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Abstract

Albuminuria occurs when albumin leaks abnormally into the urine. Its

mechanism remains unclear. A gel-compression hypothesis attributes the

glomerular barrier to compression of the glomerular basement membrane

(GBM) as a gel layer. Loss of podocyte foot processes would allow the

gel layer to expand circumferentially, enlarge its pores and leak albumin

into the urine. To test this hypothesis, we develop a poroelastic model

of the GBM. It predicts GBM compression in healthy glomerulus and

GBM expansion in the diseased state, essentially confirming the hypoth-

esis. However, by itself, the gel compression and expansion mechanism

fails to account for two features of albuminuria: the reduction in filtration

flux and the thickening of the GBM. A second mechanism, the constric-

tion of flow area at the slit diaphragm downstream of the GBM, must

be included. The cooperation between the two mechanisms produces the

amount of increase in GBM porosity expected in vivo in a mutant mouse

model, and also captures the two in vivo features of reduced filtration flux

and increased GBM thickness. Finally, the model supports the idea that

in the healthy glomerulus, gel compression may help maintain a roughly

constant filtration flux under varying filtration pressure.

1 Introduction

Albuminuria is a kidney disease with too much of the protein albumin leaking
through the kidney into the urine. The function of the kidney relies on mi-
crovascular filtration units known as glomeruli (Fig. 1). Their extraordinary
size-selective barrier function can be appreciated from a few numbers. First,
a healthy human produces about 180 L of primary urine daily. Based on the
protein concentration in the plasma, this much liquid corresponds to about 10
kg of proteins being filtered by the glomeruli per day. Of this amount of pro-
teins, only about 1 g passes the glomerular filtration barrier [1]. That yields a
filtration e�ciency of 99.99%. Second, even the smallest breach of this barrier
can cause severe disease. Lowering the albumin retention rate from 99.9995% to
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Figure 1: Schematics showing the glomerular filtration barrier in the kidney.
Each glomerulus encloses a network of capillaries through which the blood is
filtered. The capillary wall consists of a fenestrated endothelium on the in-
side, a glomerular basement membrane (GBM), and podocytes on the outside.
The liquid filtrate passes through the endothelium and the GBM, and flows
out through the slit diaphragm (SD) between the foot processes (FPs) of the
podocytes into the urinary space.

99.66%, for example, produces “catastrophic nephrotic syndromes” [2]. There-
fore, not only is the glomerulus exceptionally e↵ective in keeping proteins in the
blood, its ultrafiltration must also be controlled to exceptional precision. For
these reasons, it is important to understand the physical mechanisms underlying
glomerular filtration.

For the exquisite size-selectivity of the glomerular filtration barrier, a number
of explanations have been proposed, and the debates and resulting insights have
been summarized by a number of reviews [2–8]. The glomerular filtration bar-
rier consists of three layers, a fenestrated endothelium, a glomerular basement
membrane (GBM), and an epithelium of podocytes (Fig. 1). While all three
contribute to the barrier function [3,9–11], accumulating evidence points to the
GBM as key to size selectivity [2, 7, 12–16]. For example, Lawrence et al. [15]
observed experimentally that injected nanoparticles permeated into the GBM,
accumulated upstream of the podocytes, but none appeared upstream of the slit
diaphragm. Thus, the question about the mechanism of glomerular filtration
takes on a more concrete form: How does the GBM e↵ect precise size selectivity?

The GBM is a dense but porous hydrogel layer with a polymer network
consisting of laminins, collagen, nidogens and heparan sulfate proteoglycans [7].
The transport of water and macromolecular solute through the GBM is a mul-
tifaceted process, for which several models have been proposed. The two-pore
model focuses on steric exclusion of larger macromolecules by pores of di↵erent
sizes [17,18]. The electrokinetic model hinges on an electrostatic potential that
develops across the glomerular barrier during filtration, which drives the neg-
atively charged albumin back into the plasma by electrophoresis [1, 19]. These
two e↵ects probably coexist and account for much of the sieving e↵ect. But
they provide mostly fixed barriers to protein passage, and cannot explain the
minute di↵erence in filtration e�ciency between a healthy glomerulus and one
with albuminuria [2].

The gel permeation and di↵usion model assumes that water passes through
the pores of the GBM by convection, whereas large protein molecules rely
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mainly on di↵usion [13]. Albuminuria, in this model, would not be due to
greater protein transport but to suppressed solvent transport. Although con-
ceptually straightforward, this model predicts outcomes that contradict several
experimental observations [2, 20, 21]. As an alternative, Fissell and others have
proposed a gel-compression hypothesis to explain the change of permeability
between a healthy GBM and a diseased one [2, 6, 8, 21]. In health, the inter-
digitating foot processes (FPs) of the podocytes exert an in-plane tension that
produces a “buttressing force” on the outer surface of the GBM thanks to the
curvature of the glomerular capillary [2,8,21,22]. This can be likened to surface
tension on a curved liquid surface producing a Laplace pressure. Thus the GBM
is compressed by the filtration pressure on the endothelial side and the buttress-
ing force on the epithelial side. Its permeability decreases as a result to prevent
albumin leakage. In albuminuria, on the other hand, the damaged podocytes
and FPs can no longer supply su�cient buttressing force [3, 4, 9, 10, 21]. As a
result, the GBM changes its mode of deformation from radial compression to
circumferential expansion. The expansion dilates the blood vessel and “rarifies”
the subepithelial GBM, enlarging its pores and increasing its permeability to
albumin.

Butt et al. [21] put the hypothesis to test with healthy and diseased mice, and
found four intriguing morphological and hydrodynamic clues to albuminuria:

(i) Albuminuria strongly correlates with the shortening of the slit diaphragms
(SDs), which contain openings for the e✏ux of urine downstream of the
GBM (Fig. 1).

(ii) The glomerular filtration rate (GFR) also decreases in the diseased mice,
but by a smaller percentage than the reduction in SD length.

(iii) The diseased mice show capillary dilatation.

(iv) The GBM also becomes thicker in the diseased mice.

From (i) and (ii), Butt et al. [21] inferred that the hydraulic permeability of
the GBM must be increased in the diseased mice, thus providing an indirect
confirmation of the gel-compression hypothesis. Observation (iii) is consistent
with the hypothesized circumferential expansion. However, (iv) is a surprise,
as one may expect the circumferential expansion of the GBM to reduce its
thickness.

This work approaches the problem from the opposite direction to Butt
et al.’s [21]: we model the poroelastic mechanics of the GBM to see if the known
precursors of albuminuria, the weakening buttress and the shortening SD, lead
to greater GBM porosity and permeability. The model reveals that such an out-
come arises from the cooperation between two mechanisms: the circumferential
stretching of the gel due to the loss of the FPs, and the reduction in GFR due
to SD constriction. The linkage between the two is that a lower GFR implies
a reduced Darcy drag inside the GBM, which then compresses it less severely.
Thus, the model is able to explain all the four experimental observations, and
using appropriate parameter values, to predict the correct level of gel porosity
that Butt et al. [21] have inferred from in vivo data.

3



Xu, Yue & Feng, J. R. Soc. Interface 20, 20220634 (2023)

FPs

R

δ

Constant 

pressure P
"

GBM

Γ1 Γ2 Γi 

Capillary lumen

r

Pressure P
2

P
 =

 0

θ

Figure 2: The computational domain is between the arcs �1 and �2. The red
dashed line �i represents the interface between the blood in the capillary lumen
and the GBM. The filtration is driven by a constant pressure P1 on �1 and the
flow direction is indicated by the array of arrows. The buttressing e↵ect of the
FPs is represented by elastic springs pushing on the exit of the domain �2. With
symmetry conditions imposed on the two radial boundaries ✓ = 0 and ✓ = ⇡/2,
the flow is 1D in the r direction.

2 Theoretical formulation and numerical setup

2.1 Physical model

In view of recent studies of the mechanics of basement membranes [23, 24], we
represent the GBM as a poroelastic gel layer composed of an elastic network
and aqueous solvent. Among the three components of the glomerular filtration
barrier (Fig. 1), the endothelium has limited contribution to the size-selective
filtration because of its fenestrae [15]. Thus, we omit the endothelial cells and
focus on the GBM and the FPs.

Figure 2 depicts a quarter of the glomerular capillary, and the computational
domain is an annular sector delineated by the two arcs �1 and �2, respectively at
r = 0.9R0 and R0+�0 in the undeformed state, R0 being the inner radius of the
undeformed GBM and �0 its initial thickness. With flow, R and � will change.
The inner arc �1 stays fixed at 0.9R0, but the outer arc �2 moves according to
r = R + �. The filtration flow is driven by the pressure di↵erence between P1

at �1 and P = 0 in the urinary space downstream of the FPs. The GFR can
be computed from the velocity V1 at �1: GFR = V1(2⇡ ⇥ 0.9R0). Although
the blood pressure varies with every heart beat, for our purpose we assume a
constant average pressure P1. The flow inside the lumen is inertialess Stokes
flow along the radial direction, and the exact position of the inner arc �1 is
unimportant as long as it is within the lumen. The GBM is a layer of poroelastic
gel, with initially constant fluid and solid volume fractions �f0 and �s0 = 1��f0.
As the GBM is deformed by the flow, �f and �s may vary in time and along the
radial direction. The flow is expected to be one-dimensional along the radial r
direction, and one may start with a 1D setup. But as the computational cost
is moderate even in 2D, we have adopted a previously developed 2D setup [25]
for convenience.
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To reflect the morphological changes due to FP e↵acement, we focus on
two features. The first is the weakening of the buttress force on the downstream
surface of the GBM [2,8,22]. The second is the e↵ect of shortened and narrowed
SD on restricting the filtration flux [21, 26, 27]. We model the FP buttressing
force by elastic springs that resist normal displacement of the GBM’s outer
surface �2 with a radial normal stress

⌧2 = Eu2, (1)

where E is an elastic coe�cient and u2 is the radial displacement of the outer
boundary �2. This will be implemented in boundary conditions on �2. Note
that we take ⌧2 to be positive even though it is a compressive stress.

After passing through the GBM, the filtrate flows through the SD into the
urinary space, where the pressure can be set to P = 0 without loss of generality.
The viscous flow across the SD requires a pressure drop

P2 = µDV2, (2)

where P2 and V2 are, respectively, the fluid pressure and velocity on �2, just
outside GBM, and µD is a friction coe�cient characterizing the resistance to
the fluid downstream of the GBM. As will be seen later, µD allows us to account
for the flow restricting e↵ect of shortened and narrowed SDs in albuminuria.

2.2 Governing equations and boundary conditions

In our context, the flow in the lumen is of little interest, so we treat the blood
as a Newtonian fluid of viscosity µb undergoing inertialess flow, despite its non-
Newtonian rheology [28]. Its flow is governed by

r ·V = 0, (3)

rP � µbr2V = 0, (4)

in which V and P denote the velocity and pressure, respectively.
The GBM is an elastic porous medium that can be described by the poroe-

lastic theory. It consists of a fluid phase (volume fraction �f ) and a solid phase
(volume fraction �s = 1��f ). The continuity of each phase dictates the evolu-
tion of its volume fraction:

@�f

@t
+r · (�fvf ) = 0, (5)

@�s

@t
+r · (�svs) = 0, (6)

where vf and vs are the intrinsic phase-averaged fluid and solid velocities. The
motion of each phase is governed by a force balance:

r · (�f�f )� �frp+ Fs!f = 0, (7)

r · (�s�s)� �srp+ Ff!s = 0, (8)

where �f and �s are the stress tensor for the fluid and solid phase, respectively,
and p is the pressure inside the basement membrane. The Brinkman stress of
the fluid phase is �f = µ[rvf + (rvf )T ], µ being the viscosity of the filtrate,
i.e., the pore fluid in the GBM. The solid velocity vs is the material derivative
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of the solid displacement us: vs = Dus/Dt, and us determines the solid stress
tensor according to the neo-Hookean model:

�s = µsJ
�1(FFT � I) + �s(J � 1), (9)

where µs and �s are the Lamé constants, F = r̂us is the deformation gradient
tensor and J = |F|. The gradient r̂ is computed in the Lagrangian frame
attached to the solid phase [25]. Finally, the Darcy drag Fs!f or Ff!s between
the fluid and solid phase is given by

Fs!f = �Ff!s = ⇠�f�s (vs � vf ) , (10)

where the drag coe�cient ⇠ is related to the Darcy permeability k: ⇠ = µ�f/(k�s).
For realistic parameters, the results will show that the viscous stresses in the
lumen (Eq. 4) and in the pores (Eq. 7) are both negligible relative to the Darcy
drag.

With symmetry conditions imposed on the two radial boundaries of the
computational domain (Fig. 2), the flow is essentially 1D along the r direction.
On the inner surface �i of the GBM, we imposed the boundary conditions BC2
developed in our earlier work [29]:

V · n = (�svs + �fvf ) · n, (11)

(⌃� P I) · n = (�s�s + �f�f � pI) · n, (12)

(V � vf ) · n = ⌘n · [(⌃� P I)� (�s � pI)] · n, (13)

(V � vf ) · t = �n ·⌃ · t, (14)

�s(vs � vf ) · t = ��n · �st, (15)

where n is the outward unit normal vector on the hydrogel surface. The first
two conditions enforce mass and traction balance across the fluid-gel interface,
while the last three express the normal and tangential velocity jumps in terms
of stress jumps. In our radially 1D flow, the tangential velocity conditions are
irrelevant. They are retained formally because the flow setup is nominally 2D
(Fig. 2).

As noted earlier, a constant pressure P1 is imposed on the entry to the
computations domain �1. On the exit �2, the boundary conditions should
account for the buttressing stress ⌧2 from the FPs. The normal traction balance
is rewritten as

(⌃� P I) · n� ⌧2n = (�s�s + �f�f � pI) · n. (16)

To complete the mathematical setup, we need a normal velocity jump condition
on �2, which is derived using the normal traction balance above in the electronic
supplementary material:

(V � vf ) · n = ⌘n · [(⌃� P I)� (�s � pI)] · n� ⌘
⌧2

�s
n, (17)

where the pressure P2 is related to the filtration flux or V2 via Eq. (2).
Thus set up, the mathematical problem is solved by finite elements with an

arbitrary Lagrangian-Eulerian scheme to track the movement of the fluid-GBM
interface. The 2D computational domain is meshed by quadrilateral elements,
with bilinear Q1 discretization for the pressures, and quadratic Q2 discretization
for the velocities, stresses and the volume fractions. The code is developed using
the open-source finite-element library deal.II [30], and algorithmic details can
be found in [25].
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Parameters Approximate values

Initial capillary radius R0 7 µm [31]
Initial GBM thickness �0 0.3 µm [13]
Initial solid fraction �s0 0.075 [13,21]
Filtration pressure P1 5.3 kPa [8]
Blood viscosity µb 4⇥ 10�3 Pa · s [32]
Filtrate viscosity µ 10�3 Pa · s [33, 34]

Permeation coe�cient ⌘ 2.7⇥ 10�5 µm/(Pa · s) [21]
Lamé parameter µs 20 kPa [35]
Lamé parameter �s 20 kPa [35]

Darcy drag coe�cient ⇠ 104 Pa · s/µm2 [23, 36]
FP elastic coe�cient E Healthy: 286 kPa/µm

Diseased: 2.57 kPa/µm
FP viscous coe�cient µD Healthy: 147 Pa · s/µm

Diseased: 588 Pa · s/µm

Table 1: Values of model parameters and their sources.

2.3 Parameter Estimation

Table 1 summarizes all the parameters of our model. Their evaluation makes
maximum use of available information in the literature, and for some only rough
ranges can be determined. Details of the parameter evaluation are given in the
electronic supplementary material, and in the following we elaborate on the two
most important parameters for testing albuminuria, E and µD, whose estimation
is also the most subtle.

The change from the healthy to the diseased glomerulus is modeled in part by
reduction of the elastic modulus E for the buttressing force (Eq. 1). However,
the physical origin of the buttressing force is not so much the rigidity of the
podocytes as the in-plane tension generated by the interdigitated foot processes
(cf. Fig. 1 of [8]). No quantitation of such tension seems to be available in
the literature, and we have to determine E by alternative means. For the
healthy state, we choose a large enough E = 286 kPa/µm such that the FPs are
essentially rigid against the filtration pressure. This particular value comes from
a dimensionless modulus Ē = ER0/µs = 100, the numerical experimentation
having been carried out in dimensionless variables. For the diseased state, we
have tested a range of softened E values, and found that E = 2.57 kPa/µmwould
yield 13% of capillary dilatation, the observed amount in Butt’s experiments
for the diseased glomerulus [21]. Thus, the softened E for the diseased state is
chosen by fitting.

The parameter µD is key to modeling the filtration flow (Eq. 2). It depends
on the complex flow geometry downstream of the GBM, especially that of the
slit diaphragm (SD), schematically shown in Fig. 3, adapted from [37]. More
recent, higher-resolution imaging has revealed variations in SD shape and size
[38, 39]. For simplicity, however, we will adopt the rectangular pore shape and
the dimensions of [37]. The fluid flows through the pores framed by the cross
strands, the central filament and the edge of the FP, and the primary source of
dissipation is viscous friction in the narrow passage. The pore has width w = 14
nm, height h = 4 nm, and a depth that equals the thickness of the cross strands:
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Figure 3: The slit diaphragm consists of a central filament and two columns of
cross strands that bridge the central filament and each of the two apposed FP
cell membranes [37]. The fluid flows through the rectangular pores (in the z

direction into the page) between the cross strands.

d = 7 nm [27]. As w far exceeds h, we assume planar Poiseuille flow with a
parabolic profile in the h direction, and relate the pressure drop P2 across the
SD to the flux through each pore Qpore by

P2 =
12µQpore

wh3
· d. (18)

Note that we have set the pressure outside the SD to zero.
The volume flux Qpore can be estimated from the total fluid flux V2S, S

being the flow area at �2, and the number of pores. The number of pores is
N = 2L/H, L being the total SD length over the area S and H = 11 nm being
the height of each repeating unit of cross strands, the factor of 2 accounting for
the two columns of pores in the SD. Thus, the pressure P2 can be related to the
velocity V2, and we obtain from Eq. (2)

µD =
6µdH

wh3

S

L
. (19)

Butt et al. [21] measured the SD length per unit area as L/S = 3.5 µm�1 for the
healthy glomerulus. This gives us µD = 147 Pa · s/µm in health. FP e↵acement
reduces the SD length by 50%–63% [21] while the SD width narrows from 39
nm to 15–20 nm [27]. Thus, L and w are each reduced roughly by a factor of 2,
and the flow area at the SD is constricted by a factor close to 4. Accordingly,
we take µD = 588 Pa · s/µm for the diseased state. A higher µD would reduce
the flow rate through the filtration barrier, and its e↵ect on the configuration of
the GBM will be explored in conjunction with that of a weakened buttressing
force.
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Figure 4: (a) Morphological changes in the GBM due to the filtration flow.
The red dashed lines denote the initial edges of the gel layer, and the inset
illustrates its displacement and compression. The color contours represent the
solid fraction �s in the steady compressed state. (b) The steady-state �s(r)
profile compared with the initial �s0 = 0.075. The vertical dashed lines mark
the location of the gel layer.

3 Results

We focus on the solid fraction of the GBM as it determines the permeability
and the risk for albuminuria. A higher solid fraction means that the GBM is
denser and less permeable. We first present results for the healthy glomerulus
where the FPs can provide enough buttressing force. Then we investigate the
e↵ect of FP injury by varying the buttressing modulus E of Eq. (1) and the
viscous friction coe�cient µD of Eq. (2).

3.1 The healthy state

Our simulation starts from an initial condition with a uniform GBM of solid
fraction �s0 = 0.075 everywhere. The filtration pressure P1 drives an outward
radial flow. As a result, the GBM is compressed by the pressure and flow, and
the capillary may dilate slightly. We are interested only in the steady state.

The numerical results, obtained with the parameters of Table 1 for the
healthy glomerulus, allow us to verify directly the concept of gel compres-
sion [6, 12]. Figure 4(a) depicts the gel compression due to the filtration flow.
The inset shows that while the outer surface of the GBM has expanded slightly
(from r = 7.35 to 7.36 µm), its inner surface has been compressed considerably
(from r = 7 to 7.11 µm). Thanks to the relatively rigid buttressing, the FPs
have e↵ectively restrained the dilatation of capillary. The color contours confirm
the elevated solid fraction �s. The �s(r) profile is compared before and after the
compression in Fig. 4(b). The compression yields a roughly linear �s(r) profile,
with an average �̄s = 0.10, a 33% increase over the initial value of �s0 = 0.075.

We further explore the gel compression from the pressure and flow profiles
across the GBM (Fig. 5). The blood inside the lumen experiences little viscous
dissipation. Thus, P (r) ⇡ P1 is essentially a constant. The velocity V (r)
decreases with r because of the requirement of volume conservation in the radial
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Figure 5: (a) The pressure profiles and (b) the velocity profiles along the radial
direction. The vertical dashed lines mark the inner and outer interfaces of GBM.

flow geometry: @(V r)/@r = 0. Upon entering the GBM, the pressure su↵ers an
abrupt drop that, according to Eq. (12), serves to counter the solid and fluid
normal stresses inside the gel. For our low viscosity µ, the viscous normal stress
is small. Thus, most of the pressure drop is expended on �s, compressing the
GBM and elevating �s from 0.075 to 0.094 at the upstream interface (Fig. 4b).
Meanwhile, the velocity jumps up suddenly as required by mass conservation of
Eq. (11).

Inside the gel, p(r) continues to drop at a sharp slope because of the Darcy
drag exerted by the fluid flow on the polymer network. Since this drag is
distributed along the GBM’s thickness, the gel su↵ers cumulative compression
further downstream. This explains the gradual increase of �s with r in Fig. 4(b).
As the solid compacts the pore space, volume conservation tends to raise the
pore velocity vf (r). Thus, vf (r) declines more gently inside the GBM than V (r)
does upstream of the gel, which is dictated by the radial geometry. Finally, upon
exiting the GBM, the pressure su↵ers another drop to P2 = 0.463 kPa while the
velocity drops to V2 = 3.15 µm/s.

It is interesting to observe that the filtration pressure P1, or more precisely
the pressure drop from P1 in the lumen to P = 0 at the urinary space, is ex-
pended on four sources of resistance along the flow path: entry into the GBM
(25% of P1, used mostly to compress the gel); Darcy drag within the GBM
(17%); exit of the GBM (49%, mostly to counter the buttressing force ⌧2 ac-
cording to Eq. 17); and the viscous friction as the fluid passes through the SD
(9%, according to Eq. 2). This insight will inform our analysis of the filtration
flow through the injured glomerulus in the next subsection.

We close this subsection by examining the phenomenon of renal autoregula-
tion. The glomerulus is known for its remarkable ability to maintain a roughly
constant GFR despite large variations of the blood pressure [40–43]. Aside from
regulation of the a↵erent arterioles upstream of the glomerulus, Fissel [2] noted
that gel compression could be “an additional mechanism of renal autoregula-
tion of GFR”. To test this idea, we have varied the filtration pressure P1 in our
model and investigated the resultant change in the GFR, represented by the fluid
velocity V1 at the inner boundary of our computational domain (r = 0.9R0).
As P1 increases from the baseline value of 5.3 kPa to 20 kPa, V1 increases by
only about 61% (Fig. 6a). This is evidently caused by the progressive compres-
sion of the GBM (Fig. 6b). Kirchheim et al. [40] measured GFR changes in
dogs by varying the renal artery pressure, and their data are compared with the
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Figure 6: (a) Gel compression causes the filtration flux to plateau at higher
filtration pressure P1. The fluid velocity V1 at the inner boundary of the com-
putational domain serves as a convenient proxy for the GFR, and V1 is the
plateau value for large P1. The model prediction is compared with in vivo
canine data [40]. (b) The average solid fraction �̄s in the GBM rises with P1.

model prediction in Fig. 6(a). The model captures the trend of the in vivo data.
Thus, “as pressure-driven flow increases, resistance to further flow increases” [2].
The model confirms that gel compression contributes to the autoregulation of
glomerular flow.

To sum up the model predictions for the healthy glomerulus, the filtration
flow compresses the GBM and increases its solid fraction. Thus, its permeability
to large molecules is reduced. This confirms the idea of the gel compression.
Next, we use the healthy state as a baseline to investigate the e↵ects of FP
injuries.

3.2 The diseased state

As discussed in Sec. 2.3, the e↵acement of the podocyte FPs is modeled through
two e↵ects: the softening of the buttressing modulus E, and the constriction of
the SD via the friction coe�cient µD. In the following, we will proceed in two
steps. First, we reduce E from the healthy value to the diseased value while
keeping µD at the healthy value (Table 1). Then we increase µD to the diseased
value.

Figure 7 compares the steady-state solution for the healthy and “diseased”
glomerulus, the latter having a weakened buttress (E = 2.57 kPa/µm) but the
healthy µD = 147 Pa · s/µm. First, the most obvious e↵ect of the weakened E is
the pronounced capillary dilatation (Fig. 7a); the inner radius of the GBM has
expanded from 7.11 µm to 8.41 µm (Fig. 7b). Second, the capillary dilatation
stretches the GBM and makes it thinner. This is clear from Fig. 7(c), where
we have aligned the inner surface of the GBM by translating the �s(r) profile
for the diseased glomerulus. The GBM thickness has decreased from 0.257 µm
to 0.237 µm. Third, the stretching of GBM also expands the gel and reduces
its solid fraction (Fig. 7c), thanks to a Poisson ratio ⌫ = 0.25 that is below 0.5.
Averaged over the GBM thickness, �̄s has decreased by 7%, from 0.10 to 0.093.
Finally, as a direct result of the reduced �s and thinner �, the GBM presents a
lower resistance to filtration, and the GFR has increased by 28% (Fig. 7b).

These model predictions confirm two features of the gel-compression hypoth-
esis [2, 6, 8, 21]: dilatation of the capillary and increased porosity in the GBM.
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Figure 7: E↵ects of reducing the buttressing modulus E while keeping µD at
the healthy value. (a) Comparison of the GBM morphology and the �s con-
tours. The dashed arc marks the position of the inner boundary of the GBM
in the undeformed state. Softening the buttress leads to much greater capillary
dilatation. (b) Comparison of the velocity profiles and (c) the solid fraction
profiles between the healthy state (black dashed lines) and the diseased state
with weakened buttress (solid red lines). The vertical dashed lines mark the
boundaries of the GBM layer. In (c), we have shifted the diseased profile to line
up its inner radius to that of the healthy profile to facilitate comparison.

However, they also contradict two other experimental observations. First, ex-
periments show a lower filtration rate in the injured glomerulus [21, 26, 44],
whereas our model predicts the opposite (Fig. 7b). Second, GBM thickening is
a well-known feature in albuminuria and other glomerular diseases [7, 45]. The
model predicts GBM thinning (Fig. 7c).

The key to resolving these contradictions is the shortening and narrowing of
the SD due to FP e↵acement, another morphological manifestation of podocyte
injury. In our model, this is represented by increasing the friction factor µD to
reflect the constricted area available to the filtrate [21, 26, 27]. Figure 8 com-
pares the steady-state solutions for the healthy glomerulus and for a “diseased”
glomerulus with both softened E and elevated µD. First, the amount of capillary
dilatation is smaller in Fig. 8(a) than in Fig. 7(a). Second, the higher µD e↵ec-
tively reduces the GFR, which now falls below the healthy solution (Fig. 8b).
Third, the model now predicts a slightly thicker GBM than the healthy solution
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Figure 8: Combined e↵ects of reducing the buttressing modulus E and raising
the SD friction coe�cient µD. (a) Comparison of the GBM morphology and the
�s contours. (b) Comparison of the velocity profiles and (c) the solid fraction
profiles between the healthy state (black dashed lines) and the diseased state
(solid blue lines). The vertical dashed lines mark the boundaries of the GBM
layer. In (c), we have shifted the diseased profile to line up its inner radius to
that of the healthy profile to facilitate comparison.

(Fig. 8c). This is thanks to the reduced GFR; the fluid now exerts a smaller
Darcy drag onto the solid network to compress the gel. Thus, including the ad-
ditional mechanism of SD constriction has resolved the contradictions between
Fig. 7 and in vivo observations. Fourth and most interestingly, the GBM be-
comes even more porous with the raised µD; �̄s is now about 12% below that
of the healthy glomerulus. This is again attributable to the decreased flow rate
that exerts less compression on the GBM.

The contrast between the healthy and injured state can also be appreciated
from how the filtration pressure P1 is expended on the four sources of resistance.
In the diseased state depicted in Fig. 8, the most notable change is an increase
in the resistance of the SD, from 9% of P1 in the healthy state to 31% in the
diseased state. This is at the expense of the other three obstacles: the entry
resistance has declined from 25% to 16%, the Darcy drag from 17% to 13%,
and the exit resistance from 49% to 40%. These declines are at the root of
the smaller capillary dilatation (Fig. 8a), reduced GFR (Fig. 8b), and enhanced
GBM rarefaction (Fig. 8c).
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In summary, our model predicts that the two pathological consequences of
FP e↵acement, the softening of the buttressing force on the GBM and the
reduction of flow area at the SD, each contribute to albuminuria, but through
distinct pathways. The weaker buttress allows the GBM to bulge outward
and expand its circumference. The constriction of flow area at the SD reduces
the GFR, a long-recognized feature of glomeropathy [21, 26, 44], which in turn
reduces the compaction of the GBM by the interstitial flow. Thus, both conspire
to increase the porosity and permeability of the gel. Notably, the thickening of
the GBM, which may appear counterintuitive in view of the circumferential
stretching of the gel layer, is predicted as a consequence of the suppression of
GFR.

4 Discussion

Our initial motivation was to build a mechanical model to test the so-called gel-
compression hypothesis [2,6,8], which seeks to explain the onset of albuminuria
by the following chain of events:

(a) Injuries to the foot processes (FPs) of the podocytes cause a loss of but-
tressing force on the GBM.

(b) This in turn leads to dilatation of the glomerular capillary under filtration
pressure, and circumferential stretching of the GBM.

(c) The stretching increases the GBM porosity and permeability, allowing
proteins to leak from the blood into the urine.

Our model demonstrates how (b) and (c) arise from (a), and thereby con-
firms the gel-compression hypothesis. In fact, as the GBM is compressed in
the healthy state but expands in albuminuria, the hypothesis should perhaps be
called the “gel-deformation hypothesis”. Moreover, the model supports the idea
that in the healthy glomerulus, gel compression contributes to renal autoregu-
lation of the filtration flux, i.e., the maintenance of a roughly constant flow rate
under varying blood pressure.

In comparing the model predictions further with experimental observations
[21], we realize that the gel compression and expansion is only part of the story.
The other part is the reduction in the glomerular filtration rate (GFR) by the
constriction of available flow area at the slit diaphragms (SDs), another salient
manifestation of FP injury. This is an important mechanical pathway because
GFR reduction is a clinical hallmark of albuminuria [26, 44]. Moreover, our
model has revealed two additional consequences: the lower flow velocity pro-
duces less Darcy drag inside the gel, less compression and a secondary reduction
in �s, and it also leads to a thickening of the GBM despite the circumferential
stretching.

Therefore, our model not only confirms the gel-deformation hypothesis, but
also uncovers the cooperation between two mechanisms: gel expansion due to
the weakened FP buttress, and GFR reduction due to SD constriction. Between
these two, the model is able to account for all the qualitative trends seen in
animal models [21].

Quantitatively, Butt et al. [21] measured the changes in GFR and SD length
in a mutant mouse model exhibiting albuminuria, and used a membrane trans-
port model [46] to estimate the increase in hydraulic permeability. Then they
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were able to back out the required decrease in solid fraction from the Carman-
Kozeny equation. Their data imply a reduction of �s from 0.1 to 0.0864 for
2-week-old mutant mice, and further down to 0.0794 for 4-week-old mutant
mice. Based on the parameter values of Table 1, our poroelastic model pre-
dicts roughly the same amount of gel expansion; the average solid fraction of
the GBM decreases from �s = 0.10 to 0.088 due to the softening FPs and SD
constriction. While Butt et al. deduced the GBM rarefaction in albuminuria
from the measured transport, our model goes in the opposite direction: it starts
with the poroelastic mechanics of the GBM, and shows that it indeed yields the
correct amount of gel expansion under physiological conditions.

In terms of GFR reduction and GBM thickening, the model predicts the
correct qualitative trend, but underpredicts the experimental values of Butt
et al. [21] by much. The GFR is 30% lower in the mutant mice, whereas the
model predicts a 3% decrease (Fig. 8b). The GBM thickens by some 8% in
vivo, while the model yields a mere 1.5% increase. These two discrepancies
are probably related, and the likely causes include the geometric simplifications
in the model that disregards any spatial variations along the circumference of
the capillary (Fig. 2), and the uncertainties in evaluating some of the model
parameters (Table 1).

To conclude, we have build a poroelastic model for the glomerular base-
ment membrane, and used it to study the mechanical factors in the onset of
albuminuria. Our main findings are:

• The model confirms that e↵acement of podocyte foot processes leads to
circumferential stretching of the GBM.

• This increases the porosity of the gel layer, e↵ectively confirming the gel-
deformation hypothesis.

• A second mechanism, constriction of the filtration area at the slit di-
aphragm, cooperates with the circumferential stretching to further in-
crease GBM porosity.

• Using the best estimates of parameter values, the model reproduces roughly
the correct amount of porosity increase in the gel as expected from ex-
perimental observations, but underpredicts the reduction in glomerular
filtration flux and the magnitude of GBM thickening.
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Poroelastic modeling reveals the cooperation between two mecha-
nisms for albuminuria
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Derivation of the boundary condition of Eq. (17)

Following the same procedure as outlined in [1, 2], we derive Eq. (17) of the
main paper based on the second law of thermodynamics. The only novelty is
the appearance of the external stress ⌧2 of Eq. (1). Including the work by ⌧2 as
an extra contribution, the interfacial energy dissipation can be written as,

I�2 =

Z

�2

[�V·(⌃�P I)+vf ·(�f�f��fpI)+vs·(�s�s��spI)+⌧2vs ]·n ds. (S1)

Using the relative velocities with respect to vf , Ṽ = V� vf and ṽs = �s(vs �
vf ), we rewrite the dissipation I�2 as

I�2 =

Z

�2

�Ṽ · (⌃� P I) · n ds+

Z

�2

[ṽs · (�s � pI) · n+
⌧2
�s

ṽs · n] ds

+

Z

�2

vf · [�(⌃� P I) · n+ ⌧2n+ (�s�s + �f�f � pI) · n] ds.
(S2)

Note that the second line vanishes for the overall traction balance of the inter-
face, Eq. (16). Decomposing the relative velocities into the normal and tangen-
tial components to the interface (e.g., Ṽ? = V · nn, Ṽk = V · tt) and noting

that interfacial mass balance requires Ṽ? = ṽs?, we have

I�2 =

Z

�2

[ Ṽ? · (�s � pI�⌃+ P I) · n+
⌧2
�s

Ṽ? · n

� Ṽk · (⌃� P I) · n+ ṽsk · (�s � pI) · n ] ds,

(S3)

To ensure positive entropy production, we require I�2  0. Following the proce-
dure of irreversible thermodynamics [3], we postulate the following linear rela-
tionships between the pairs of factors that are multiplied in the integrant above,
with positive coe�cients � and ⌘:

(V � vf ) · n = ⌘n · [(⌃� P I)� (�s � pI)] · n� ⌘
⌧2
�s

n, (S4)

(V � vf ) · t = � n ·⌃ · t, (S5)

�s (vs � vf ) · t = �� n · �s · t. (S6)

Thus, I�2  0 is guaranteed. The coe�cients � and ⌘ are, respectively, the slip
and permeability coe�cients [1]. We only consider a normal buttressing stress
⌧2 here, so the two tangential conditions are the same as before [1]. The normal
velocity jump condition Eq. (S4) is the new Eq. (17) on boundary �2.
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Parameter estimation

The geometric parameters R0 and �0 and the filtration pressure P1 can be
readily found from literature sources, as is the whole-blood µb. The filtrate
viscosity µ may vary with the amount of proteins in the pore fluid. The two
extremes are that of the plasma (µ = 1.1–1.3 mPa · s) [4] and of the urine
(µ = 0.84 mPa · s) [5], both measured at body temperature. We have taken
an intermediate µ = 1 mPa · s = 10�3 Pa · s. Regarding the solid fraction
of the GBM, we have found no direct measurement. Smithies [6] and Butt
et al. [7] suggested �s = 0.1 in the healthy compressed state of the GBM. In
vitro experiments often used agarose gel [8] and Matrigel [9–11] as substitutes,
with �s0 ranging from 0.01 to 0.08. Within this range, we have adopted an
initial uncompressed value �s0 = 0.075 such that the average �̄s ⇡ 0.1 after the
GBM is compressed by filtration in the healthy state.

For the interfacial permeability coe�cient ⌘, no experimental data is avail-
able. Our prior computations [1, 2, 12] have tested a wide range: 1.2 ⇥ 10�5–
0.07 µm/(Pa · s). Furthermore, we have varied ⌘ to test the response of the
interstitial velocity vf in the GBM, and found that ⌘ = 2.7⇥ 10�5 µm/(Pa · s)
yields vf = 3.5 µm/s that matches the velocity in the GBM estimated in vivo
in the control mice [7]. This is the value adopted here.

The Lamé coe�cients of GBM have not been reported but elastic proper-
ties for other basement membranes have [13]. In particular, Last et al. [14]
measured Young’s modulus of corneal basement membranes with atomic force
microscopy (AFM): ECBM = 50 ± 17.8 kPa. The primary components of the
corneal basement membranes are very similar to the components of GBM, and
both are composed of collagens, laminins, heparan sulfate proteoglycans, and
nidogens [15, 16]. Therefore, we take the same value EGBM = 50 kPa in our
study, and assume a moderate Poisson ratio ⌫ = 0.25 [17]. These determine
the two Lamé parameters, �s = µs = 20 kPa so as to recover Young’s modulus
EGBM = µs(2µs + 3�s)/(µs + �s) = 50 kPa.

The Darcy drag coe�cient ⇠ (Eq. 10 of the main paper) is estimated from ⇠ =
µ�f/(k�s) using reported values of the permeability k of the GBM [9,11,18,19].
Drumond and Deen [19] suggested a Darcy permeability k = 2.7 ⇥ 10�6 µm2

for rat GBM. Using Matrigel as a model GBM, Klaentschi et al. [9] reported
a range from k = 5 ⇥ 10�6 to 10�5 µm2 depending on the pressure di↵erence
across the membrane. Li et al. [11] measured k = 6.95⇥10�7 µm2 for the intact
basement membrane in breast cancer spheroids. From the pore fluid viscosity
µ = 10�3 Pa · s and a typical solid fraction �s = 0.1 [6, 7], this range of k
corresponds to a range of ⇠ from 900 Pa · s/µm2 to 1.29 ⇥ 104 Pa · s/µm2. We
have taken an intermediate value ⇠ = 104 Pa · s/µm2.

Thus, we are able to estimate all the model parameters in Table 1 of the
main paper except the following two. The elastic modulus E for the podocytic
buttress is fitted to the amount of capillary dilatation in the diseased state,
whereas the interfacial permeability ⌘ is fitted to the pore velocity in the healthy
GBM.
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