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Abstract 

A sphere in air will roll down a plane that is tilted away from the vertical. The 
only couple acting about the point of contact between the sphere and the plane 
is due to the component of the weight of the sphere along the plane, provided 
that air friction is negligible. If on the other hand the sphere is immersed in a 
liquid, hydrodynamic forces will enter into the couples that turn the sphere, 
and the rotation of the sphere can be anomalous, i.e., as if rolling up the plane 
while it falls. In this paper we shall show that anomalous rolling is a 
characteristic phenomenon that can be observed in every viscoelastic liquid 
tested so far. Anomalous rolling is normal for hydrodynamically levitated 
spheres, both in Newtonian and viscoelastic liquids. Normal and anomalous 
rolling are different names for dry and hydrodynamic rolling. Spheres dropped 
at a vertical wall in Newtonian liquids are forced into anomalous rotation and 
are pushed away from the wall while in viscoelastic liquids, they are forced into 
anomalous rotation, but are pushed toward the wall. If the wall is inclined and 
the fluid is Newtonian, the spheres will rotate normally for dry rolling, but the 
same spheres rotate anomalously in viscoelastic liquids when the angle of 
inclination from the vertical is less than some critical value. The hydrodynamic 
mechanisms underway in the settling of circular particles in a Newtonian fluid 
at a vertical wall are revealed by an exact numerical simulation based on a 
finite-element solution of the Navier-Stokes equations and Newton’s equa- 
tions of motion for a rigid body. 

Keywords: anomalous (or hydrodynamic) rolling; Newtonian liquids; normal (or dry) rolling; 
numerical simulation; settling of spheres; viscoelastic liquids 
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1. In~~uction 

Goldman et al. [l] treated the problem of interaction between a sphere 
and a wall. They also considered the problem of a sphere “rolling” down 
an inclined wall and found that the sphere cannot be in physical contact 
with the wall and that it slips, giving rise to anomalous rotation when 
forced into close approach. In this paper “anomalous” is defined as the 
sense of rotation that exists when the sphere rotates as if it were rolling up 
the wall. We define “normal” rotation as the sense of rotation that occurs 
when the sphere rotates as if it were rolling down the wall. Bungay and 
Brenner [2] showed that the rotation of a tightly fitting ball falling down a 
vertical tube would change sense, from anomalous to normal, as the 
distance between the ball and the tube wall tended to zero. The Stokes 
flow predictions of these authors involve neither inertia nor elasticity. The 
phenomenon of anomalous rolling that they predicted appears in the 
experiments of Humphrey and Murata [3], who found that the rotation of 
a sphere gradually changes from anomalous to normal as the tube inclina- 
tion angle is increased and the sphere contacts the wall. They think that 
inertia-induced lift keeps the rolling ball off the wall at the smaller angles 
of inclination. 

Dhahir and Walters [4] studied flow past a cylinder in a straight channel 
of rectangular cross-section. They did experiments with Newtonian fluids, 
2% and 3% Xanthan (Kelco) in water, and 1.5% aqueous polyac~la~de 
(an elastic fluid). Looking at a horizontal Poiseuille flow moving from left 
to right, with a cylinder above the center line, the cylinder will rotate 
against the clock as if turned by shears from the center part of the channel 
rather than from the gap between the cylinder and the wall. For all of the 
non-Newtonian fluids, the flow generated a side force that pushed the 
cylinder toward the wall, no matter where the cylinder was placed. This 
side force was too small to measure in Newtonian liquids. These results 
are totally consistent with phenomena we have observed on the lateral 
motions of spheres settling along a wall. 

Jones and Walters [5] did experiments on the flow of polymeric liquids 
through a channel blocked by a periodic array of staggered cylinders, 
simulating a porous medium. They found that the elastic polyacrylamide 
did not easily pass through the narrow passage between the channel wall 
and the cylinder, but the Newtonian liquids and aqueous Xanthan were 
not blocked. Blockage, even partial blockage, can produce a situation in 
which a cylinder or sphere is turned by the shears from the fluid that goes 
around the outside of a sphere, leading to the rolling that we have called 
anomalous, but that is normal when the turning is controlled by hydrody- 
namics (see Fig. 1). A mechanistic description of the hydrodynamics 
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Fig. 1. Cartoon of the settling of a circular particle at a vertical wall in a coordinate system 
in which the center of the particle is at rest, so the wall moves up with speed U,. If the 
particle is dropped at the wall, the fluid will go around the outside and turn the particle in 
the anomalous sense as shown. There are two “stagnation” points S on the circle where the 
shear stress vanishes (see Section 5 for a precise description) associated with high positive 
pressure on the bottom and a smaller negative pressure near the top. The positive pressure 
“lifts” the particle away from the wall and it seeks an equilibrium in the channel center. The 
cartoon is based on a two-dimensional simulation whose relation to the experiments is 
apparent but not fully clarified. 

underway for the rotations induced by the settling of a circular particle in 
two dimensions will be presented in Section 5, but an understanding of the 
fluid mechanics underway in the viscoelastic case has yet to be revealed. 

Joseph et al. [6] found anomalous rolling of a sphere along an inclined 
wall. The angle between the wall and gravity was varied so that the sphere 
fell on, rather than away from, the wall. A sphere falling down these 
inclined walls rotated normally in viscous liquids as it does in dry rolling, 
but rotated anomalously in the other sense in viscoelastic liquids when the 
wall was not tilted too far from the vertical. In this paper we document 
this phenomenon by reporting observations and measured data for many 
different polymeric liquids. We find anomalous rolling in all liquids, New- 
tonian and viscoelastic, when the wall is vertical, even though spheres are 
repelled by the wall in Newtonian liquids and attracted to the wall in 
viscoelastic liquids. The anomalous results for rolling spheres in apparent 
(only) contact with tilted walls are as reported by Joseph et al. [6] with the 
caveat that viscoelastic solutions with weak or no normal stresses stand 
between Newtonian and viscoelastic behavior. 
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TABLE 1 

Material parameters of fluids used in experiments; percentages are by weight 

Fluid P rlo k n a^ h & 
(g cmm3) (Pa.s) (gem-‘) (gem-‘) fcms-I) (s) 

1.5% polyox aqueous 1.00 20.4 10.1 0.38 132 440 20.3 0.495 
1.25% polyox aqueous 1.00 11.2 6.42 0.39 117 389 17.2 0.378 
1.0% polyox aqueous 1.00 7.65 3.97 0.42 108 360 15.0 0.34 
0.4% Carbopol in 

SO/SO glycerin-water 1.13 0.76 0.31 0.67 0 0 15.9 0.027 
0.3% Xanthan aqueous 1.00 5.21 1.1 0.28 0 0 12.2 0.35 
Sl 0.875 8.06 7.14 0.62 11.8 39.3 72.4 0.018 
STP 0.86 18.0 17.8 0.85 0.97 3.23 286 0.0026 

Experiments were also done in more dilute polyox solutions (WSR 301) and in a 1.2% 
polyac~~~de solution in a 50150 glycerin-water solution, but the material parameters were 
not measured. The numerical value k is the value of the viscosity in Pa.s at a shear rate j = 1. 
The relaxation time 1% = qo/pc2. 

2. Material and dimensionless parameters 

The material parameters (Table 1) that were measured in the liquids used 
in the experiments are the density p, viscosity q = kj”- ‘, where 3 is the 
shear rate in reciprocal seconds, the climbing constant $ measured on a 
rotating rod viscometer (Beavers and Joseph [7j) and the wave speed c. To 
compute $ from measured values of the climb, we need the interfacial 
tension which we measured with a spinning drop tensiometer (Joseph et al. 
[8]). The value of $ is insensitive to a small change of surface tension 
(Chapter 16 in Joseph [9]). 

The climbing constant /? is related to the limiting (zero shear) value of the 
first and second normal stress differences 

@I, nz> = F$ (~,(~), Fml$* (2.1) 

by 
)!T=$z~ fnz. (2.2) 
The climbing constant 

$=301, +2a2 (2.3) 

may also be expressed in terms of quadratic constants 

(a,,%) =MW%+n;?) (2.4) 

of the second order fluid. a,f/clll is the ratio of quadratic constants and 

[al, %I = E --m, 2m - 21/7/(~ - 41, (2.5) 
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where m = 201, /( 2tl, + tlZ) = --nl/nz is the ratio of the first to second normal 
stress differences. It can be argued (Section 17.11 in Ref. 9) that m = 10 is 
a reasonable value for our polymer solutions. Then 

(2.6) 

is constant and ocl and a2 are determined by the measured values of the 
climbing constant fl. The value of n, we get from measuring $ is not sensitive 
to the value of the ratio nz/nl as long as rz2 is relatively small and negative. 

The measured value of the climbing constant, together with the assumption 
that the second normal stress difference is - l/10 as large as the first, allows 
us to evaluate Roscoe’s [lo] formula 

7’i;, - Tz2 = 3Sq0 + 3(a, + a,)+* (2.7) 

for the extensional stress difference where $ is the rate of stretching in the 
direction x1 and q. is the zero shear viscosity. Using (2.6) and al = -nt /2 we 

get 

rr;, - TZ = 3&() + 1.2n, s2. (2.8) 

The zero shear value of the first normal stress difference nl = (2m/ 

(m - 4))p = 10/3$ and the zero shear quadratic correction 4$? of Trouton’s 
viscosity, 3qo, increase with /?. An argument given by Liu and Joseph [ 1 l] 
suggests that extensional stresses, broadly speaking, control the properties of 
the aggregation of particles in viscoelastic liquids documented here. 

Glycerin and water mixtures in various concentrations were used to 
determine Newtonian behavior. The polyox and polyacrylamide solutions are 
standard test viscoelastic liquids exhibiting normal stresses, shear thinning 
and memos effects. 

STP is a solution of polyisobutylene (PIB) in petroleum oil that was used 
extensively in early studies of rod climbing [9]. Sl is a solution of 50.0 g 
of 5% (w/w) of PIB in decalin plus 5% polybutene oil, a world-wide standard 
test fluid that is being characterized by different laboratories in many 
countries. We mixed our own samples according to procedures laid down by 
Professor J. Ferguson of the University of Glasgow. Our homemade solu- 
tions have nearly the same properties as the premixed samples given to us. 

The viscosity of these two polymer solutions, measured as a function of 
the shear rate ? on the RSF2 Rheometrics fluid rheometer is given in Fig. 
2. The viscosity of STP is nearly constant for shear rates less than 100. The 
viscosity of Sl decreases with increasing f, but the decrease is very slow for 
shear rates less than 10. The viscosity of Sl is an order of magnitude smaller 
than STP; it is a much more mobile liquid. Both solutions climb a rotating 
rod, but the STP is not a good climber; the climbing constant at room 
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Fig. 2. The viscosities of STP and Sl fluids as functions of the shear rate measured, at a 
temperature of 24S”C, on a RSF2 Rheometrics fluid rheometer with a cone of 50 mm 
diameter and 0.021 radian cone angle and a plate. The viscosity of Sl is an order of 
magnitude smaller than STP; it is a much more mobile liquid. Sl has a small shear thinning, 
and STP is more like a Boger fluid. The power law constants for Sl, for shear rates greater 
than 0.5 s-‘, are K = 7.14 and n = 0.62, whereas for STP, K = 18.7, n = 0.85. 

temperature is about 1 g cm-‘. We can say that STP is a Boger fluid with 
very weak normal stresses. The climbing constant of Sl at 25°C is approx- 
imately 11.8 g cm-’ and Sl can be said to resemble STP with much larger 
normal stresses, especially at low rates of shear. 

Values for the dynamic moduli of STP and Sl are given in Fig. 3. The 
loss modulus for STP is an order of magnitude higher than that for Sl . The 
storage modulus of Sl is larger than for STP for shear rates less than about 
10 s-‘, and the shear rate at which the loss modulus falls below the storage 
modulus is much lower in Sl than in STP. Sl is more mobile and much 
more elastic liquid than STP. 

We attempted to isolate the role of shear thinning, suppressing both 
normal stresses and elasticity, by using a solution of 0.4% Carbopol 690 
(Goodrich) in a 50/50 glycerin-water mixture in our sedimentation experi- 
ments. The viscosity vs shear rate for this Carbopol solution is plotted in 
Fig. 4, and the dynamic moduli are plotted in Fig. 5. Carbopol is thought 
to be a pseudoplastic fluid without elasticity. Since our Carbopol solution 
has a non-zero storage modulus, it cannot be said to be without elasticity. 
The presence of small elasticity in Carbopol solutions has been noted 
before; for example, Hartnett and Kostic [ 121 have noted that an aqueous 
solution of 1000 ppm (by wt.) Carbopol exhibits elasticity in the linear 
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Fig. 3. Dynamic moduli of STP and Sl measured, at 2% strain, on the same rheometer with 
the same pair of cone and plate as in Fig. 2. The loss modulus for STP is an order of 
magnitude higher than for Sl. The storage modulus of Sl is larger than for STP for shear 
rates less than about 10. The shear rate at which the loss modulus falls below the storage 
modulus for Sl is much lower than that for STP. 

viscoelastic regime, and found evidence that aqueous Carbopol solutions 
experience strong secondary motions in laminar flow in non-circular chan- 
nels, but they do not reduce drag. There is no evidence that Carbopol 690 

I 1 

1 
p (s-r) 

10 loo 
shear rate 

Fig. 4. The viscosities of 0.3% aqueous Xanthan and 0.4% Carbopol in 50/50 glycerin-water 
solution as a function of the shear rate at a temperature ,of 245°C. The Xanthan solution has 
a higher but more shear thinning viscosity than the Carbopol solution. 



312 Y.J. Liu et al. 1 J. Non-Newtonian Fluid Mech. 50 (1993) 305-329 

0.01 1 
0.1 

# I I 
1 10 loo 

frequency w (rad/s) 

Fig. 5. Dynamic moduli of Xanthan and Carbopol solutions. In modest shear rates ranging 
from 0.1 to 100, both the storage modulus and loss modulus of the Xanthan solution are 
higher than those of the Carbopol solution. Also, in the Xanthan, the storage modulus G’ is 
greater than the loss modulus G”, but in the Carbopol the opposite is true. 

in 50/50 glycerin-water has a measurable value of the first normal stress 
difference, and it does not climb a rotating rod. 

To determine the effects of shear thinning with a strong memory but no 
normal stresses, we used a solution of 0.3% Xanthan (Kelco) in water. The 
graph of viscosity vs shear rate is shown in Fig. 4, and the variation of the 
storage and loss moduli with frequency is shown in Fig. 5. This Xanthan 
solution is very shear thinning and it apparently has no normal stresses. We 
could not register a first normal stress difference on the Rheometrics fluid 
rheometer and the 0.3% Xanthan solution would not climb a rotating rod. 
On the other hand, this fluid has a high storage modulus and can be said to 
be linearly elastic. 

3. Rolling of spheres down the side wall of a channel; experimental setup 

Six different types of spheres and three channels were used in our 
experiments as shown in Table 2. The motion of l/4-in diameter sediment- 
ing spheres in the thin bed is basically two dimensional, with spheres 
centering themselves between two close walls. The centering was described 
by Liu and Joseph [ 111. Close side walls have a marked effect on the 
magnitude of the fall velocity and rotation rate of spheres rolling down an 
inclined wall. But the direction of the rolling and other qualitative proper- 
ties of aggregation of sedimenting spheres, sphere-wall interactions and the 
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TABLE 2 

The channels and spheres used in our experiments for various liquids 

Channel 
dimensions 

(in) 

Sphere” material and density (g cmw3) 

Plastic Teflon Rubber Steel-l 
(1.34) (2.18) (5) (7.61) 

Steel-2 Tungsten 
(7.61) (15.8) 

0.275 x 4 x 23 - glycerine - ’ polyox - STP 
polyacryl- 
amide 
STP 
glycerin 

0.85 x 0.85 x 18 Xanthan Xanthan Xanthan Sl STP Sl 
Carbopol Carbopol glycerin 
glycerin Sl 

glycerin 
1x1.63x28 - - STP - 

a All spheres of diameter 0.25 in, except for Steel-2, 0.5 in. 

tilting of long sedimenting bodies, do not depend strongly on the aspect 
ratio. 

In this experiment, we tilted our sedimentation channel with its center 
plane vertical and the side walls inclined to the vertical. The angle of 
inclination from the vertical is 8 (Fig. 6). When 0 = 0”, the plane of rolling 
is vertical. We measured the fall velocity and rolling velocity of spheres on 

(a) @I 04 

Fig. 6. Settling of spheres at the inclined wall of a channel. The inclination angle from the 
vertical is 8. (a) Anomalous (hydrodynamic) rolling of a sphere next to a vertical wall 
(0 = O”). In Newtonian liquids there is always a stand-away distance but this distance is 
barely visible in viscoelastic fluids because the sphere is sucked to, rather than repelled by, 
the wall. (b) Normal (dry) rolling is found in Newtonian liquids and in viscoelastic liquids 
when 0 is larger than a critical value. (c) Anomalous rolling in a viscoelastic liquid. There 
must be a gap between the sphere and the wall, but it is usually too small to be seen at first 
glance. We say that a sphere slips when it falls but does not rotate. 
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a video system. The measurements were routine and accurate. We were 
unable to get an accurate measurement of the distance between the wall and 
the sphere in the viscoelastic case of close approach. The drag on the sphere 
must be strongly influenced by the precise value of this too-small-to measure 
stand-away distance. A more detailed study than the one undertaken here 
would look systematically at weight and size effects of particles. We did 
many casual tests of this type, but found no surprising results. Our view is 
that more systematic experiments should be undertaken only after some 
hypotheses about the controlling viscoelastic mechanisms have been formu- 
lated for testing. 

The case of vertical settling (0 = 0’) is special. If a sphere is initially 
dropped at or near a vertical wall, it will always turn counter-clockwise, as 
shown in Fig. 6(a), whether the fluid is viscoelastic or inelastic. We have 
found that spheres dropped in a viscoelastic liquid near a vertical wall are 
sucked to the wall, but the same spheres will move a certain distance away 
from the wall when they are dropped in inelastic fluids. The striking 
difference will be documented in another paper (Joseph et al. [ 131). For now 
it will suffice to note once again that independently of whether the sphere 
migrates to the wall or takes up a small stand-off as it falls, it will turn 
counter-clockwise as it falls. 

4. Rolling of spheres down the side wall of a channel; experimental results 

We might have thought that friction emanating from the wall would turn 
the sphere clockwise. Evidently the small gap between the falling sphere and 
the wall partially blocks the fluid, so that the main flow and the main shears 
are on the outside of the sphere, where passage is not blocked, turning the 
sphere, as in Fig. 1. The sense of the rotation of the sphere, then, which has 
been dropped from the rest in close proximity to a vertical wall, must be 
anomalous, since much of the fluid cannot get through the small gap 
between the wall and the sphere, and instead must go around the outside. 
The blockage effect is greatly enhanced in viscoelastic fluids because the 
viscoelastic forces draw the spheres to the wall, even when the wall is 
vertical. 

It is evident from the consideration just introduced that the fluid dynam- 
ics of sphere-wall interactions are such as to produce anomalous rolling 
when the relative weight of the sphere is not sufficient to hold it on the wall 
against countervailing hydrodynamic lift forces. This is always the case 
when the wall is vertical and even when 8 is very small. In this sense, 
anomalous rolling is normal whenever hydrodynamic lift forces are at work. 
The lift forces are sensitive to the Reynolds number and a sphere will “fly” 
if the forward speed is fast enough no matter what the value of the angle of 
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tilt. Spheres settling on an inclined wall however need not reach the forward 
velocity necessary for levitation against the component of the buoyant 
weight of the sphere pushing it on the wall. 

Our experiments using the 0.275 x 4 x 23-in channel filled with pure 
glycerin and steel balls are representative for Newtonian liquids. When 
8 = O”, with vertical settling, a sphere started at the wall will be repelled by 
the wall and will commence to role in the anomalous sense as in Fig. 6(a). 
When 8 2 l”, the sphere falls to the wall and a gap is not evident; it slips at 
the wall ( 1” < 8 I 4”) or slips a lot and rolls normally a little (4” < 8 I lo’), 
rotates normally with a little slip (10” < 8 I 30”) or rotates normally with 
no slip (0 > 30”). 

The interval of 8 for normal rolling and slipping depends on the Reynolds 
number and hence changes with the weight of the sphere and the aspect 
ratio of the channel. We carried out experiments with Teflon spheres in the 
narrow channel and steel and Teflon spheres in the square channel with 
different quantitative but the same qualitative results. We have already 
remarked that we expect the spheres to lift off the inclined walls at a higher 
Reynolds number, not seen in our experiments. 

Our experiments with 0.4% Carbopol in 50/50 glycerin-water solutions 
were carried out in the 0.85 x 0.85 x 18-in channel using plastic and Teflon 
balls. The wall does not attract these balls when it is vertical (0 = 0’); a 
sphere dropped next to the wall will rotate in the anomalous way and drift 
away from the wall to an equilibrium stand-away distance, as in Newtonian 
fluids. In the case of walls with slight tilting (0’ < 0 I lo”), the sphere falls 
to the wall, first rotating up the wall, then slipping without rolling. This 
behavior is intermediate between Newtonian and viscoelastic behavior, but 
is more nearly Newtonian. 

We turn next to the experiments with viscoelastic liquids in which a 
vertical wall attracts rather than repels sedimenting spheres; that is, all 
solutions mentioned in this paper other than glycerin and Carbopol. Natu- 
rally, an inclined wall will attract a sphere more strongly than a vertical 
wall. The anomaly is that in these cases of sedimentation with close 
approach, as if touching, the sphere rotates anomalously, with “dry” rolling 
taking over only for relatively horizontal tilting of the wall. 

In Table 3 we give the measured values of the terminal fall velocity U, 
and the terminal angular velocity 0,. It is of interest to compare the 
measured values of U. with computed values of the Stokes velocity U,, 
which is generated from the balance between buoyancy and drag 

Apg$na3 = 6rcq( l)aU,, (4.1) 

where Ap is the difference in density between the solid (Table 2) and the 
fluid (Table l), g = 980 cm s-l, a = l/8 or l/4-in is the sphere radius and 
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TABLE 3 

Measured values of terminal fall speed U, and terminal angular velocity o,, of spheres falling 
close to a vertical wall 

Liquid-solid Ap V(l) u, Gl 
(gcmm3) (poise) (ems-‘) (cm s-r) 

1.5% polyox- 
steel 
1.25% polyox- 
steel 
1 .O% polyox- 
steel 
Xanthan- 
plastic 
Sl-teflon 
Sl-steel 
S 1 -tungsten 
STP- 
steel(0.25 in) 
STP- 
steel (0.5 in) 
STP- 
tungsten 

6.61 101 

6.61 64.2 

6.61 39.7 

0.34 11 

1.3 
6.13 

14.92 
6.75 

71.4 
71.4 
71.4 
78 

6.75 78 

14.94 78 

1.44 0.46 3.12 0.003 0.306 0.21 

2.26 1.358 1.66 0.013 0.333 0.08 

3.66 3.06 1.19 0.049 0.396 0.04 

0.68 0.269 2.52 0.016 0.126 0.15 

0.40 0.656 0.61 0.005 0.167 0.08 
2.07 1.59 1.30 0.012 0.43 0.08 
4.59 4.16 1.10 0.032 0.541 0.04 
0.83 0.206 4.04 0.001 0.097 0.15 

3.33 0.708 4.70 0.004 0.133 0.12 

1.84 0.374 4.93 0.001 0.111 0.10 

The Reynolds number, R = 2apU,/q( 1) where a is the radius of the sphere and q( 1) is the 
viscosity at shear rate 1, is small enough to assume that the computed value of the Stokes 
velocity Us is relevant. C = aoo/Uo is the coefficient correlating U, and 0,. 

q( 1) ( =k) is the viscosity at i, = 1 (Table l), which we used because of 
uncertainty in the value of qo. In most cases (except the one of a Teflon 
sphere in Sl solution), the Stokes drag is smaller than the drag in our 
experiments. The main reason for this discrepancy is that the nearby wall to 
which the sphere is attracted exerts an additional drag, as do nearby side 
walls. The measured value of coo is corrected with the measured value of U. 
by the following argument. In dry rolling U. = ao, so that in hydrodynamic 
rolling, we might find a relationship like CU, = am0 with an unknown C 
between zero and one. Of course the sense of o. is reversed in hydrody- 
namic rolling, and the shear from the outside is a less effective turner than 
dry friction. 

Our experiments with 0.3% Xanthan in water were carried out in the 
square channel, using plastic, Teflon and rubber balls. The Xanthan solu- 
tion is very interesting because it has an appreciable linear elasticity (a high 
storage modulus) and is very shear thinning (Table l), yet has no measur- 
able normal stress. A plastic sphere, which is light and settles slowly 
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(U, = 0.269 cm s-l), is attracted to a vertical wall where it rotates anoma- 
lously with a slow angular velocity (oO = 0.126 rad s-l). The heavier Teflon 
sphere falls faster (U, = 13.12) than the shear wave speed (c = 12.2) and it 
levitates off the wall. The fall velocity for Teflon and rubber spheres is too 
great to determine the value of the angular velocity. In the case of a tilted 
wall, data were taken only for Teflon spheres. These were attracted to the 
wall when 8 I 5” even though the wall repels the sphere at 0 = 0”. The 
rotation was very weak, with appreciable amounts of slipping for angles of 
5, 10, 15 and 20. The weak rolling was anomalous for 5 and 10”; there was 
only slip at 8 = 15” and slip plus normal rolling at 0 = 20”. The plastic 
sphere was attracted to the vertical and inclined walls where its rotation was 
too slow to measure. The rubber sphere at about 8 = 5” to the wall falls and 
rotates anomalously, but it settles so fast that the angular velocity could not 
be measured accurately. It is certain that a lighter sphere would levitate at 
the large velocities at which the rubber spheres fell. The behavior of spheres 
rolling on walls in Xanthan is intermediate between Newtonian and vis- 
coelastic, but is more nearly viscoelastic. 

In our experiments using l/4-in steel balls on the flat side wall of the 
narrow channel (Table 2) filled with 1.2% polyacrylamide in 50/50 aqueous 
glycerin, we found intermittent slipping interspersed with anomalous rolling 
for 0” I 8 < 20”. Only slip was observed for 25 and 30” and intermittent 
slipping and normal rolling for 0 = 35, 40 and 44”. In all cases a very slight 
gap could be detected between the ball and the plane; the ball was 
hydrodynamically levitated in a position of close approach. 

We did the same experiment with a l/4-in wire laid against the flat 
surface. The contact between the sphere and the wire is less severe than the 
contact between the sphere and a flat wall. The gap under rolling on the 
inclined wire changes radically across the gap. There are only very small 
differences in the outcome of experiments using these two wall surfaces. 

Now we give some measured results in graphical form for the terminal 
settling and angular speed of rolling spheres as functions of the angle 8 of 
inclination of a tilted wall in aqueous Polyox, STP and Sl. The settling 
speed U and angular speed w are normalized by their values U, and o. at 
0 = 0”. In all cases, anomalous rolling is observed. 

We have presented the data in two forms. First we given U/U, as a 
function of cos 8. The force driving the tangential motion of the sphere 
down the plane is the buoyant force Apg cos 8(4/3)na3, linear in cos 0. For 
a linear response between the velocity and driving force and velocity, we 
might expect that U oc C, cos 8 where C1 depends on geometrical and fluid 
parameters and is a sort of drag coefficient. We have attempted to make a 
best guess at the parameter from the measured data, but the response is not 
rigorously linear and the fits are not convincing. In fact we really do not 
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expect linearity for no other reason than that the normal force exerted on 
the inclined plane varies with 8. This variation will produce a change in the 
small gap between the sphere and the plane and change the drag emanating 
from the wall. 

1 _ I 

UIUO . _ --ft 3.5% polyox, flat surface 
. -o- 1.5%polyox. wire surface 

0.9 r . -x- ~1.25% plyox. flat mace 
. - +- L25%polyox,whSwfaca 
. --8-- 1.~~1~~~~~ 

0.8 : 

0.5 - 8 
q 

0.4 : 
nolmalrotig 

Fig. 7. Normalized fall velocity U~U~ as a function of cos @ for a l/4-in steel sphere falling 
in aqueous Polyox in the narrow channel of 0.275 x 4 x 23-in. The straight lines are 
generated from a linear curve fitting routine using data only for anomalous rolling on an 
inclined wall. This fit excludes vertical settling data (8 = O”) which has no normal component 
of buoyant weight, and also excludes normal data from normal rolling with a too great 
normal component of buoyant weight. 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
u/u0 

Fig. 8. Normalized angular velocity vs. normalized fall velocity for aqueous Polyox. 
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A second form for presenting data is as ~~~~ vs U/U,. We expect to see 
a more or less linear relation a/o0 cc C, U/U, based on the idea that cr) and 
U have the same dependence on cos 8, whatever that dependence might be. 
This idea seems to work. 

In Fig. 7 and 8, we have presented results for aqueous Polyox (WSR 301) 
solutions. We were able to obtain reproducible data exhibiting anomalous 
rolling only in the more concentrated solutions: 1.5%, 1.25% and 1%. 
Anomalous rolling occurs in the 0.85% solution. In the 0.75% solution, 
results are ambiguous, with a high degree of slipping and very little rolling, 
behaving like Newtonian fluids. Polyox solutions of 0.6% and less exhibit 
only normal rolling. We are able to enhance the angular velocity of rolling 
in the 1.5% Polyox solution by putting a wire on the inclined wall. This 
effect was not so marked in the 1.25% solution. 

In Fig. 9, we have presented measured values of U/U, vs cos 8 for Sl. We 
drew the best straight line by linear fitting, excluding data points for dry 
rolling in which the sphere is not levitated and for hydrodynamic rolling in 
the vertical in which there is no normal gravity force. The data relating 
U/U, and w/oO, in Fig. 10, fall close to a straight line satisfying w/ 
m. cc 2.37( U/ U,). 

In Fig. 11, we have presented measured values of U/U, vs cos 8 for STP 
in two different channels and fitted the data to straight lines U/ 
U. cc: Cl cos 8, where C1 = 1.37 for the l/4-in tungsten sphere in a 

VIVo -4--tmm 
-O-Std 
. -x- -tungm 

0.8 

0.6 

f 

0.2 - 

: Q 0 
normalrolling 

8.3' ' ' ‘0:4’ ’ ’ ‘ai ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ I ’ ’ ’ ’ 0.6 0.7 0.8 0.9 
case 

I 

Fig. 9. Normalized fall velocity U/U0 as a function of cos 8 for l/4-in teflon, steel and 
tungsten spheres falling in Sl solution in the wide channel of 0.85 x 0.85 x l&in. The 
straight lines are generated by a linear curve fitting routine from data on anomalous rolling, 
excluding data from normal rolling and vertical settling. 
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Fig. 10. Normalized angular velocity vs. normalized fall velocity for Sl solutions. Excluding 
data points for normal rolling and hydrodynamic rolling in the vertical, the data cluster 
around a straight line with slope of 2.37. 
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Fig. 11. Normalized fall velocity U/U,, as a function of cos f3 for l/4-in tungsten spheres in 
a 0.275 x 4 x 23-in channel and l/2-in steel spheres falling in a 0.85 x 0.85 x 18-in channel 
filled with Sl solution. 

0.275 x 4 x 23-in channel and C1 = 1.21 for the l/2-in steel ball in a 
0.85 x 0.85 x 18-in square channel. Straight lines o/m0 of C,( U/ U,), where 
C, = 9.58 for a tungsten sphere and C, = 2.53 for a steel sphere, are shown 
in Fig. 12. 
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Fig. 12. Normalized angular velocity vs. normalized fall velocity for STP. 

5. Direct numerical simulation of the settling of a circular particle at a 
vertical wall in a Newtonian tluid 

The hydrodynamic m~hanisms that cause circular particles to rotate and 
drift away from a vertical wall can be understood by direct (two-dimen- 
sional) numerical simulation, using the Navier-Stokes equations to find the 
fluid motion and the hydrodynamic forces that move a rigid particle 
according to Newton’s equation of motion. A finite-element package with 
this capability has been presented by Hu et al. [ 141, and a video of this 
simulation together with a short paper has been given by Hu et al. [ 151. 
Huang et al. [ 161 applied this code to the problem of finding the forces that 
control the turning couple on an elliptic particle settling in a vertical 
channel, and they showed that there is highe pressure on the front side of 
the ellipse at the place where the shear stress vanishes, which corresponds to 
a stagnation point in potential flow. This pressure always acts to keep the 
long side of the body perpendicular to the fall. Feng et al. [17] used this 
code to solve initial value problems for circular particles settling in a 
channel and this section is an adaptation of their work to the problem at 
hand. 

We want to understand how a heavier-than-liquid, circular particle 
dropped from rest in this liquid at a vertical wall will rotate and move. 
Referring to Feng et al. [ 171 for details, we note here that in the regime of 
moderately low Reynolds numbers in which there is no vortex shedding, the 
particle will drift to channel center under the influence of side forces from 
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both walls. The problem at hand could be posed in the semi-infinite domain 
on the right of the vertical wall, but is here simulated by diminishing the 
influence of the other wall by moving it far away. 

In our experiments, spheres dropped from rest in glycerin would rotate 
and drift rapidly away from the wall and after a short time reach an 
apparently steady state with a definite angular velocity o. and a fixed 
stand-away distance with no further side drift. In the simulation, the particle 
is seen to drift to the center of the channel, and the drift takes place on a 
much larger time scale. The rotation of the particle is anomalous at the 
beginning, and dies away as the particle approaches its equilibrium position 
at the channel center (Fig. 13). 

At first, when the particle is very near the wall, the passage of fluid 
between the circular particle and the wall is blocked, so that the flow passes 
over the outside of the circular particle, turning it in the direction that we 
called “anomalous”. This is clear from the streamline around the particle as 
seen in a reference frame fixed on the center of the particle (Fig. 14(a)). 

We are going to demonstrate that the pressure and shear stress distribu- 
tions on the surface of the particle show that the maximum pressure occurs 
roughly at the point of vanishing modified shear stress (Fig. 15). The 
circular particle is rotating counter-clockwise, so that the no-slip condition 
implies that there are no stagnation points on the surface of the circle. In 
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Fig. 13. Trajectory and angular velocity of a circular particle settling near a vertical wall in 
an 8/l channel. The particle is released at y, = 0.65d, d being the diameter, and the final 
Reynolds number is R = 5.28. The rotation of the particle is anomalous at first but gives way 
to normal rolling of a much smaller magnitude in the final stage of its drift to the center of 
the channel at y = 4d. 
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Fig. 14. Streamlines around a particle settling near a vertical wall. (a) At the start of the 
sedimentation (computer time step Itime = 006, x/d = 10e3), blockage at the wall causes shift 
of the “stagnation points” and anomalous rolling; (b) When the particle is away from the 
wall, drifting and rotation of the particle die away (Itime = 280, x/d = 76). 
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Fig. 15. Pressure and shear stress distribution on a circular particle, at R = 5.28, in terms of 
dimensionless coefficients Cr, = 2p/p U2 and Cr = 22, /p U2 where U is the falling speed at 
Itime = 280 or x/d = 76 (see Fig. 13). The modified stress distributions fro (5.3) is expressed 
through the modified coefficient cr. Because the angular speed is small the difference between 
cr and Cr is only about 0.3% and cannot be seen in this plot. The maximum pressure is very 
near to the “stagnation” point where the modified shear stress vanishes (cr = 0) on the front 
face of the circle. 
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potential flow, the fluid slips at the boundary and the rotation that is here 
associated with the angular velocity co of the circle would be put in as the 
strength of a potential vortex with velocity 

uf; = oa*/r. 

The shear stress at r = a for this is 

(5.1) 

z$j = -2qw. 

The modified shear stress on the circle at r = a 

(5.2) 

def 

fro = z,(j - & (5.3) 

is “free” of the viscous effects of rotation and the zeros of fFs are a better 
image of the position of the effective points of stagnation, near to a 
streamline. This stagnation pressure in the narrow gap induces side drift 
away from the wall. There is a second point on the side of the circle near the 
wall where the shear stress vanishes, corresponding to a rear stagnation 
point of negative pressure, which is of smaller magnitude and not so closely 
associated with a zero of the shear stress. 
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16. Distributions of the side thrust coefficients for the pressure C, sin 8, for the viscous 
part of the normal stress C, sin 0 and for the shear stress C,cos 0 on the surface of a circular 
particle settling near a wall with Re = 5.28 and x/d = 10m3. The resultant side thrusts are 
given by (5.4). The lateral thrust of the pressure gives rise to the largest contribution of the 
total thrust. The lateral thrust of the shear stress opposes the thrust of the total normal stress 
due to pressure and viscosity. 
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Fig. 17. Pressure and shear stress distribution on a circular particle at Re = 5.28 and 
x/d = 76. The particle has almost stopped rotating and the maximum pressure is at the 
“sta~ation” point f? = 180” where Cr = 0. Of course, pressure recovery on the rear of the 
circle has been greatly suppressed by viscosity. 

In Fig. 16 we have compared the side thrusts, p sin 8 of the pressure and 
r cos 8 of the shear stress on the boundary r = 0 of the circular particle shown 
in Fig. 14(a). The side force resultants of these stresses are given by 
integration over 0 

[FP, F,] = 
s 

2n[p sin 8, r cos B]adQ 
0 

= [ -0.062,0.013]dyne cm-‘. (5.4) 

The lateral thrust of the pressure gives rise to the largest contribution to the 
total thrust. The lateral thrust of the shear stress opposes the thrust due to 
pressure and viscosity. 

After the particle drifts sufficiently far away from the wall, the blockage 
is relieved and a more symmetrical flow pattern is achieved (Fig. 14(b)). The 
pressure and shear stress on the circle resemble those on a fixed particle in 
a uniform flow (Fig. 17), and the rotation and lateral drift eventually vanish. 

6. Discussion and conclusions 

We have studied the motion of a sphere falling and rotating on a plane 
inclined with respect to gravity. The sphere is forced toward the plane by the 
component of its buoyant weight normal to the plane and is moved 
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along the plane by the tangential component of the relative weight. If the 
normal component of the relevant weight is large enough, the sphere will 
make effective contact with the plane and will roll normally about the point 
of effective contact, as it does in air. The normal component may be 
increased by tilting the plane toward the horizontal, or by increasing the 
weight of the sphere. 

The effects of the interaction between the moving sphere and the suspend- 
ing liquid introduce countervailing forces that tend to levitate the sphere 
and to make it rotate in the anomalous way, opposite to what would be 
expected from dry rolling. The sense of rolling we have called anomalous is 
actually normal for the hydrodynamically levitated case, and it could be 
called hydrodynamic rolling, opposite to dry rolling. 

There is a marked difference in the migration of spheres dropped near a 
vertical wall. In Newtonian liquids, dilute solutions and other solutions 
without strong viscoelastic properties, a sphere dropped in proximity of a 
vertical wall will be forced away from the wall by lift forces and be put into 
anomalous rotation by shears from the flow going around the outside of the 
sphere. We did an exact numerical simulation of this scenario for a circular 
particle falling near a wall in two dimensions and showed how the lateral 
motion of the particle and its equilibrium positions are controlled by 
pressures at the front and rear “stagnation” points near the wall where the 
shear stress vanishes. 

In a strict sense, the no slip condition in a viscous fluid is not compat- 
ible with the notion of stagnation points as they appear in the theory of 
flows without viscosity. In the inviscid theory, stagnation points appear 
at dividing streamlines and a natural image of these points for a viscous 
fluid, say with a boundary layer, are points on the boundary at which the 
shear stress vanishes. We find the highest pressure at a point on the 
front face of the sedimenting circle near the “stagnation” point where 
the shear stress vanishes. There is also a point on the rear face where the 
shear stress vanishes, but without the pressure recovery and, in fact, the 
minimum pressure is very near to this point. The magnitude of the 
minimum pressure is relatively small, so that the outward drift of the 
particle is controlled by the component of the “stagnation pressure” on 
the front face pushing the particle away from the wall. We cannot carry 
our simulation into a semi-infinite regime, but in a channel, even with 
side walls far away, the particle will drift slowly to the center of the 
channel. At higher Reynolds number, after vortex shedding commences, 
equilibrium at off-center mean positions can be seen [ 171. It is probable 
that slow drift away from a wall at low Reynolds number in a semi-infinite 
region is a permanent condition, with ever slower sidewise drifting as time 
goes on. 



Y.J. Liu et al. 1 J. Non-Newtonian Fluid Mech. 50 (1993) 305-329 321 

The results of the two-dimensional simulations do not give rise to the 
fixed stand-away distance that is observed when spheres are dropped in a 
Newtonian fluid near a wall. Maybe the experiments are at fault, with 
channel lengths too small to seen a continuous increase in the distance 
between the particle and the wall. Another possibility is that the theory for 
two dimensions is not realized in three. 

The considerations of the previous paragraph do not apply to viscoelastic 
fluids in which particles are attracted to a wall. These include aqueous 
polyox in concentrations of 0.85% and higher, 0.3% aqueous Xanthan, 1.2% 
polyacrylamide in 50/50 glycerin-water, Sl, STP and many others. In this 
case the conclusion is inescapable that there is a very small equilibrium 
distance between the wall and the particle. 

The Reynolds numbers encountered in our experiments on the settling of 
spheres at a vertical wall in viscoelastic fluids were in most cases very small, 
of the order lo-*. The measured value of settling speed was smaller than the 
values computed using Stokes formula, typically one-fifth as large (Table 3). 
The discrepancy is due to the wall effect produced by the small stand-away 
distance that seems to be required by the dynamics of wall attraction. The 
angular speed aoo of the rolling sphere is a fraction of the forward speed U, 
ranging between 0.04 and 0.21. 

When the wall is tilted with respect to gravity so that the sphere falls onto 
the wall, the sphere will rotate normally as it does with dry friction; it will 
slip without rotating or it will rotate anomalously as in hydrodynamic 
rolling on a vertical wall. Normal rolling occurred in all the Newtonian 
liquids we tried, in semi-dilute aqueous polyox solutions with concentrations 
not greater than 0.6%, in 0.4% Carbopol solution and in all the viscoelastic 
fluids in which the tilt angle is greater than 20 or 30” from the vertical. 
Anomalous rolling or slip was observed for tilt angles less than the critical 
ones for normal rolling in aqueous polyox of concentration greater than 
0.75%, 1.2% polyacrylamide in 50/50 glycerine-water solution, 0.3% 
aqueous Xanthan, Sl and STP, with a greater degree of slip for angles near 
to normal rolling. 

We have not identified the mechanisms that produce anomalous rolling in 
the viscoelastic liquids mentioned at the end of the last paragraph. Liu and 
Joseph [ 1 l] gave an argument suggesting that viscoelasticity could change 
the sign of the “effective” pressure, the first normal stress at the front 
stagnation point. This might produce the pull required for wall-sphere 
attraction. Joseph and Liu [ 181 discussed the combined effects of shear 
thinning and memory in producing evanescent corridors of reduced viscos- 
ity that would promote chaining and might cause long bodies to turn their 
long or broad side parallel to the stream. The behavior of 0.3% aqueous 
Xanthan is important, because it exhibits attraction and anomalous rolling, 
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but only weakly. Since normal stresses in shear are absent in this liquid, we 
cannot conclude that large normal stresses are required. On the other hand, 
STP has very little shear thinning and it does exhibit the typical behavior, 
so that the presence of shear thinning also seems not to be required. In fact, 
the phenomena do not occur in the Carbopol solution which shear thins but 
exhibits no normal stress effects. All of the viscoelastic fluids with normal 
stresses show sphere-wall attraction and anomalous rolling better than 
0.3% aqueous Xanthan, suggesting that the conventional measures play a 
more important role than strong shear thinning with a memory. 
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