolling) 
to negative (in the sense of downhill rolling) as the tube inclination angle is 
increased and the sphere contacts the wall. They conclude that inertia induced lift 
keeps the rolling ball off the wall at the smaller angles of inclination. 

Joseph, et al. [l I] found anomalous rolling of a sphere in viscoelastic liquids 
along an inclined path. The angle between the wall and the direction of gravity is 
varied from zero to 45”. A sphere falling down these inclined walls rotates as if 
falling down the wall in viscous liquids as it does in dry rolling, but rotates as if 
rolling up the wall against intuition in viscoelastic liquid. Liu et al. [ 121 documented 
this phenomenon with measured data. 

Sigli and Coutanceau [ 13,141 studies the effects of the walls of a round tube on 
a sphere settling under gravity. Like Tanner [4], they noted that there are critical 



D.D. Joseph et al. /J. Non-Newtonian Fluid Mech. 54 (1994) 45-86 47 

ball/tube radii for off-center positions. A small initial eccentricity is magnified by 
the effects of the fluid’s elasticity. It is likely that the sense of rotation of a sphere 
falling off-center in a tube filled with viscoelastic liquid is anomalous. 

Riddle et al. [ 151 presented an experimental investigation in which the distance 
between two identical spheres falling along their line of centers in a viscoelastic fluid 
was determined as a function of time. They found that, for all five fluids used in the 
experiments, the spheres attract if they are initially close and separate if they are not 
close. There is a critical separation distance. We shall show that there is also a 
critical separation for side-by-side attraction. This suggests that the critical separa- 
tion distance for end-to-end settling may not be associated with a negative wake as 
has been suggested by Bird et al. [ 161. 

Lateral migration and chaining of spheres in a 0.5% aqueous polyacrylamide 
solution and in a solution of high molecular weight polyisobutylene in a low 
molecular weight polyisobutylene were observed by Michele et al. [ 171 in experi- 
ments using very tiny spheres (60-70pm). A droplet of the suspension was placed 
between two glass plates that were pushed together as close as possible (about 
100 pm). Different kinds of aggregation were observed in rectilinear and rotary 
shear. They also showed chaining and lateral migration of these tiny spheres in an 
elongational flow by pulling a glass plate out of a droplet of the suspension. The 
aggregation of particles appears to be a generic feature of flows of viscoelastic fluids 
that occurs in many different types of fluids, for vastly different scales and types of 
motion. 

Brunn [18] did a theoretical analysis of the interaction between spheres in a 
second order fluid with inertia neglected and although he found an attractive force 
drawing the spheres together he did not find a critical separation distance for 
attraction. Brunn’s analysis cannot treat close approach because it has been 
assumed that the distance between sphere centers is large. His results, as far as they 
go, are consistent with our observations and suggest that the mechanism involved 
is associated with the normal stresses, which are in his analysis, and not with 
shear-thinning, which is neglected in his analysis. In fact, shear-thinning plus 
memory may play an important role, at least in the chaining of spheres, as we shall 
see. 

Giesekus [ 191 tried to explain end-to-end and side-to-side attractions in terms of 
normal stresses using second order theory with inertia neglected, like Brunn. These 
two authors could not explain the critical separation distance observed by Riddle et 
al. [ 151 and they did not investigate the possibility that this distance is determined 
by a competition of non-Newtonian and inertial effects. 

As far as we know, ours is the first study of side-by-side sphere-sphere attrac- 
tion. We find that the spheres attract when the initial separation distance is smaller 
than a critical value and they do not attract when the initial distance is larger than 
this critical distance. The side-by-side spheres never attract in a Newtonian fluid; 
if they are initially separated by a small distance, they repel each other; just the 
opposite of their behavior in a viscoelastic fluid. 

Side-by-side arrangements of sedimenting spheres are unstable in exactly the 
same way that broadside-on settling of long bodies is unstable at subcritical speeds 
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in a viscoelastic fluid [ 1,2]. The line of centers between the spheres rotates from across 
to along the stream as the spheres are sucked together. The resulting chain of two 
spheres is a long body that is stable when the line between centers is parallel to the 
fall, but this configuration breaks up at supercritical speeds in which inertia again 
dominates. These authors have presented evidence that the critical fall velocity is not 
too much greater than the measured value of the shear wave speed in nearly all cases. 

Van der Brule and Gheissary [20] saw a videotape (shown at the International 
Congress of Rheology) of the experiments of Joseph and Liu on sedimenting 
spheres, which form long chains in all viscoelastic liquids at the slow fall speeds in 
which long bodies rotate with their long side parallel to the fall. This stimulated 
them to undertake experiments of their own on sedimenting spheres. They at- 
tempted to isolate the effects of shear-thinning and normal stresses by using test 
fluids that have one and not the other of these properties. They dropped spheres in 
aqueous polyacrylamide, an ordinary viscoelastic fluid with large normal stresses 
and strong shear-thinning, and found results identical to ours. Then they did 
experiments in “shellflo”, an aqueous Xanthan solution that has no measureable 
normal stresses in shear but is strongly shear-thinning. They found that the spheres 
chained in this fluid in much the same way that they did in the aqueous polyacry- 
lamide. This suggests that shear-thinning is the important parameter. They then did 
experiments in a Boger fluid that they prepared with small amounts of polyacry- 
lamide ( 100 ppm) in glycerin and water. This is a very viscous fluid with large but 
saturated normal stresses, which leads to constant values of the recoverable shear 
at high rates of shear. They did not observe chaining in this Boger fluid, and thus 
concluded that shear-thinning, not elasticity, is the mechanism controlling the 
chaining of spheres. 

Joseph and Liu [2] did experiments on sedimenting cylinders in liquids like the 
ones used by Van der Brule and Gheissary [20]. They found that in 0.3% aqueous 
Xanthan (Kelco) and 0.4% Carbopol in 50/50 glycerin-water solutions (see Figs 11 
and 12 in Ref. [2]) which are shear-thinning fluids without normal stresses, the 
cylinder puts its long side parallel to gravity when falling at speeds less than critical. 
The critical speed in the Xanthan solution was the shear wave speed measured on 
our meter, but the critical speed for Carbopol was l/10 the value measured on the 
meter, the only exception so far. In other respects the Carbopol solution, we shall 
see, is nearer to Newtonian than to viscoelastic. Spherical particles dropped in the 
0.4% Carbopol did not exhibit side-by-side attraction; they repelled each other 
when they were initially together as in Newtonian fluids. They were repelled by a 
vertical wall and exhibited only the feeblest form of anomalous rolling (Liu et al. 
[ 12]), and apparently no chaining. 

These results are surprising because they appear to associate strange effects like 
tilting and chaining with shear-thinning rather than with normal stresses. In fact, 
theoretical results for second order fluids, without shear-thinning, give rise to all the 
observed effects, so we are confronted with a real mystery. 

In the case of fluids without normal stress, which do not climb a rod, we may 
entertain the idea that second order correlations to viscous behavior are negligible, 
SO that we might learn something important at the next non-trivial third order. 
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Thinking more globally, Joseph and Liu [2] introduced the idea that a combina- 
tion of memory with shear-thinning is required and may be enough to induce 
nose-down turning and the related chaining of spheres. They concluded that 
shear-thinning alone affects the particle’s orientation much less, because, like the 
Carbopol solution, although it shear-thins, the thinning is not persistent and decays 
very rapidly. The Xanthan solution remembers the place where the viscosity was 
reduced, to that the back part of a nose-down cylinder, or the spheres behind the 
lead sphere in a chain, experience a smaller viscosity than the leading end of the 
cylinder or leading sphere. We might think that corridors of reduced viscosity are 
marked on the fluid by shear-thinning as a particle drops in the fluid and persist for 
a time before they relax. 

These theories could be tested with standard test liquids provided that they 
shear-thin and have long memories, whether or not they exhibit normal stresses or 
climb rods. 

The existence of relaxing corridors of reduced viscosity, marked on the fluid by 
the shear-thinning induced by a falling ball, is consistent with the observations of 
Cho and Hartnett [21] and Cho et al. [22]. They studied falling ball rheometry, 
measuring the drag on balls that were dropped in the test liquid in specified and 
definite intervals of time. They found the same memory effects that we did, effects 
that were particularly evident in a lo4 ppm by wt. solution of aqueous polyacry- 
lamide (Separan, AP-273), a highly viscoelastic and highly shear-thinning liquid. 
The measured terminal velocity depended strongly on the time interval between the 
dropping of successive balls in the cylinder. Balls launched after only a short wait 
period would fall up to nearly twice as fast as the speed of the initial ball, and it 
took intervals of 30 min or more for the memory of the corridor of reduced 
viscosity to relax. 

We can image the trailing spheres in a chain or the trailing end of a long particle 
setting itself in a corridor of reduced viscosity. For this behavior to occur, 
shear-thinning and the memory of shear-thinning are required. We should recall at 
this point that similar effects in weaker form occur in our constant viscosity fluid 
(STP) and in stronger form in Sl where the degree of shear-thinning is small. Thus 
shear-thinning plus memory cannot explain everything. The experiments with 
semidilute Xanthan are interesting because shear-thinning and memory are present, 
but many other mechanisms that could come into play are absent. 

Joseph and Liu [2] considered the possibility that the memory of shear thinning 
with negligible normal stresses might be modeled with a White-Metzner model 
using the empirical viscosity function of the rate of shear and a relaxation function 
which drops to low values faster than the viscosity as the shear rate increases (see 
Liao et al. [23]). This model is not satisfactory because a healing mechanism for the 
slow recovery of viscosity after shearing is not accommodated. Besides relaxation 
we need a healing time, large when the shear is large, which vanishes when there is 
no shear. We may design such a model by introducing the healing time as a 
retardation time n,(d) which vanishes when j = 0 and increases to a plateau value 
of, say half an hour at some finite rate of shear. The model we propose then is of 
the form 
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r (b) r’ 

Cc) r 
Fig. 1. (a) Relaxation function; (b) viscosity function; (c) retardation function. 

W)? + z = 2y(j)[D + A,($] 

where 1, (d), q(v) and A.,($ have the aforementioned forms (see Fig. l), the model 
will have the desired properties; shear thinning in steady flow, slow relaxation of 

u] after shearing and wave propagation into rest with shear speed given by 
y~( 0) /p& (0). This model is presently under investigation. 

2. Material and dimensionless parameters 

The material parameters that were measured in the liquids used in the experiments 
are the density p, viscosity v] = kj”- l, where j is the shear rate in reciprocal seconds, 
the climbing constant pmeasured on a rotating rod viscometer (Beavers and Joseph 
[24]) and the wave speed c. To compute p from measured values of the climb we 
need the interfacial tension that we measured with a spinning drop tensiometer 
(Joseph et al. [25]). The value of j? is insensitive to a small change of surface tension 
(Chapter 16 in Ref. [26]). Table 1 is the summary of material parameters. 

The climbing constant /? is related to the limiting (zero shear) value of the first 
and second normal stress differences 

(~10~ 1//m) = yj [N,(?% JMlw~2, 
by 

pI=h+hP 
The climbing constant 

j7=3a, +2cX,, 

may also be expressed in terms of quadratic constants 

(a1 2 4 = ( -thb ~l0 + 11/m>, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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of the second order fluid. cr,/la,l is the ratio of quadratic constants and 

[ai, 4 = ( --m, 2m - 2lPIKm - 4), (2.5) 
where m = 2a,/(2al + CQ) = -+,0/t,k20 is the ratio of the first to second normal 
stress differences. It can be argued (Section 17.11 in Ref. [26]) that m = 10 is a 
reasonable value for our polymer solutions. Then 

-- ,a”;, - 12(1;m)J = 1.8, (2.6) 

is a constant and a, and ~1~ are determined by the measured values of the climbing 
constant fl. We are going to assume (2.6) in the calculations that follow. The value 
of $iO that we get from measuring fl is not sensitive to the value of the ratio $20/$,0 
as long as $20 is relatively small and negative (see Section 17.11 in Ref. [26]). 

The measured value of the climbing constant, together with the assumption that 
the second normal stress difference is - l/10 as large as the first, allows us to 
evaluate Roscoe’s [ 271 formula 

T,, - T22 = 391, + 3(a, + x2)g2 (2.7) 
for the extensional stress difference, where S is the rate of stretching in the direction 
X, and Q, is the zero shear viscosity. Using (2.6) and ~1, = -IL,,,/2 we get 

T,, - T22 = 3s~ + 1.21++,,~~. (2-g) 
The zero shear value of the first normal stress difference Il/iO = (2m(m - 4))/? = 

(10/3)/? and the zero shear quadratic correction 4$ of Trouton’s viscosity, 3~,,, 

Table 1 
Summary of material parameters 

Fluid P 40 k n B + 10 c 

(g cm-‘) (Pas) (gem-‘) (gem-‘) (ems-‘) (s) (s) 

1.5% aqueous 1 17.3 5.71 0.44 132 440 20.3 0.420 2.54 
polyox 

1.25% aqueous 1 12.7 4.21 0.45 117 389 17.2 0.429 3.07 
polyox 

1 .O% aqueous 1 7.65 3.97 0.42 108 360 15.0 0.34 4.70 
polyox 

0.4% Carbopol in 1.13 0.76 0.31 0.67 0 0 15.9 0.027 0 
SO/SO glycerin-water 

0.3% aqueous 1 5.21 1.1 0.28 0 0 12.2 0.35 0 
Xanthan 

Sl 0.875 8.06 7.14 0.62 11.8 39.3 72.4 0.018 0.49 
STP 0.86 18.0 17.8 0.85 0.97 3.23 286 0.0026 0.02 

Liu and Joseph [l] did some experiments with the 1 .O% aqueous polyox listed in this Table, but not used 
in the experiments reported here. The stress ratio rjlo/no is a measure for which the more dilute polyox 
solutions are relatively more elastic. 
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increase with /?. An argument given by Liu and Joseph [l] shows how extensional 
stresses broadly speaking can control some of the properties of the aggregation of 
particles in viscoelastic liquids documented here. 

Material parameters of the fluids used in our experiments are listed in Table 1. 
The percent of the polymers and the percent of the glycerin in water are by weight. 
Glycerin is a Newtonian liquid. Carbopol is basically a non-elastic but shear-thin- 
ning fluid. STP is a weakly viscoelastic liquid with small normal stresses and 
basically constant viscosity (see Fig. 5 in Ref. [24]). For shear rates below 100 s-r, 
STP could be called a Boger fluid. The polyacrylamide and polyox solutions are 
standard viscoelastic liquids. 

An important measure of elasticity is the elastic stress ratio 

(2.9) 

where $,/r] is the elastic stress ratio coefficient whose limiting j -+O value is Il/ro/~o. 
(The ratio N, /r is twice the recoverable shear; see Barnes et al. [28].) This ratio 
vanishes for Newtonian fluids and is very small for dilute solutions with Newtonian 
solvents, like Boger fluids. For small values of j, (2.9) becomes 

(2.10) 

where 

lo_% * 
- 3110 ’ VO 

(2.11) 

is a material parameter. Values of 10/?/3no are listed in Table 1. The stress ratio 
coefficient could have a finite and even large value in mobile liquids with small 
values of YJ under circumstances in which N, and even p are too small to measure. 
In this sense, the stress ratio of mobile liquids is indeterminate. We thought at first 
that this indeterminism might apply to the 0.3% Xanthan solution but the viscosity 
of Xanthan at the shear rates in our experiments is too large to support any 
conclusion other than p^/r~ = 0. 

The stress ratio is not a monotonic function of concentration. Aggregation of 
particles occurs more readily in fluids with high stress ratios independent of 
concentration. 

The dimensionless parameters used in this study are the Reynolds number 

Re =E, 0 
VO 

(2.12) 

where U is the terminal velocity of a sphere of radius D, the Weissenberg number 

w =4!s 0 D ’ (2.13) 

where A0 = qo/pc2 is computed from measured values of v] and the wave speed c, the 
Mach number M2 = U2/c2 = ReW and the elasticity E = r]J./pD2. The flows in the 
experiments reported here are strongly subcritical with M << 1. 
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Fig. 2. The viscosities of polyox solutions as a function of the shear rate were measured, at room 
temperature. on a RSF2 Rheometrics fluid rheometer with a Couette apparatus. 

Two different solutions of aqueous polyox (WSR 301) at concentrations of 1.5 
and 1.25 wt.% were used as test liquids. Plots of viscosity vs. shear rate for both 
solutions are given in Fig. 2. Values of dynamic moduli of these two solutions as a 
function of shear frequency are shown in Fig. 3. 

STP is a solution of polyisobutylene (PIB) in petroleum oil that was used 
extensively in early studies of rod climbing [26]. Sl is a solution of 5 wt.% PIB in 
decalin plus 50% polybutene oil. The viscosity and the values for the dynamic 
moduli of these two polymer solutions are shown in Figs. 4 and 5 respectively. The 
viscosity of STP is nearly constant for shear rates less than 100. The viscosity of Sl 
decreases with increasing v, but the decrease is very slow for shear rates less than 
10. The viscosity of Sl is an order of magnitude smaller than that of STP; it is a 
much more mobile liquid. Both solutions climb a rotating rod, but the STP is not 
a good climber; the climbing constant at a temperature of 267°C is 0.97 g cm-‘. 
One can say that STP is a Boger fluid with very weak normal stresses. The climbing 
constant of Sl at 25°C is 11.8 g cm-’ and Sl can be said to resemble STP with 
much larger normal stresses especially at low rates of shear. The loss modulus for 
STP is an order of magnitude higher than for Sl. The storage modulus of Sl is 
larger than for STP for shear rates less than about 10 SK’, and the shear rate at 
which the loss modulus falls below the storage modulus is much lower in Sl than 
in STP. It is clear that Sl is a more mobile and much more elastic liquid than STP. 

We attempted to isolate the role of shear-thinning by suppressing both normal 
stresses and elasticity by using a solution of 0.4% Carbopol 690 (Goodrich) in a 
50/50 glycerin-water mixture in our attraction experiments. The viscosity vs. shear 
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Fig. 3. The dynamic moduli of polyox solutions as a function of the shear frequency were measured, at 
room temperature, on the same rheometer used for viscosity measurements. 

A Sl fluid 
0 STP 

0.1 L 
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I I I 
1 10 100 

shear rate j(s-‘) 
Fig. 4. The viscosities of STP and Sl fluid as a function of the shear rate at temperature of 24.5”C, on 
a RSF2 Rheometrics fluid rheometer with a cone-plate apparatus. The viscosity of Sl is an order of 
magnitude smaller than that of STP, it is a much more mobile liquid. Sl is weakly shear-thinning. 
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Fig. 5. Dynamic moduli of STP and Sl. The loss modulus for STP is an order of magnitude higher than 
that for Sl. The storage modulus of Sl is larger than for STP for shear rates less than about 10. The 
shear rate at which the loss modulus falls below the storage modulus for Sl is much lower than that for 
STP. 

1 10 100 
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Fig. 6. The viscosities of 0.3% aqueous Xanthan and 0.4% Carbopol in SO/SO glycerin-water solution 
as a function of the shear rate at temperature of 25.5”C. The Xanthan solution has a higher but more 
shear-thinning viscosity than the Carbopol solution. 
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Fig. 7. Dynamic moduli of Xanthan and Carbopol solutions. For modest shear rates ranging from 0.1 
to 100, both the storage modulus and loss modulus of the Xanthan solution are higher than those of the 
Carbopol solution. The storage modulus G’ of Xanthan is greater than the loss modulus G”; in the 
Carbopol G” IS greater than G’. 

rate for this Carbopol solution is plotted in Fig. 6, and the dynamic moduli are 
plotted in Fig. 7. Carbopol is thought to be a pseudoplastic fluid without elasticity. 
Since our Carbopol solution has a non-zero storage modulus, it cannot be said to 
be without elasticity. The presence of a small elasticity in Carbopol solutions has 
been noted before. There is no evidence that Carbopol 690 in 50/50 glycerin-water 
has a measurable value of the first normal stress difference, and it does not climb 
a rotating rod. 

To determine the effects of shear-thinning in a fluid with a strong memory but no 
normal stresses, we used a solution of 0.3% Xanthan (Kelco) in water. The graph 
of viscosity vs. shear rate is shown in Fig. 6, and the variation of the storage and 
loss moduli with frequency is shown in Fig. 7. The Xanthan solution is very 
shear-thinning and it has no measurable normal stresses. We could not register a 
first normal stress difference on the Rheometrics fluid rheometer and the 0.3% 
Xanthan solution would not climb a rotating rod. On the other hand, this fluid has 
a high storage modulus and can be said to be linearly elastic. 

3. Description of the experiments 

Spheres were dropped in liquid filled channels made of transparent plexi-glass to 
allow a video recording of experiments. The first channel, which was used to test 
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a-in spheres, has a gap of 0.44 in, is 6.5 in wide and 25 in high. The second one, 
which was used to test spheres with different diameters from $ to 2 in, has a gap of 
1 in, is 7 in wide and 30 in high. The motion of sedimenting spheres in these beds 
is basically two dimensional with spheres centering themselves between two close 
walls. This centering was described by Liu and Joseph [ 11. We did some of our 
experiments in channels with distant side walls. The phenomena of attraction of 
nearby bodies in viscoelatic liquids, opposite effects in Newtonian liquids, and 
anomalous rolling are the same in channels with close and distant side walls. These 
effects do not depend stronly on the exact distance between the center sphere and 
the side wall. Velocities and positions of spheres were measured with a video system 
and image processing software. 

To facilitate the side-by-side and simultaneous dropping of two spheres we used 
a small device which we call the “clothespin dropper”, shown and described in Fig. 
8. The same device was also used to release a single sphere at a distance from a straight 
prismatic rod. The rod was almost as deep as the channel and simulated the presence 
of a side wall. It was supported by an external support that could be tilted several 
degrees from the vertical upright position. A sketch of this device is given in Fig. 9. 
We also used another single sphere dropper to drop spheres with different diameters. 

In order to test the effects of sphere diameter, we selected spheres having different 
diameters and weight, keeping the Reynolds number 

Re(v) = 
2a upi 
- = constant, 

vl 

between two spheres 

(3.11 

(a) front view (b) side view 

Fig. 8. The “clothespin dropper”. The two spheres are held at the ends of the facing arms. The circular 
holes on these keep the spheres at the same height. Pulling the level on the facmg arms shown in (b) 
opens the clothespin and releases the two spheres at the same instant. 
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angle 
k.Vd 

transparent 
1 pi. 

I 

channel 
,f The plane surface 

could be tilted to a 
I’?” certain angle in the 

liquid for the wall 
“.* 3ttrncrion test. 

Fig. 9. The front view of the experimental apparatus (not including the video system and image 
processing system). For the side-by-side test, the initial distance between the two spheres can be adjusted 
and measured by moving ruler 1; for the wall-sphere test, the initial distance of the sphere from the wall 
is controlled by ruler 2. The solid plane surface can be inclined by turning the screw and the tilt angle 
can be measured by the angle level. 

where a and U are the radius and the terminal velocity of the sphere, and pi and q 
are the density and viscosity of liquid, by the following approximate method. 
Assuming Stokes flow, we have 

(p, - p,)g+z3 = 6nnr]aU, (3.2) 
where ps is the density of the sphere. The terminal velocity can be determined from 
Eq. (3.2) as 

The shear rate will be 

. u (P, - PM 
Y=&= 9vl . 

Substituting this into the power law equation 
q = @-I, 

we have 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

From Eqs. (3.1) and (3.6), the following condition for determining the diameter 
and material of spheres can be obtained: 

(p, - p1)2-nu2+n = constant. (3.7) 
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Table 2 
Spheres tested 

Material 

Tungsten carbide 
Steel 
Ceramic 
Aluminum 
Teflon 
Aluminum 
Tungsten carbide 

Diameter (in.) Weight (g) Density (g cme3) 

l/8 0.26 15.8 
l/4 1.02 7.61 
7116 2.74 3.81 
5/8 5.78 2.76 
l/4 0.29 2.18 
l/4 0.37 2.76 
l/4 2.12 15.8 

We chose 1.5% aqueous polyox as the test liquid; then spheres were picked 
according to Eq. (3.7) and availability in the market as listed in Table 2. The $-in 
tungsten carbide, $-in steel, &-in ceramic and $-in aluminum spheres were used to 
test size effects, and a-in teflon, aluminum, steel and tungsten carbide spheres were 
used to test weight (or velocity) effects on attraction and dispersion. 

4. Interactions between spheres falling side-by-side 

We dropped two spheres side-by-side in a channel filled with different liquids. In 
viscoelastic liquids, when the initial separtion distance is small, the two spheres will 
attract; the line between centers will turn as they attract, until the spheres touch and 
chain with the line of centers vertical. Close side-by-side settling at slow speeds is 
unstable in viscoelastic fluids and the dynamics creates stable vertical chains. The 
tilting of the line of centers between falling spheres starts at the instant of release 
and the two spheres appear as a dumbbell pair sliding along the tilting line of 
centers as in Fig. 10(a). 

If the initial distance is large enough, the two spheres appear not to interact and 
to fall straight down as in Fig. 10(c). Sphere-sphere interactions in this regime are 
not strong. We shall call this regime “non-interacting” though we recognize that 

(4 (b) 
Fig. 10. (a)-(c). Continued on next page. 
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(4 

Fig. 10. (a) Settling spheres in a viscoelastic liquid when 
S( 16,) is small; (b) settling spheres in a Newtonian 
liquid when 6 is small; (c) settling spheres in any liquid 
when 6 ts large; (d) $-in steel spheres falling in 1.5% 
aqueous polyox, initial distance 6 = 3.84 mm, 1 is the 
vertical distance from the pomt of release to the mid- 
point on the line of centers; (e) i-in teflon spheres falling 
m SO/SO glycerin-water solution. Two spheres released 
side-by-side at the same time in a viscoelastic fluid with 
6 < 6, will attract each other while the line of centers 
between the spheres rotates towards the vertical (as in 
(d)). The final result IS a vertical chain of two spheres (a). 
If 6 > 6,, then the spheres appear not to attract (c). If 
6, < 6 < 6,. the spheres attract Initially and the line of 
centers between spheres will turn from the horizontal but 
the spheres eventually separate, or stop interacting and 
never touch or chain. In a Newtonian hquid, two spheres 
dropped side-by-stde with a small gap or not gap will 
disperse rather than aggregate (b). If the initial distance 
between two spheres is large enough, then they appar- 
ently will fall without Interaction. Some photographs 
from experiments are shown in (d) and (e). 

some small interactions that could produce a large effect over long time periods are 
probably at work. 

In Newtonian fluids, two spheres launched side-by-side, which are initially 
separated by a small gap or no gap, will separate as in Fig. 10(b). If the initial gap 
is large enough the two spheres enter into the non-interacting regime described in 

James J. Feng
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the preceding paragraph and in Fig. IO(c). Side-by-side sedimentation is relatively 
stable or only weakly unstable and spheres will never chain in Newtonian liquids. 

Two heavy spheres falling faster than the wave speed for the fluid in a viscoelastic 
fluid will disperse as in a Newtonian fluid. This phenomenon is the same one that 
causes long bodies that fall straight down at slow speeds to turn 90” into 
broadside-across-the-stream fall at supercritical speed when inertia dominates vis- 
coelasticity [ 1,2]. 

Returning now to the fall of spheres launched side-by-side in the strongly 
subcritical case, we look at a range of initial separation distances that are larger than 
those for which chaining occurs and smaller than those for which the falling spheres 
apparently do not interact. The dynamics of aggregation and dispersion here is more 
complicated. Two spheres will attract initially and the line of centers between them 
turns toward the vertical. The spheres do not touch but instead, enter into a 
non-interacting regime, or else actually separate in a manner reminiscent of the 
settling behavior of distant spheres, with the line of centers vertical, that was studied 
by Riddle et al. [ 151. This behavior is illustrated in Section 4.1. The two spheres 
attract initially, but they do not come into touching contact and eventually separate. 

Now we are prepared to define two distinct distances. The first distance 6, is the 
largest side-by-side distance 6 for which attraction can be observed, as shown in 
Fig. 10. This critical distance may not be a precisely defined value; it may depend 
on the level of resolution of the measurement of the mutual attraction that we can 
achieve in our experiment. If 6 5 6, the spheres will attract initially. For small 
6 I 6, the line of centers between spheres will turn from the horizontal and the 
spheres will attract, touch and then fall in a chain with line of centers vertical. For 
large values of 6 I 6, the spheres attract initially and the line of centers between 
spheres will turn from the horizontal but the spheres eventually separate, or stop 
interacting and never touch or chain. We did not try to measure 6,. The set of 
small 6 _< 6, for which falling side-by-side spheres eventually touch is defined by a 
second distance 6, < &., called the critical touching distance. 6, is determined by 
observations associated with measurements. We increased the initial separation 
distance by small steps and repeated experiments a few times under each condition. 
The vertical distance between release and the point of touching is called the vertical 
touching distance I*(6) (Fig. 10(a)). 

Table 3 lists measured values of the fall velocity U and the shear rate i, = U/D. 
The Reynolds number Re, and Weissenberg number PI’,, are zero shear values (2.12) 
and (2.13). 

Table 4 lists the vertical distance IT(S) traveled by spheres before touching (Fig. 
10) as a function of the initial distance 6 between the spheres. 

The lateral migration of spheres depends on the fall velocity, which is determined 
by the weight of sphere, as well as on the properties of the fluid in the settling bed. 
Effects of the weight of the particles can be assessed to a degree by normalizing all 
the lengths with the lateral touching distance 6, which also depends on the weight. 
Figure 11 shows that heavier particles achieve larger fall distance ratios I,/& for a 
given initial distance fraction J/6,. The effect of the weight of particles is weak. i-in 
tungsten, steel and teflon spheres have very different weights (Table 2) and fall 

James J. Feng
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Table 3 
Measured values of the fall velocity and related quantities 

Liquid-solid U (cm SK’) i (s-l) Rea W0 

1.25% polyox-$n. steel 
1.5% polyox-$-in. steel 
STP-i-in. steel 
Sl +-in. steel 
Sl -+-in. tungsten 
Sl -i-in. teflon 
Xanthan-l-in. teflon 
Carbopol:$in. teflon 

6.34 9.98 0.032 4.29 
3.08 4.85 0.011 2.04 
0.37 0.58 0.001 0.001 
0.99 1.56 0.008 0.028 
2.11 3.32 0.017 0.058 
0.11 0.17 0.001 0.003 

10.9 17.2 0.133 6.01 
4.99 7.86 0.417 0.209 

Table 4 
Attraction between side-by-side spheres in different liquid-solid systems 

Liquid-solid Initial distance 6 Vertical distance IT from Critical touching 
(mm) releasing to touching (mm) distance 6, (mm) 

0.3% aqueous Xanthan 
-teflon 

0.4% Carbopol in SO/SO 
glycerin-water-teflon 

STP-steel 

Sl steel 

S 1 -tungsten 

Sl-teflon 
1.5% aqueous polyox 

-steel 

1.25% aqueous polyox 
steel 

2.5 
5 

1.3 60 11 
2.5 120 
3.8 290 
5.1 470 
6.4 590 

2.5 23 17.5 
5.1 61 
7.6 130 

10.2 225 
11.4 300 

3.8 100 15 
7.6 300 

3.8 75 5 
1.3 9.5 5 
2.5 51 
3.3 68 
3.8 89 
4.1 102 

2 
3 
4 
5 
5.8 
7.1 

51 
79 

6 

No attraction 

12 8 
21 
74 
90 

108 
114 
150 

The vertical distance 1,(J) traveled before touching depends on the ratio of the fall velocity to the lateral 
migration velocity. 
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Fig. 11. Interaction between side-by-side sedimenting spheres in different fluids in terms of the ratio 
I,/&. of vertical distance traveled by the sphere before touching over the critical touching distance as a 
function of the ratio 6/b,. Full symbols refer to Sl and empty circles to STP. 

speeds in Sl (Table 3), but the ratio of the lateral drift distance to the vertical 
touching distance is not very great. The weak affects of weight are more easily seen 
in experiments, discussed in Sections 6 and 7, in which spheres are attracted to a 
vertical wall. We do not mean to imply that weight effects are generally not 
important, but only to note the tendency of the lateral drift velocity to increase in 
proportion to the fall velocity. 

It is of interest to examine data for steel particles. The data for steel in Fig. 11 
order weakly with the elastic stress ratio coefficient 10/?/3~, in Table 1, with 
strength of interaction for steel in different fluids in the order: STP, Sl, 1.5% polyox 
and 1.25% polyox. The data for teflon are too sparse for us to draw a definite 
conclusion. Xanthan which is strongly shear-thinning and has a zero elastic stress 
coefficient, does not seem to be greatly different than Sl, which does not shear-thin 
at the small shear rate of 0.17 of our experiments (see Table 3). 

4.1. Interaction in aqueous polyox solutions 

In Fig. 12 the distance between two a-in falling spheres dropped side-by-side are 
shown as a function of the vertical distance from the point of release. Four different 
values of 6 are considered. Attraction between the particles is stronger and particles 
aggregate at a smaller distance from the point of release when the initial side-by- 
side distance 6 is small. If 6 is large, falling spheres will not touch. In this figure, the 
triangles illustrate the behavior, mentioned above, of sphere separation. 
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Vertical distance from the point of release 1 (mm) 

Fig. 12. Separation distance between spheres measured along the line of centers vs. the vertical distance 
I to the mid-point between the spheres in 1.35% polyox solutlon. 

The vertical distance IT(d) traveled by a-in steel spheres before touching vs. the 
initial distance 6 between the spheres is plotted in Fig. 13(a) and 13(b). Spheres 
falling in 1.25% aqueous polyox solution did not touch when 6 > 6, z 8 mm and 
6 T z 5 mm in 1.5% aqueous solution. Values of flow parameters for the experiments 
shown in Fig. 13 are listed in Table 3. 

We were at first surprised to find that the critical touching distance was greater 
in the 1.25% polyox solution than in the 1.5% solution. This unexpected result 
perhaps finds its explanation in the fact that the stress ratio N,/r (Table 1) is 
actually larger in the more dilute solutions, indicating a sense in which the dilute 
solution is actually more elastic. Consequently, we would predict even stronger 
interaction in the 1.0% than in the 1.25% solution. 

Clusters of spheres dropped together in the polyox solution will form streamline 
arrays (see Fig. 14). Chains of spheres, like long bodies, tilt their longside parallel 
to streamlines. Their falling speeds are less than the shear wave speeds in these 
cases. 

4.2. Interaction in SI and STP 

Pairs of steel spheres were released in STP. Pairs of steel, tungsten and teflon 
spheres were released in Sl. The behavior of attracting spheres in this experiment 
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Fig. 13. l,(6) vs. 6 for &in steel spheres in: (a) 1.25% aqueous polyox solution; (b) 1.5% aqueous polyox 
solution. The critical touching distance is larger in the 1.25% solution. 

was qualitatively similar to that described in the previous section. The critical 
touching distance in STP is about 11 mm. This is smaller than the critical touching 
distance of 17.5 mm in Sl. The elastic ratio of the first normal stress to the shear 
stress at small rates of shear is an order of magnitude larger in Sl than in STP 
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Fig. 14. Chains of sin steel spheres falling in 1.25% aqueous polyox solution. The same kind of chaining 
was observed in the 1.5% aqueous polyox solution. 

(Table 1). The experimental results are presented in detail in Tables 3 and 4, and 
Fig. 11. Fig. 15 shows chains of spheres falling in Sl and STP. 

4.3. Interaction in Xanthan and Carbopol 

Experimental results for side-by-side attraction in all liquid-solid systems includ- 
ing Xanthan and Carbopol are given in Table 4. Two spheres dropped side-by-side 
do attract in 0.3% aqueous Xanthan solution, but the attraction is weak. The 
critical touching distance of teflon spheres is about 6 mm. There is no attraction in 
0.4% Carbopol in 50/50 glycerin-water solution. Two spheres dropped closely 
side-by-side will separate as in a Newtonian liquid. The flow parameters are given 
in Table 3. The chains of spheres falling in these two liquids are shown in Fig. 16. 

In comparing the results we have obtained in our experiments with different 
liquids, we see a definite difference between side-by-side attraction and the chaining 
spheres. In this tentative and preliminary interpretation of our results we focus on 
the effects of normal stresses and shear-thinning with and without memory. STP 
and Sl are basically non-shear-thinning at the low rates of shear characteristic of 
our experiments. Side-by-side spheres attract in these fluids and they also chain, 
indicating that shear-thinning is not a necessary condition for these effects. Sl is a 
more mobile and elastic fluid than STP and it gives rise to stronger attraction and 
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(4 (b) 
Fig. 15. Chains of fin steel spheres falling in (a) Sl and (b) STP. 

chaining. This suggests that fluids for which the elastic ratio of normal stress effects 
to viscous effects is large will give rise to strong interparticle forces, attraction and 
chaining. The polyox solutions have large elastic normal stresses, elastic stress ratios 
and times of relaxation as well, but they also shear-thin strongly at shear rates 
characteristic of our experiments. Although the presence of all the viscoelastic 
effects in polyox solutions does not allow us to isolate the properties of a 
viscoelastic fluid that give rise to the strong particle interactions that we observed 
in our experiments, these interactions also appear to correlate large values of the 
stress ratio well. The correlation in polyox is subtle because the less concentrated 
solutions have higher stress ratio and stronger interactions. 

To isolate the effects of shear-thinning we looked at the Xanthan and Carbopol 
solutions, which do not give measureable values of normal stresses at any rate of 
shear. The value of the elastic stress ratio may be large in Xanthan, but the ratio 
cannot be determined because the normal stresses are too small to measure. 
However, the 0.3% aqueous Xanthan has a much higher linear elasticity than 
Carbopol. We are assuming that this means that the memory of shear-thinning is 
much longer in Xanthan. In fact the Xanthan will exhibit side-by-side attraction 
weakly and chain strongly, but the 0.4% Carbopol does neither. 
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(4 (b) 
Fig. 16. Chains of i-in teflon spheres falling in (a) 0.3% aqueous Xanthan and (b) 0.4% Carbopol in 
50/50 glycerin-water solution. Horizontal arrays of spheres are relatively stable in the Carbopol solution 
and vertical arrays are relatively stable m the Xanthan solution. 

Our experiments show that different mechanisms promote aggregation in vis- 
coelastic liquids; more than one property is involved. A possible generalization of 
our observations is that large values of the elastic stress ratio N, /Z are sufficient but 
not necessary for strong interactions. Shear-thinning plus memory, which creates 
corridors of reduced viscosity, is also sufficient but not necessary for strong 
interactions. Aggregation seems not to occur in inelastic fluids with short memory 
or small values of N,/r, whether or not they shear-thin. 

5. Direct two-dimensional simulation of the interactions between two particles 
falling side-by-side in Newtonian fluids 

The hydrodynamic mechanisms that cause circular particles to rotate and drift 
away from each other in a Newtonian fluid can be understood by direct (two-di- 
mensional) numerical simulation, using the Navier-Stokes equations to find the 
fluid motion and hydrodynamic forces which move the rigid particles according to 
Newton’s equation of motion. A finite element package based on POLYFLOW 
with this capacity has been presented by Hu et al. [29], and a video of this 
simulation together with a short paper has been given by Hu et al. [30]. Huang et 
al. [31] applkd this code to study the forces and the turning couple on an elliptic 
particle settling in a vertical channel, and they showed that there is high pressure on 
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the front side of the ellipse at the place where the shear stress vanishes, which 
corresponds to a stagnation point in potential flow. This pressure acts always to 
keep the long side of the body perpendicular to the fall. Feng et al. [32] used this 
code to solve initial value problems for circular particles settling in a channel and 
this section is an adaptation of their work to the problem at hand. An analysis like 
this one has been applied by Liu et al. [ 121 to the problem of interaction between 
a circular particle falling in a Newtonian fluid and a vertical wall. 

We want to understand how two heavier-than-liquid circular particles dropped 
side-by-side from rest in a channel will rotate and move. Referring to Feng et al. 
[32] for details, we note here that in the regimes of moderately low Reynolds 
numbers in which there is no vortex shedding, the particles will commence to rotate 
as if turned by the shears from the fluid going around the outside of the particle and 
not from the fluid in the gap. As the particles acquire angular velocity, they 
separate and fall side-by-side for a time before they enter into a staggered 
arrangement. The side-by-side walls of the channel are important, especially in the 
later stages of the motion. 

In our experiments, spheres dropped side-by-side in Newtonian liquids would 
begin to rotate and drift rapidly away from each other and after a short time reach 
an apparently steady state with definite angular velocity and a fixed stand-away 
distance with no further drift. In this simulation, a fixed stand-away distance with 
the line of centers perpendicular to the flow is not achieved. The side-by-side 
configuration, however, is very persistent as Fig. 17 shows. 

71”‘!“‘1”‘!“‘1’ ! 

ii 
right par&c 

Fig. 17. Trajectories of two circular cylinders dropped from a side-by-side initial condition in a channel 
of g-diameter width. The dimensionless time is defined by r* = t&$f. The oscillation seen in the 
trajectories is associated with a wall effect. 
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U 1 

Fig. 18. Streamlines for side-by-side sedimentation of two circular particles dropped from rest in an 
8-diameter channel. The particles are at an early stage of sedimentation (t* = 31 in Fig. 17). To visualize 
the streamlines, we use a coordinate system fixed at the center of the right particle, which is moving 
down and to the right side. In this system, the centerline between the particles is not a streamline. 

At first, when the side-by-side particles are close together, the passage of fluid 
between them is blocked, so that the flow passes over the outside of the particle, 
turning them as in Fig. 18. We are going to show that the pressure and the shear 
stress distributions on the surface of the particle give rise to a lateral force and a 
torque that define the drift and rotation of the particles. 

Fig. 19 shows that the maximum pressure occurs near 8 = 202.5”. This position 
is also where the dividing streamline seems to hit the surface of the body in Fig. 18. 
Because the circular particle is rotating, the no-slip condition implies that there are 
closed streamlines around the surface of the particle and a stagnation point cannot 
be strictly defined. But considering the outside streamlines, we shall call the point 
with maximum pressure a viscous stagnation point. We have shown that the stagnation 
point usually corresponds to vanishing shear stress [ 12,311. This is not the case here 
because of the strong rotation of the particle. If we modify the shear stress by taking 
out the contribution from rotation, we should still have the correspondence. This is 
done by considering a potential vortex at the center of the particle with velocity 

u$ = wa’lr, (5.1) 
where o is the angular velocity at this moment. The shear stress at r = a for this is 

Z!!@ = -2?jo. (5.2) 
After removing the shear stress (5.2) we obtain the effective shear stress in Fig. 19. 
Thus, the maximum pressure occurs at the stagnation point where the effective 
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0 90 180 270 8 360 

Fig. 19. The pressure and shear stress distribution on the surface of the right particle. Dimensionless 
time t * = 31, and instantaneous Reynolds number Re = 2.65. 

shear stress vanishes. We also tested a particle prevented from rotation and settling 
at virtually the same Reynolds number. The distributions of pressure and viscous 
stresses are 

0.4 

shown in Fig. 20. The shear stress distribution is very much like the 

0.3 

P 
T 

0.2 

0.1 

0 

-0.1 

-0.2 
0 90 180 

Fig. 20. The pressure and shear stress distributions on the right particle. The particles are prevented 
from rotation. Dimensionless time t* = 30, instantaneous Reynolds number Re = 2.76. 
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Fig. 21. The horizontal component of the pressure and shear stress shown in Fig. 19. Because of the 
definition of 8, negative lateral thrusts point to the right. 

modified shear stress in Fig. 19, and the zero of the shear stress is the viscous 
stagntion point that locates the pressure maximum. 

Figure 21 shows that the stagnation pressure controls on the sidewise drift, 
increasing the distance between repelling particles. In this figure we have compared 
the side thrusts, p sin 8 of the pressure and z cos 13 of the shear stress on the surface 
of the particle. The resultant forces are 

s 
2n P,, F,l = [p sin 0, z cos e]a de = (1.602 x 10m3, 8.034 x 10e4) dyn cm-‘. (5.3) 

0 

The pressure force is larger than the shear stress force, and the separation of the 
two particles is therefore determined mainly by the stagnation pressure. 

The rotation of the particle is associated with the fact that the positive shear 
stress on the right side is larger than the negative shear stress on the left. This is 
even clearer in the case of non-rotating particles shown in Fig. 20. 

6. The interaction between a wall and a settling sphere 

If a sphere is released at a small distance from a vertical wall in a viscoelastic 
fluid it will eventualy approach the wall and fall while rolling up along the wall 
(anomalous rolling is discussed by Joseph et al. [ 1 l] and Liu et al.[ 121, see Fig. 
22(a)). Even when the wall is slightly tilted away from gravity, the wall will attract 
a sedimenting sphere that is dropped near the wall. On the other hand if 6 is large 
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the sphere and wall do not appear to interact during the short fall time of our 
experiments (Fig. 22(b)). 

Spheres dropped at or near a vertical wall in a Newtonian fluid will be repelled 
by the wall (Fig. 22(c)), just the opposite of what occurs in a viscoelastic fiuid. 
Spheres that are sufficiently far from the wall initially do not appear to interact. The 
results of a direct two-dimensional numerical simulation of a circular particle falling 
near a vertical wall in a Newtonian fluid was given by Liu et al. [ 121. 

Returning to the case of viscoelastic fluids near a tilted wall, we may define two 
critical values 6, and 6,, the critical distance of interaction and the critical touching 

6 I ST 

-Id-. i 1, J 
% 0 

/ 

i 

: 

(4 (b) 

6 > SC 

d-3 

T ‘I 

0 0 
Cc) 

(4 
Fig. 22. (a)-(d). Continued on next page. 
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(4 
Fig. 22. (a) Settling of spheres in viscoelastic liquid near a vertical wall; (b) settling of spheres in 
viscoelastic liquid near a tilted wall; (c) settling of spheres in Newtonian liquid near a vertical wall; (d) 
a &-in ceramic sphere falling near a vertical wall (left, 6 = IO mm) or a 1” tilted wall (right, 6 = 5 mm) 
in 1.5% aqueous polyox solution; (e) a sin teflon sphere falling near a vertical wall in SO/SO 
glycerin-water solution. A sphere released in a viscoelastic liquid will be attracted to the wall when the 
initial distance 6 of the sphere from the vertical wall (a) or the tilted wall (b) is smaller than the critical 
touching distance 6,; but will fall straight down when 6 > 6, in (a) and 6 > 6, in (b). In case (b) with 
the wall slightly tilted with 0 < or, when 6, < 6 < 6,, a sphere will experience some wall attraction but 
will not migrate all the way to the wall and will eventually fall straight down. In Newtonian liquids, a 
sphere dropped at a small distance or no distance from the wall will migrate away from the wall (c). 

distance respectively, with 6, I 6, as in the case of the interacting pairs of spheres. 
If 6 < 6,, then the sphere eventually migrates nearly all the way to the wall and 
never falls away. Usually, the gap between the sphere and the wall is too small to 
measure easily. If 6, < 6 < a,, the sphere will move toward the wall, but it will 
eventually fall away (Fig. 22(b)). In our experiments, spheres were dropped at 
increasing distances from the top corner of the tilted rod, at different angles of 
inclination of the rod betwen 0 and 5”. There is a critical tile angle 8, such that 
when 8 > t&, spheres are not attracted all the way to the wall. 

6.1. Vertical wall 

Sphere trajectories are shown in Fig. 23 for $-in. steel spheres dropped in 1.5% 
polyox at different initial distances from a vertical wall ranging from 2 to 12 mm. 
These trajectories are approximately straight lines suggesting that the ratio of the 
fall velocity to the lateral migration velocity is constant. The free fall terminal 
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Fig. 23. Distance between a falling sphere and a vertical wall in 1.5% polyox as a function of the vertical 
distance of the spheres from the point of release. 

velocity was reached at a distance of about 5 cm from the release point by those 
particles that had not touched the wall. Spheres starting at smaller initial distances 
6 migrate to the wall more rapidly. For larger initial distances, attraction between 
the falling sphere and the wall could not be observed in the time it takes for a 
particle to fall to the bottom of the channel. 6 = 6, is an effective critical distance 
such that when 6 > 8r the sphere is apparently not attracted by the wall. Figures 
24(a) and 24(b) plot the vertical distance traveled by the sphere before touching the 
wall as a function of the initial distance between the sphere and the wall for 1.25% 
and 1.5% polyox solutions. The open circles in Fig. 24 are for values of ZT longer 
than our channel which was extrapolated from particle trajectories. The 1.25% 
solution, which has a higher elastic stress ratio N, /z than the 1.5% solution (see 
Table l), also has a larger 6,. 

It is of interest to compare the critical values of 6 for a plane wall with a sphere 
and for two spheres launched side-by-side. The attracting or repelling power of a 
wall is larger than that between two spheres, because the wall can be visualized as 
a vertical array of touching spheres. Each sphere in the array attracts or repels the 
free test sphere, but with a different power of interaction depending on the variable 
distance between the spheres. So the interaction power of a wall is obtained by 
integration of the interaction of each small part of it. Reasoning in this way we 
would think that a wall could attract a free particle in a viscoelastic fluid at a much 
greater power than a single sphere could do. In fact, because the wall would not 
move by interaction with the free particle, we should actually define the critical 
touching distance (6,&, in the case of wall-sphere interaction, as twice the 
distance between the sphere and the wall, i.e., the distance between the sphere and 
its image with respect to the wall. Comparing (6,),s with (a,),,, which is the 
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Fig. 24. Interaction between a falling sphere (steel, a-’ m diameter) and a vertical wall in terms of 
the vertical distance IT traveled by the sphere before touching the wall as a function of the initial 
separation distance 6 between the sphere and the wall: (a) 1.25% polyox solution; (b) 1.5% polyox 
solution. 
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Table 5 
Comparison of critical values between wall-sphere and sphere-sphere interactions 

Liquid-solid 

Polyox 1.25%-steel 8 26 
Polyox 1.5%-steel 5 24 
Sl -steel 17.5 24 
Sl-tungsten 15 20 
Sl-teflon 5 6 
STP-steel 11 - 
Xanthan-teflon 6 6 

critical touching distance for falling spheres launched side-by-side, we see from 
Table 5 that (S,),,/(S,),, = 1 z 4 for all the liquids that show attraction except STP. 
The falling velocity is slowest in STP so the lateral migration velocity may also be 
too small to produce a noticeable effect in channels as short as those used in our 
experiments. In a Newtonian fluid, the wall will force the test particle to move out 
further than spheres settling side-by-side. In the experiments in which i-in teflon 
spheres fall in a 50/50 glycerin-water solution, twice the distance between the 
sphere and the wall is ultimately 1.7 times greater than the distance between two 
spheres. 

6.2. Tilted wall 

The case of an inclined wall is more complex. The settling sphere can move 
toward the wall initially and then fall away. In Fig. 25, we have plotted trajectories 
of a 14-in. steel sphere falling near a 1.5” tilted wall for different initial distance in 
a 1.5% aqueous polyox solution. We can identify a first critical distance, critical 
touching distance S,, that separates the initial distances for which spheres appear to 
touch the wall eventually from those for which they will not touch. As in the case 
of attracting spheres, we were able to identify a second critical distance 6,. When 
6 < 6, the sphere will move toward the wall initially, but it may not reach the wall. 
When 6 > 6, no attraction was observed. In Fig. 26, we have plotted 6, and 6, as 
a function of the tilt angle for 1.25% polyox solution (Fig. 26(a)) and for 1.5% 
polyox solution (Fig. 26(b)). From this figure we see that 6, and 6, decrease with 
increasing tilt angle. 

Table 6 lists critical touching distances 13~ and critical interaction distances 6, for 
i-in. spheres of different weights falling in various fluids. Spheres falling near 
vertical and tilted walls in STP or Carbopol are not attracted to the wall. STP has 
normal stresses but does not shear-thin. Carbopol shear-thins but has no measur- 
able normal stress. On the other hand, the wall attracts spheres in the shear-thin- 
ning Xanthan, which also has no measurable normal stresses, but has much longer 
memory than Carbopol. Sphere-wall interactions are stronger in Sl and polyox 
solutions. We do not yet understand the mechanisms that control lateral migration. 
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Fig. 25. Trajectories of a a-m steel sphere falling near a wall tilted 1.5” from the vertical m a 1.5% 
aqueous polyox solution. The plane is divided into three regions 6 < 6,, 6, -C 6 < 6, and S > 6,. The 
arrow shows the slope of the trajectory a particle would have if it fell vertically. 

Spheres with different weights (Table 2) were dropped in Sl. The results show that 
the effect of particle weight on 6, is the same as in the case of side-by-side settling 
of spheres (see Table 4). 

6.3. EfSects of sphere size and weight 

These experiments were done later than the others and we used a fresh 1.5% 
aqueous polyox solution as a test liquid. The graphs of viscosity and the dynamic 
moduli of this solution as functions of shear rate or frequency are similar to those 
shown in Figs. 1 and 2. The parameters, listed in Table 1, for this solution are 
as follows: q,, = 10.6Pa s, K =4.67, n =0.46, B= 1.44gs-‘, $iO =48Ogs-‘, 
c = 23.0 cm s-i, il, = 0.20, $,0/~0 = 10/?/3~, = 4.52 s. The flow parameters of the 
experiments are listed in Table 7. 

Figure 27 shows the interactions between falling spheres and a vertical wall in 
terms of the vertical distance traveled by the sphere before touching the wall as a 
function of the initial distance between the sphere and the wall. It can be seen from 
Fig. 27(a) that the particle weight does not have an obvious effect on attraction 
between a sphere and a vertical wall. All the tested spheres of the same size but 
different weight have about the same critical distances. For a given initial separation 
distance 6 each of the four different spheres travels approximately the same distance 
in the vertical direction before touching the wall; &.(a) does not depend strongly on 
weight. However, the size of the sphere has an effect on the attraction. This effect 
is shown in Fig. 27(b). The larger the sphere, the shorter it travels in the vertical 
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Fig. 26. Critical values of 6 between a i-in steel sphere and a tilted wall in terms of the critical distances 
as a function of the tilt angle: (a) 1.25% polyox solution; (b) 1.5% polyox solution. 

direction before touching the wall, and the greater the critical distance. Figure 28 
plots all data together in the normalized form. 

Interactions between a falling sphere and a wall are expressed in terms of the 
critical touching distances as a function of the tilt angle in Fig. 29. The critical 
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Table 6 
Critical touching and interaction distances in different fluid-solid systems at different tilt angles 

Polyox 1.5%-steel 

Liquid-solid 

Polyox 1.25%-steel 

Sl -steel 

Sl -tungsten 

Sl -teflon 
STP-steel 
Xanthan-teflon 

Carbopol-teflon 

0 (deg) 

0 
0.7 
1.5 
1.8 
2.1 
2.4 
2.8 
3.5 
5 
0 
0.7 
1.5 
1.8 
2.2 
0 
1 
2 
0 
1 
2 
0 

0 
1 
2 

6, (mm) 

13 
6 
4 
3 
3 
1 
1 
0 
0 

12 
6 
4 
4 
0 

12 
2 
0 

10 
0 
0 
3 

no detectable attraction 
3 
2 
2 

no attraction 

6, (mm) 

13 
9 
I 
7 
7 
7 
5 
5 
5 

12 
8 
7 
7 
6 

12 
5 
5 

10 
5 
3 
3 

3 
3 
3 

Table 7 
Measured values of the fall velocity and related quantities in the 1.5% aqueous polyox 

Spheres U (cm ss’) $ (SK’) ReO W0 

$-in tungsten 3.44 10.8 0.010 2.17 
a-in steel 4.13 6.5 0.025 1.30 
&-In ceramic 5.58 5.02 0.058 1.01 
$-in aluminum 5.08 3.2 0.076 0.641 
a-in teflon 0.17 0.27 0.001 0.054 
a-in aluminum 0.39 0.61 0.002 0.123 
a-in tungsten 14.6 23 0.087 4.61 

touching distance exists only when the tilt angle of the wall is less than about 2”. 
The critical angles for most spheres tested were between 1.5” and 2” except for the 
$-in. Tungsten sphere for which the critical angle was 1”. Most of the spheres tested 
have similar critical interaction distances in this case, but the critical distances of 
the a-in. tungsten sphere from a tilted wall are much smaller than the others. The 
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Fig. 27. Interactions between falling spheres and a vertical wall in terms of the vertxal distance I, 
traveled by the sphere before touching the wall as a function of the Initial distance 6 between the sphere 
and the wall in the 1.5% aqueous polyox solution: (a) effect of particle weight; (b) effect of particle size. 

experimental results are also summarized in Table 8. The effects of particle size on 
sphere-wall attraction can also be seen in the case when the wall is tilted through 
an angle of 1”. Bigger spheres migrate to the wall more rapidly. 
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Fig. 29. Critical distances vs. tilt angle of the wall in a 1.5% aqueous polyox. The results given here are 
similar to those given in Fig. 26. 
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Summary of experimental results in the 1.5% aqueous polyox 

Sphere 0 (deg) & (mm) 6, (mm) 6 (mm) 1, (cm) 

+-in steel 

a-in tungsten 

$-in aluminum 

I-in teflon 4 

i-in tungsten 

7 +n ceramic 

&in aluminum 

0 33 33 5 23.9 
5 23.6 

10 49.5 
13 74.9 
15 132 
16 175 
17 150 
18 218 
19 191 
21 259 

0 33 33 5 21.9 
10 61 
15 140 
20 212 

0 33 33 5 21.1 
10 45.1 
15 91.4 
20 165 
25 284 

0 33 33 5 25.4 
10 52.1 
15 102 
20 178 
25 318 

0 28 28 5 22.9 
10 16.2 
10 72.4 
15 145 
20 259 
25 381 

0  34 34 5 22.9 
10 35.6 
15 63.5 
20 109 
25 196 
30 312 

0 31 31 5 20.3 
10 33 
15 58.4 
20 104 
25 188 
30 315 

t-in steel 0.5 13 24 
i-in tungsten 0.5 3 10 
t-in aluminum 0.5 12 26 
I-in 4 teflon 0.5 11 24 
&in tungsten 0.5 6 24 
t-in steel 1 6 23 5 71.1 
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Table 8. (continued) 

Sphere 0 (deg) 6, (mm) & (mm) 6 (mm) & (cm) 

t-in tungsten 1 0  10 
i-in aluminum 1 6 23 5 137 
t-in teflon 1 5 23 
$-in tungsten 1 2 18 
&-in ceramic 1 11 22 5 35.6 
i-in aluminum 1 13 22 5 22.9 
f-in steel 1.5 0 25 
a-in tungsten 1.5 0 10 
t-in aluminum 1.5 2 23 
$-in teflon 1.5 1 22 
$-in tungsten 1.5 1 20 
i-in steel 2 0 18 
f-in aluminum 2 1 22 
t-in teflon 2 0 20 
a-in tungsten 2 0 19 

7. Discussions and conclusions 

We dropped two spheres side-by-side in a sedimentation channel filled with 
different liquids. In viscoelastic liquids, the spheres will attract when the initial 
separation distance is small; the line between centers will turn as they attract, until 
the spheres touch and chain with the line of centers vertical. Close side-by-side 
settling at slow speeds is unstable in viscoelastic fluids and the dynamics creates 
stable vertical chains. If the initial side-by-side distance between spheres is large 
enough, the spheres do not appear to interact, whether or not they are dropped in 
Newtonian or viscoelastic liquids. 

In Newtonian liquids, two spheres launched side-by-side, which are initially 
separated by a small gap or no gap, will separate. Side-by-side sedimentation is 
relatively stable or only weakly unstable and spheres will never chain in Newtonian 
liquids. 

Two heavy spheres falling faster than the shear wave speed in a viscoelastic fluid 
will disperse as in a Newtonian fluid. The phenomenon is the same one that causes 
long bodies that fall straight down at slow speed to turn 90” into broadside-cross- 
the-stream fall at supercritical speeds when inertia dominates viscoelasticity. 

In the case of attracting spheres, there are two critical values of the initial 
distances between spheres. For small values of initial distance below the first critical 
one, the two spheres will come together in a chain with line of centers vertical. If 
the initial distance between spheres is larger than the first critical value, the spheres 
would not come together, and if smaller than the second critical value they will 
move toward one another, but eventually separate. 

Spheres that are initially close to a vertical wall or to a wall tilted slightly in such 
a way that gravity pulls the sphere away from the wall, will attract falling spheres 
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in a viscoelastic liquid and will repel falling spheres in Newtonian and inelastic 
liquids. There is a critical separation distance for attraction to a vertical and two 
critical separtion distances, the same ones as for two falling spheres, for the tilted 
wall. If the angle of tilt is too great (say, greater than 5”) the sphere will always fall 
away from the wall. 

Attraction between spheres and between a sphere and a wall does not depend 
strongly on the weight or fall velocity of the sphere, but there appears to be a 
noticeable effect of size, with stronger attractions when the sphere is larger in the 
sphere-wall experiments. The effects of changing weight is roughly to change the 
lateral velocity in proportion to the fall velocity. 

Our experiments show that different mechanisms promote aggregation in vis- 
coelastic liquids; more than one property is involved. A possible generalization of 
our observations is that large values of the elastic stress ratio N, /z are sufficient but 
not necessary for strong aggregation. All of the active viscoelastic liquids (polyox 
solutions and Sl), except 0.3% aqueous Xanthan, have large values of N,/r and all 
the liquids except Xanthan, including STP and Carbopol, are nicely ordered with 
respect to aggregation behavior by the zero shear coefficient of the elastic stress ratio. 
The Xanthan solution has no measurable normal stresses and the zero shear 
coeffcient of elastic stress ratio, and the ratio itself, are too small to measure, but 
it has strong properties of aggregation. Xanthan shear-thins strongly and has a large 
storage modulus. This leads us to believe that shear-thinning plus memory, which 
creates corridors of reduced viscosity, is also sufficient but not necessary for strong 
aggregation. In either case the elasticity of the fluid is important. Aggregation seems 
not to occur in Newtonian fluids or in inelastic fluids with short memory, as in our 
Carbopol solution or in Boger type fluids with small values of N,/r. 
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