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Abstract

We use dynamic numerical simulations to investigate the role of particle rotation

in pairwise capillary interactions of particles trapped at a fluid interface. The fluid

interface is modeled with a phase-field method which is coupled to the Navier-Stokes

equations to solve for the flow dynamics. Numerical solutions are found using

a finite element scheme in a bounded two-dimensional geometry. The interfacial

deformations are caused by the buoyant weight of the particles, which are allowed

to both translate and rotate due to the capillary and viscous forces and torques at

play. The results show that the capillary attraction is faster between freely rotating

particles than if particle rotation is inhibited, and the higher the viscosity mismatch,

the greater the effect. To explain this result, we analyze the drag force exerted on the

particles and find that the translational drag force on a rotating particle is always

less than its non-rotating counterpart due to attenuated velocity gradients in the

vicinity of the particle. We also find that the influence of interfacial deformations

on particle rotation is minute.
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1 Introduction

Capillary interactions between particles trapped at fluid interfaces have been extensively

investigated over many decades. Besides fundamental interest, they are known to serve

as a very promising self-assembly route for a great variety of objects attached to fluid

interfaces, ranging in size from tens of nanometers up to a few millimeters. Such systems

are currently being exploited to design materials via diverse colloid-related technologies

[1].

As is well-established, capillary interactions originate from the overlap of interfacial

deformations that might occur in the vicinity of the floating objects [2]. These interfacial

deformations, which cost interfacial energy, may arise from gravity, electrostatics, particle

shape anisotropy or from physical and/or chemical inhomogeneities on the particle surface.

Capillary interactions can be anisotropic, attractive or repulsive, and feature interaction

energies much greater than the thermal energy, kBT [2, 3, 4, 5, 6, 7]. A myriad of colloidal

structures, either ordered or disordered, densely-packed or loosely connected, can emerge

from these interactions [5, 6, 7, 8]. Such structures can also be dynamically reconfigured

by applying external fields [9].

While the static properties of capillary interactions are relatively well-understood, hy-

drodynamic interactions of interfacial particles have been less investigated. For instance,

the presence of flow around the moving particles generates viscous drag that, together

with the capillary forces, controls the kinetics of the self-assembled structures.

Knowledge of the hydrodynamic properties involving two or more interfacial particles

is still far from complete today. A handful of studies, using both experiments and theory,

have attempted to characterize the hydrodynamic interaction for a pair of interfacial

particles approaching each other [10, 11, 12, 13]. In this case, the hydrodynamic resistance

is a function of the interparticle distance, r, because of variable fluid drainage between

the moving particles. And the drag dependence on r interferes with that of the capillary

interaction force. Despite using approximate bulk formulas for the fluid drainage, the

previous studies have achieved a relatively good agreement between experiments and

calculations.
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The above studies have focused on the translational motion of the interacting parti-

cles. Yet, interfacial particles can rotate as well around an axis perpendicular to their

translating direction because of nonzero torques originating from, e.g., a viscosity mis-

match or interfacial deformations. Furthermore, particle rotation is expected to have an

influence on hydrodynamic interactions since it modifies the flow structure around the

moving particles.

The first three-dimensional dynamic simulations of capillary interactions by Singh &

Joseph [14] do not mention any particle rotation in the results, and this subject was only

recently brought up by Dörr & Hardt [15]. These authors used a perturbation approach

to analyze the behavior of spherical particles translating along an interface between fluids

of very different viscosities under the action of an external force. A pinned contact line

was assumed on the particle surface, as it often occurs in experiments [16, 17]. In this

case, a nonzero viscous torque makes the spheres rotate until the hydrodynamic torque

is balanced by a capillary torque arising from interfacial deformations. As a result, the

driven spheres are predicted to behave as capillary dipoles.

However, the situation where both interfacial particles rotate and translate whilst

interacting with unpinned contact lines has never been addressed so far. Das et al. [18]

recently considered an unpinned contact line and a fluid slip model to simulate both the

translational and rotational dynamics of a sphere straddling an air-liquid interface in a

thin film geometry. But the study was restricted to a single particle without any interfacial

deformation. What role does particle rotation play in pairwise capillary interactions? How

does it alter drag forces, and how is it influenced by interfacial deformations? These are

the open questions that we attempt to address in the present study.

In this work, we focus on capillary interactions between spinning and translating par-

ticles using numerical simulations in two dimensions (2D). A 2D approach is justified here

to explore the main qualitative trends. We employ a diffuse interface method, based on

a phase-field model, to describe the interfacial dynamics. One of the prime advantages of

such models over other approaches is their natural ability to handle contact line motion

thanks to intrinsic diffusive processes [19, 20, 21, 22, 23]. When the phase-field model is
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combined with classical conservation equations for fluid mass and momentum, and com-

plemented by particles’ equations of motion, a full description of the system dynamics

can be achieved. By comparing the behaviors of freely rotating and non-rotating par-

ticles, we find that particle rotation speeds up capillary interactions because of reduced

translational drag.

2 Geometries and parameters

In this section, we specify the parameters and the two geometries employed in our simu-

lations (Fig. 1). The first one, referred to as problem A hereafter, deals with the capillary

pair interaction configuration, whereas the second one, referred to as problem B, is ded-

icated to the computation of drag forces exerted on a single spinning and translating

particle straddling the interface. As we will see below, problem B is essential to un-

derstanding the results obtained in problem A since the interacting particles necessarily

experience drag forces when moving at the interface. In both problems, we compare

the behavior of rotating cylinders to that of non-rotating ones to single out the effect of

rotation.

In problem A (Fig. 1a), two identical, infinitely long circular cylinders of radius R and

density ρp are trapped at the interface between two Newtonian fluids of different densities

(ρ1, ρ2 with ρ2 > ρ1) and dynamic viscosities (µ1, µ2). The whole system is confined in

a box of length L and height H. The fluid interface is deformed around the cylinders,

because of their weight, and the overlap of the resulting interfacial deformations drives

an attractive capillary interaction until the particles contact. The characteristic length

over which the deformation generated by a particle decays is given by the capillary length

Lc =
√
σ/g∆ρ, where σ is the constant interfacial tension between the two fluids, g

is the gravitational acceleration, and ∆ρ = ρ2− ρ1 . The competition between gravity

and capillarity is more commonly discussed in terms of the dimensionless Bond number

Bo = (R/Lc)
2. In our work, Bo < 1, meaning that capillary forces will play an important

role and the fluid interface is not strongly deformed. The cylinders are free to move in

both the x- and y-directions and can rotate as well with respect to their center of mass.
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The fluid interface is kept horizontal at the left and right bounding walls of the domains.

The contact angle at the three-phase contact lines (cf. Fig. 1) is equal to the equilibrium

contact angle θ. The simulations are performed only on half of the domain shown in

Fig. 1a because of symmetry.

Problem B concerns drag force calculations (Fig. 1b). We use the same setup as in our

previous work [24], where only one cylinder (or disc) is trapped at the fluid interface. The

main difference is that the cylinder will now be allowed to rotate freely, as in problem A.

Instead of moving the cylinder horizontally across the interface, we use a reference frame

attached to the cylinder so that far from it, both liquids flow with a constant velocity U0 in

the direction of the x-axis. In this case, the upper and lower bounding plane walls should

also move with the same velocity U0 from left to right in their own planes. In contrast

to problem A, the cylinder’s center of mass is kept midway across the fluid interface. In

most cases, the fluid interface will be deformed around the cylinder, featuring either an

upward or a downward meniscus depending on the prescribed contact angle value. The

fluid interface is kept horizontal at the inlet and outlet in all cases.

For both problems A and B, we use the cylinder radius (R), the capillary velocity

(Ucap = σ/µ2), and the capillary time (tcap = R/Ucap) as the characteristic length, velocity

and time scales, respectively, if not otherwise stated. Viscosity and density ratios are

defined as µ∗ = µ1/µ2, ρ∗ = ρ1/ρ2, ρ∗p = ρp/ρ2, respectively, where ρp is the particle

density. With the above scaling, table 1 lists all the physical and geometrical parameters

used in both problems. The dimensional baseline values are specified in the table caption.

3 Governing equations and numerical method

3.1 Two-phase flow modeling

For both problems A and B, we opt for a diffuse interface method, based on the concept of

“phase-field” (PF), to account for the fluid interface motion, combined with the Navier-

Stokes (NS) equations to describe the flow. As pointed out in the introduction, the choice

of the PF model was primarily motivated by its intrinsic ability to simulate contact line
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Figure 1: Two-dimensional geometries of the two problems investigated in this work. (A)

Geometry for the computation of the pair capillary interaction between floating cylinders at a

fluid interface (problem A). The vertical red dashed-dot line marks the symmetry plane (Γsym)

and the solid blue arrows represent the capillary attraction between the two particles due to

interfacial deformations. The curved arrows indicate particle rotation. Symbols: θ: contact

angle, g: gravitational acceleration. (B) Geometry for the computation of two-phase flow drag

on a circular rotating cylinder confined at a fluid interface between two plane walls (problem

B). Symbols: β: floating angle, ζ: interface slope at the contact line. See table 1 for other

symbol definitions.
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Table 1: Definitions and dimensionless values (denoted with ∗) of the parameters used in

problems A and B. In the following, the letters A and B in the superscript refer to problems A

and B, respectively. Umax
x is the maximum particle translational velocity. Dimensional baseline

values: R = 1mm, σ = 0.01N/m, µ2= 0.1Pa.s, ρ2= 103kg.m−3.

Parameter Symbol Value

Cylinder radius R∗ 1

Box length L/R 32A, 30B

Box height H/R 16A, 20B

Inlet/outlet velocityB U∗
0 2 × 10−4

Viscosity ratio µ∗ = µ1/µ2 [0.05− 20]A, [0.05− 1]B

Fluid density ratio ρ∗ = ρ1/ρ2 0.9

Particle density ratio ρ∗p = ρp/ρ2 1.05

Interfacial tension σ∗ 1

Contact angle θ 100◦A, [45◦ − 135◦]B

Reynolds number Re = ρ2Umax
x R/µ2 ∼ 10−3

Capillary number Ca = µ2Ux,max/σ ! 10−3
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motion without any stress singularity or ad hoc fluid slip models [19, 20, 21, 22, 23]. The

details of the coupled phase-field/Navier-Stokes equations have already been described in

our previous work [24] and by a number of authors [23, 25, 26, 27]. We refer the readers

to these works for all the technicalities. In the following, we only give a brief account of

some key features of the model.

In the PF formulation, the two fluid components, which are otherwise considered

immiscible, are allowed to mix within a thin interfacial region. A PF variable, φ, is

introduced to characterize the two different phases. The key idea is that φ changes

rapidly but continuously within the thin interfacial region, whose thickness is controlled

by the capillary width ϵ. In the two fluid bulks, φ = ± 1, and the fluid-fluid interface

may be defined by the contour level φ = 0. The interfacial dynamics is modeled by an

evolution equation for φ, the Cahn-Hilliard (CH) equation [25, 26]

∂φ

∂t
+ v ·∇φ = ∇ · (γ∇G) , (1)

whereG = λ
[
−∇2φ+ (φ2− 1) /ϵ2

]
is the chemical potential, λ the mixing energy density,

γ a diffusion parameter called the mobility (assumed to be constant), and v the fluid

velocity. The fact that the interface can move by diffusive processes is essential to handle

contact line dynamics, as aforesaid. It is also worth stressing that the resolution of the

interface thickness is of paramount importance in the PF method (see below) [23, 26, 28].

Assuming incompressible fluids, the pressure (p) and velocity (v) fields in both phases

are described by the standard Navier-Stokes equations

∇ · v = 0 , (2)

ρ(φ)

(
∂v

∂t
+ v ·∇v

)
= −∇p+∇ · σv + ρ(φ)g +G∇φ , (3)

where the last body force term in Eq. (3) (G∇φ) is the diffuse-interface equivalent of the

interfacial tension [25, 28]. σv = µ(φ)
[
∇v + (∇v)T

]
is the viscous stress tensor, g is

the gravitational acceleration, and ρ(φ) (resp., µ(φ)) is the density (resp., the viscosity)

of the two-phase system given by: ρ(φ) = 1+φ
2 ρ1 +

1−φ
2 ρ2, and µ(φ) = 1+φ

2 µ1 +
1−φ
2 µ2.

Classical no-slip boundary conditions for v are imposed on all bounding walls and

cylinders, together with a no penetration and vanishing shear stress condition on Γsym
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(Fig. 1a). More precisely, for rotating cylinders, we impose v = U+Rωt̂ on Γp , where U

(resp., ω) is the cylinder’s translational (resp., angular) velocity, and t̂ is the tangential

unit vector along the particle contour. For non-rotating cylinders, the condition v = U

is prescribed on Γp . Within the PF model, we enforce the equilibrium value of the

contact angle, θ, at the three-phase contact lines of cylinders via the geometric boundary

condition, ∇φ · n̂ = |∇φ| cos θ , where n̂ is the outward unit normal vector to Γp . We also

impose a 90◦-contact angle on Γwall (left side) and Γsym (Fig. 1a), and on Γin, out (Fig. 1b),

meaning that the interface is flat there but it is free to move up or down.

3.2 Particles’ equations of motion

In problem A (Fig. 1a), the two cylinders are free to translate along the x and y-

directions and rotate around an axis perpendicular to the xy-plane. Their translational

(U = (Ux, Uy)) and angular (ω) velocities are governed by Newton’s equations of motion

involving viscous and capillary forces and torques in the presence of gravity (see Sec. 2 of

Supplementary Information (SI) for details). The viscous and capillary forces are com-

puted by integrating the corresponding viscous and capillary tractions, respectively, along

the 2D particle contour. Similarly, the viscous torque is obtained by a contour integration

of the viscous stress moment. Note that for a spherical particle (or a cylinder/disc in

2D), provided that the interfacial tension and the contact angle are constant, the cap-

illary torque always vanishes regardless of the position and shape of the contact line.

This has been confirmed in both literature [29] and our calculations. Therefore, only

the viscous torque needs to be considered here. Finally, two kinematic equations link

the cylinders’ positions (resp., angular displacements) to their velocities (resp., angular

velocities): drp/dt = U and dα/dt = ω , where rp = (xp, yp) denotes the location of one

cylinder’s center of mass and α is its angular displacement. Note that the above descrip-

tion is valid for both translating and rotating cylinders. For the non-rotating ones, of

course, we only solve the equations of motion for the translation.

In problem B, the cylinder’s center of mass is fixed and the particle may be allowed to

freely rotate with an angular velocity, which is determined by the viscous torque exerted
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on it due to the incoming flow (Fig. 1b). In this case, only the particle torque equation

is solved, and the cylinder contour rotates with a velocity equal to Rωt̂ .

3.3 Numerical method

The fluid equations, and their associated boundary conditions, together with the particles’

equations of motion, were solved numerically with the finite element computational soft-

ware COMSOL Multiphysics" [30]. We used the coupled laminar two-phase flow/phase-

field (Cahn-Hilliard) modules combined with an ordinary differential equations module

to compute all the unknowns, i.e. v, p, φ, U, rp, ω, α, at each time step. Furthermore,

for problem A, we employed the built-in moving mesh module of COMSOL based on an

Arbitrary Lagrangian-Eulerian (ALE) scheme to follow and resolve the particles’ motion

as they attract one another through capillary interaction. Since the particles travel over

long distances, typically ∼ 5 − 10R, mesh deformation is substantial (fig. S1a in SI). In

order to maintain a high-quality mesh and avoid inverted elements, we used the automatic

remeshing feature of COMSOL (fig. S1b in SI). We designed a nonuniform triangular mesh

fitted with subdomains to appropriately resolve the fluid interface as it moved within the

domain. The subdomains were uniformly meshed with a mesh size adjusted so that the

interfacial thickness, which is on the order of 4ϵ, contained at least 8 elements. According

to the criterion defined in [28], the latter condition ensures a sufficient resolution of the

fluid interface, which is a crucial issue for the PF method [22, 23, 26, 28]. Outside of

the subdomains, the mesh size was much coarser since the fluid interface never wandered

into these areas (fig. S1b in SI). Finally, the value of the mobility parameter (γ) was

adjusted according to the guidelines reported in [22] to ensure convergent results with

moving contact lines. Additional numerical details can be found in Sec. 1 of SI.

4 Results and discussion

We now address the core issue of the present work, i.e. the influence of particle rotation

on pairwise capillary interactions. We will first present the central result of the paper,

10



for problem A, together with an examination of the role of the viscosity ratio. Then we

study the drag force on a rotating interfacial cylinder (problem B), to seek an explanation

for the findings in problem A.

4.1 Capillary interaction with rotating particles

In problem A (Fig. 1a), initially, the centers of mass of the cylinders lie in the plane of the

fluid interface and their center-to-center distance is d = L/2− 2∆x , where ∆x is a small

lateral shift ensuring that each cylinder is closer to the symmetry plane (Γsym) than to the

side wall. Indeed, if d = L/2 , the menisci on both sides of a cylinder will be symmetric

and no capillary interaction would occur initially. If d > L/2 , each cylinder would be

attracted towards its respective side wall, and the two would move apart from each other.

Before releasing the cylinders, the fluid interface is flat everywhere and makes a 90◦-

contact angle at the contact lines. From the values listed in table 1, we get L∗
c ≃ 3.19 and

Bo = 0.098. The contact angle is kept constant and equals 100◦ throughout this section.

Furthermore, we have chosen a box size of (H,L) = (16R, 32R), which makes sure that,

(i) the upper and lower confining walls are several particle radii away from the cylinder,

so we are not dealing with a highly confined geometry, and (ii) the lateral extension of the

fluid interface covers a few times the capillary length. We have checked that the use of

larger boxes (e.g. (H,L) = (20R, 40R)), besides being more computationally expensive,

only shifts the capillary interaction process to longer times, without altering the result

qualitatively (the magnitude of the capillary force near contact differs by less than 4%

between box sizes (H,L) = (16R, 32R) and (H,L) = (20R, 40R)). Note that, as in Loudet

et al. [24], we are not interested in eliminating the influence of confining walls, which is

nearly impossible in 2D low-Reynolds number flows [31]. Also, for most cases, we have

chosen either Cn = 0.04 or Cn = 0.02, which turned out to be good values realizing a

trade-off between precision and reasonable computing time. In what follows, we present

numerical data obtained with a moderately small viscosity ratio µ∗ = 0.1, essentially for

illustrative purposes. But other values of µ∗ will be tested in the next section.

Upon releasing the cylinders, they first tend to sink into the lower phase since they are
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denser than the surrounding fluids. After a transient period, the vertical force balance is

achieved and the particles’ buoyant weight is balanced by the vertical component of the

surface tension force acting at the contact line. The fluid interface is distorted and satisfies

the contact angle condition. Because of interfacial distortions, the particles start moving

towards each other in the x-direction through capillary interaction. This motion stirs flow

in the vicinity of the particles, which now experience a viscous drag force opposing their

displacement. Moreover, because of interfacial deformations, which yield an up-down

asymmetry in the flow pattern [24], the drag force acting on the particles yields a nonzero

viscous torque as well. The reason for this is that the drag force’s line of action does not

generally run through the particle’s center of mass, even if µ∗ = 1. Consequently, the

particle rotates. Of course, a viscosity mismatch between the two fluids (µ∗ ̸= 1) will

further alter the viscous torque and hence the particle rotation, as pointed out by Dörr

& Hardt [15].

Our numerical results are summarized in Fig. 2. In Fig. 2a, we have plotted the x-

component of the particle velocity (U∗
x) as a function of time (t∗) for both a rotating and

a non-rotating cylinder. All our results are presented for the left cylinder in Fig. 1a.

The key result of Fig. 2a is the effect of particle rotation on the speed of the capillary

interaction. With the used parameters, the interaction time is reduced by about 10%

with rotating particles, with a roughly 20%-increase in the particle translational velocity

near contact. U∗
x strongly accelerates prior to dropping abruptly just before the particles

collide, probably because of strong lubrication forces due to the squeezed thin film in-

between the particles.

The corresponding dimensionless angular velocity (ω∗) and angular displacement (α)

versus time are plotted in Fig. 2b. We used Umax
x /R as the characteristic angular velocity

so that ω∗ = ω/(Umax
x /R) . Fig. 2b shows that ω∗ = O(1), especially close to contact,

meaning that we are in a regime where the particle rotation is significant and is part of the

physical description of the system. With our sign convention, a negative (resp., positive)

value of ω∗, or α, implies a clockwise (resp., counter-clockwise) rotation of the left cylinder.

Since it moves to the right, fluid is drained out in the opposite direction (Fig. 3). In this
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Figure 2: Results of dynamic simulations of the capillary pair interaction with and without

particle rotation. (A) Particle velocity (U∗
x = Ux/(σ/µ2), x-component) as a function of time

(t∗ = t/(µ2R/σ)). The particles’ rotation speeds up the interaction kinetics. (B) Angular

velocity (ω∗ = ω/(Umax
x /R)) as a function of time t∗. The inserted graph represents the time

evolution of the corresponding angular displacement (α). Parameters: µ∗ = 0.1, θ = 100◦,

Cn = 0.04, see also table 1.
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Figure 3: Snapshot of the velocity field for rotating particles undergoing a capillary attraction

(time t∗ = 5.6 × 104; final time at contact: t∗ = 5.85 × 104). Only the left half of the

computational domain is considered due to the symmetry axis Γsym (see Fig. 1a). The particle

translates to the right whilst rotating clockwise (curved black arrow). The streamlines are

represented by red arrow lines whereas the solid white line indicates the fluid interface (φ =

0). The color bar gives the scaled velocity amplitude (|v|/Ucap , see Sec. 2). Parameters:

µ∗ = 0.05, θ = 100◦, Cn = 0.04, see also table 1.

case, the clockwise rotation of the left cylinder during the interaction process arises from

greater viscous stresses exerted on its bottom submerged part because of a higher fluid

viscosity there (µ∗ = 0.1). Swapping the fluid viscosities, i.e. having µ∗ > 1, would result

in a counter-clockwise rotation of the left cylinder for the same reasons (see Sec. 4.2).

Recall that the capillary torque is zero in all our simulations (Sec. 3.2), and that the

particle rotation is only driven by viscous forces.

The dimensionless capillary interaction force F ∗
c = Fc/(σBo2), where Fc is obtained

by integrating the capillary traction over the particles’ contours (see Eqs. (4)-(5) in Sec. 2

of SI), is graphed in Fig. 4 as a function of time (t∗) for both rotating and non-rotating

cylinders. Since the particles’ rotation speeds up their attraction, the profiles are shifted

in time but the magnitude of F ∗
c remains the same in both cases near contact. Actually,
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Figure 4: Capillary interaction force (F ∗
c = Fc/(σBo2)) for rotating and non-rotating cylinders

as a function of time (t∗). Inset: F ∗
c versus the center-to-center distance (d∗ = d/Lc).

Parameters: µ∗ = 0.1, θ = 100◦, Cn = 0.04, see also table 1.

upon plotting F ∗
c versus d∗ = d/Lc , we see that the magnitude of the interaction force

is hardly altered by the particles’ rotation all along the interaction trajectory (see inset

in Fig. 4). This result further suggests that the interfacial profiles for rotating and non-

rotating cylinders should be essentially identical within our operating conditions. Indeed,

Fig. S2 (SI) confirms that the profiles are almost indistinguishable in both situations.

The fact that F ∗
c is insensitive to particle rotation implies that the drag force exerted

on the particle must be reduced by the rotation to yield a faster interaction (Fig. 4). This

conjecture calls for in-depth drag force calculations with both rotating and non-rotating

particles, which will be described in problem B below (Sec. 4.3). But prior to changing the

geometry, we first explore the influence of the viscosity ratio on the interaction dynamics.

4.2 Influence of the viscosity ratio

We performed additional simulations with other values of the viscosity ratio µ∗ to examine

its influence on the interaction speed. Fig. 5 summarizes the data obtained for the trans-
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lational (Fig. 5a) and angular (Fig. 5b) velocities with µ∗ in the range [0.05− 0.75]. We

see that the greater the viscosity mismatch, the higher U∗
x and ω∗, and the faster the dy-

namics. As expected, the viscous torque exerted on the cylinders is enhanced at small µ∗

and make them rotate faster. Consequently, the maximum angular displacement, marked

as a number close to each curve in Fig. 5b, increases as µ∗ decreases, despite a shorter

interaction time. In addition, the boost in the speed of capillary attraction by particle

rotation is greater for a stronger viscosity mismatch (Fig. 5a). While only a very modest

difference in the interaction time exists for µ∗ = 0.75 (< 1%, compare the solid black line

and the red dashed one), the difference jumps to about 12% for µ∗ = 0.05 (compare the

solid blue curve with the green dashed one) within our operating conditions. Hence, the

strongest effects would be expected for, e.g., liquid-gas interfaces.

Next, we also briefly consider the case µ∗ > 1 for which the upper fluid is more viscous

than the lower one, whilst keeping all the other parameters unchanged. Because of the

inversion of the viscosity mismatch, Fig. S3 (SI) shows that the left cylinder now spins

counter-clockwise (ω > 0), as explained previously (Sec. 4.1). However, it is worth point-

ing out that the spinning direction does not alter the phenomenon we described above.

Whether the cylinders spin clockwise or counter-clockwise, the interaction dynamics is

always accelerated when compared to the non-rotating situation (see Fig. S3a in SI). In

addition, swapping the viscosities makes the interaction faster, but this phenomenon is

peculiar to our choice of parameter values, especially the contact angle and the buoyant

weight. This is explained in detail in SI.

4.3 Drag force with rotating particles

In this section, we switch to problem B (Fig. 1b) and investigate the influence of particle

rotation on the viscous drag force in the presence of interfacial deformations. The following

simulations are motivated by the data gathered in problem A, which strongly suggest that

the boost in capillary attraction by particle rotation, regardless of its sense, occurs via a

reduction in the drag force.

In Fig. 1b, the cylinder is held fixed in the middle of the box as flow passes by it. The
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Figure 5: Influence of the viscosity ratio on the computed translational and rotational velocities

of particles undergoing an attractive capillary interaction. (A) Translational velocity (U∗
x) and

(B) Angular velocity (ω∗) as a function of time (t∗) for two viscosity ratios. In (B), the numbers

next to each curve indicate the maximum angular displacement (α) reached at contact. NR:

non-rotating; R: rotating; CR: clockwise rotation. Parameters: θ = 100◦, Cn = 0.04, see also

table 1.
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contact angle is fixed to θ = 100◦ with µ∗ in the range [0.05− 0.75], as in problem A. As

a consequence, the fluid interface is slightly deformed and exhibits a downward meniscus

close to the particle. As in problem A, we have L∗
c ≃ 3.2 and Bo ≃ 0.1 . The box size

was fixed to (H,L) = (20R, 30R) (table 1) with Cn = 0.02 for a better accuracy but still

a manageable computing time (Sec. 1 of SI).

Table 2 compares the values of the viscous drag force (Eq. (4), Sec. 2 of SI) on a

rotating (Fv,r) and a non-rotating (Fv,nr) cylinder in the above conditions. The force

values have been normalized by σBo2. While the difference between Fv,r and Fv,nr is not

significant for µ∗ = 0.75, Fv,r becomes clearly less than Fv,nr as µ∗ decreases further and

the particle rotates faster (last column in table 2). For µ∗ = 0.05, the difference is about

8%. These results confirm the conjecture put forward previously and also corroborate very

well the viscosity effect illustrated in Fig. 5 for problem A (Sec. 4.2). With a non-rotating

cylinder, the no-slip boundary condition requires that the fluid velocity be arrested on its

surface, thereby leading to larger velocity gradients and tangential shear stresses. This

effect is reduced with a rotating cylinder. The flow field around the cylinders illustrates

this difference (Fig. 6). While the non-rotating cylinder features two high-shear regions

above and below the cylinder (Fig. 6a), the rotating cylinder has just one such region above

the cylinder (Fig. 6b). The rotation has greatly reduced the velocity gradient below it.

Notably, in their recent computational work, Koplik & Maldarelli [32] also reported that

F ∗
v,r < F ∗

v,nr for an isolated nanosphere straddling a flat liquid-vapor interface under the

action of an external force.

To provide additional insight into the drag reduction for a rotating cylinder, one

can compute the rate of energy dissipation, ε , in the entire simulation domain (Ω) [33]:

ε =
∫
Ω µavΦ dΩ , where µav = 1+φ

2 µ1 +
1−φ
2 µ2 is the average viscosity of the two-phase

system in the PF model (Sec. 3.1), and Φ is the viscous dissipation function which, for

an incompressible fluid and a 2D geometry, may be written as

Φ = 2

[(
∂vx
∂x

) 2

+

(
∂vy
∂y

) 2
]
+

(
∂vy
∂x

+
∂vx
∂y

) 2

. (4)

The values of ε at steady-state, scaled by µ2U2
0, are also reported in table 2 for rotating

and non-rotating cylinders. Similarly to the drag force, the rate of energy dissipation is
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Figure 6: Steady-state streamlines in the vicinity of a non-rotating (nr) (A) and a rotating

(r) (B) cylinder for problem B (Fig. 1b). The maps display the velocity magnitude scaled by

the incoming flow velocity (U0) (cf. color scales). In (A), the fluid velocity is zero on the

particle contour, but in (B), where the cylinder rotates counter-clockwise, the area of zero-fluid

velocity is only present in the upper fluid and is shifted off the particle surface (cf. the dark

blue half-circle marked by the red dashed arrow). In both cases, the solid red arrows indicate

the flow streamlines while the solid white line corresponds to the fluid interface (φ = 0).

Parameters: θ = 100◦, µ∗ = 0.1, Cn = 0.02, see also table 1.
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Table 2: Normalized drag force (F ∗
v = Fv/(σBo2)) and rate of energy dissipation (ε∗ =

ε/µ2U2
0) for a non-rotating (nr) and rotating (r) cylinder in problem B (Fig. 1b) as a function

of µ∗. In the latter case, the values of the angular velocity (ω∗ = ω/(U0/R)) are also reported.

Both Fv and ε are smaller with a rotating cylinder than a non-rotating one. The uncertainties

are ∆F ∗
v = ± 2.10−4, ∆ε∗ = ± 0.03, and ∆ω∗ = ± 10−3. Parameters: θ = 100◦, Cn = 0.02,

see also table 1.

µ∗ F ∗
v,nr F ∗

v,r ε∗nr ε∗r ω∗

0.75 0.1629 0.1628 7.83 7.82 0.013

0.1 0.1001 0.0945 4.87 4.50 0.136

0.05 0.0952 0.0879 4.65 4.18 0.161

reduced in the rotating case, and the difference between ε∗r and ε∗nr grows for larger

viscosity mismatches. This result further supports our interpretation above to account

for the faster interaction dynamics with rotating cylinders (Sec. 4.1).

5 Influence of interfacial deformations

In this last section, we briefly investigate the role of interfacial deformations on particle

rotation. We use the geometry of problem B as a predictive tool to see if large differences

between Fv,r and Fv,nr can be achieved by tuning the value of the prescribed contact angle

on the cylinder contour. In order to single out the effect of meniscus deformation, we only

consider fluids with matched viscosities in the following, i.e. µ∗ = 1. The procedure is

exactly the same as the one already described in Sec. 4.3.

The results are summarized in Fig. 7 with θ in the range 45◦ − 135◦. Recall that

the particle’s center of mass is fixed here (Fig. 1b) and, consequently, the interfacial

deformations increase as θ deviates more and more from 90◦. In Fig. 7a, the drag force

for both rotating (F ∗
v,r) and non-rotating (F ∗

v,nr) cylinders are plotted as a function of the

contact angle. Note that those values have been normalized with respect to the drag force
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Figure 7: (A) Normalized translational drag force, F ∗
v , as a function of the contact angle

(θ) for both rotating (r) and non-rotating (nr) particles. The normalization was done with

respect to the drag force value obtained for θ = 90◦ in the non-rotating case. For θ ̸= 90◦,

we see that F ∗
v,r < F ∗

v,nr. (B) Drag force ratio, Fv,r/Fv,nr, and absolute value of the angular

velocity (ω∗ = ω/(U0/R)) as a function of θ. It is seen that the larger |ω∗|, the smaller the

ratio Fv,r/Fv,nr compared to unity. CCR: counter-clockwise rotation (θ < 90◦); CR: clockwise

rotation (θ > 90◦). Parameters: µ∗ = 1, Cn = 0.02, see also Fig. 1b and table 1.

21



calculated in the flat interface case, i.e. for θ = 90◦. In this way, the effect of interfacial

deformations can be readily assessed by direct reading. For non-rotating cylinders, the

drag force increases as soon as θ departs from 90◦. As explained in [24], interfacial

deformations yield an up-down asymmetry in the flow pattern with respect to the flat

interface configuration, which results in an increased friction. And since both fluids have

equal viscosities, the enhanced dissipation is symmetric with respect to θ = 90◦.

The corresponding data for a rotating cylinder display a similar symmetric concave

parabola but with lower values because of less energy dissipation as explained before

(Sec. 4.3). Since µ∗ = 1, interfacial deformations alone are responsible for the onset of

shear flows that create nonzero viscous torques on the cylinder and drive its rotation (see

Sec. 4.1). The larger the interfacial deformations, i.e. when θ deviates from 90◦, the faster

the rotation, and the larger the drag reduction. In Fig. 7b, we see indeed that the ratio

F ∗
v,r/F

∗
v,nr reaches its minimum value when the cylinder angular velocity ω is maximum.

But note that the effect is rather small here: F ∗
v,r and F ∗

v,nr differ by 3% at most. Hence,

with µ∗ = 1, interfacial deformations alone do not have a significant influence on particle

rotation.

Moreover, Fig. 7b shows that the contact angle value controls the spinning direction

of the cylinder: clockwise (resp., counter-clockwise) rotation with ω < 0 (resp., ω > 0)

occurs for θ > 90◦ (resp., θ < 90◦), i.e. when the meniscus is deformed downwards (resp.,

upwards) and most of the particle body is exposed to the upper (resp., lower) fluid flow.

The linear relationship between ω and θ simply arises from the fact that, in 2D, the

viscous torque (Γv,z) exerted on the cylinder is, to a first approximation, a linear function

of ∆L = L1 − L2, where L1 (resp., L2) is the contour length of the cylinder exposed to

fluid 1 (resp., fluid 2). Since L1 (or L2) is proportional to the floating angle β (Fig. 1b),

and that β = θ − ζ, where ζ is the interface slope at the contact line (see Fig. 1b), it

follows that Γv,z ∝ θ. Furthermore, since Re ≪ 1 (Stokes regime) and µ∗ = 1, Γv,z is a

linear function of ω, as expected (see Fig. S4, SI), and therefore, ω ∝ θ.

Finally, note that a linear relationship between the viscous torque and the vertical

position of a particle across a flat fluid interface with µ∗ = 1 was also reported in the
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3D calculations of Danov et al. [34]. In their study, the interface is undisturbed, but

shifting the particle up or down across it also breaks the symmetry of the flow pattern

and increases the dissipation, similarly to the curved menisci we have here, as pointed out

in [24].

6 Concluding remarks

In this work, we have probed, through 2D dynamic numerical simulations, the influence

of particle rotation on capillary interactions. Two different problems and geometries

were considered. In problem A, we focused on the capillary interaction between two

particles attached to a fluid interface and able to both rotate and translate. The capillary

attraction was driven by interfacial distortions caused by the particles’ buoyant weight.

The flow generated by the moving particles yields nonzero viscous torques which drive

particle rotation. As a salient result of our investigation, we found that the speed of the

capillary interaction can be significantly increased with rotating particles compared to

non-rotating ones. A mismatch in the viscosity ratio between the two fluids enhances the

kinetic boost observed in the rotating case. Our findings could be rationalized thanks to

dedicated drag force computations (problem B) carried out with rotating and non-rotating

particles trapped at a fluid interface. We found that the drag force exerted on a rotating

particle was always less than its non-rotating counterpart because of attenuated velocity

gradients in the vicinity of the particle. Furthermore, the larger the viscosity mismatch,

the greater the difference due to an enhanced particle rotation. These results explain the

faster interaction speed shown by rotating particles. However, for fluids with matched

viscosities, the influence of interfacial deformations on particle rotation is minute.

Experimentally, capillary interactions occurring with both spinning and translating

particles have not been reported so far, to the best our knowledge. A possible reason

for this is that contact lines may be very easily pinned on nanoscopic defects of a solid

surface due its roughness or chemical heterogeneities, as mentioned in the introduction

[16, 17, 32]. Contact line pinning may prevent the particle from rotating, despite nonzero

torques, if surface tension forces are sufficiently large. This is typically the case of liquid-
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gas interfaces, with which many capillary interaction experiments were carried out [6, 7].

However, it would be interesting to design new experiments with ‘smooth’ enough particles

to confirm our predictions. Perhaps particles coated with a thin fluid layer, i.e. with a

kind of core-shell-like structure as in double emulsions designed via microfluidic tools [35],

could serve as good candidates.

Finally, our work was limited to two dimensions, and therefore only applicable to par-

ticles with a simple shape (disc or cylinder per unit length). Extending the present study

to the more general case of non-spherical particles would require full three-dimensional

computations since these particles generally exhibit complex deformed contact lines when

attached to fluid interfaces [6, 7]. More rotational degrees of freedom and nonzero capil-

lary torques would have to be taken into account as well. We hope that the present work

will foster the development of other numerical or theoretical studies capable of tackling

similar issues at, for instance, complex fluids interfaces such as those based on liquid

crystals [36, 37].
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1 Additional numerical details

In the simulations, the governing equations (Sec. 3) were discretized on an unstructured

mesh made of triangles. To guarantee accuracy and stability, we used piecewise quadratic

Lagrange elements (P2) for the velocity (v) and phase-field variables (φ, G), and piecewise

linear Lagrange elements (P1) for the pressure field (p). The box size, (H,L), and the

value of ϵ , control the total number of elements in the mesh. We advanced the system

to steady state using an implicit time-stepping scheme based on a backward-difference-

formula (BDF) with adaptive time step sizes. At every time step, all equations are coupled

and solved simultaneously. We used damped Newton iterations to solve the nonlinear

system, and chose the multifrontal massively parallel sparse direct Solver (MUMPS) [1, 2]

available in COMSOL [3] to solve each Newton iteration. In problem A, for a box size

(H,L) = (16R, 32R) and Cn = 0.04, a typical mesh consisted of ≈ 7× 104 elements with

about 8 × 105 degrees of freedom to solve. The steady state was reached, in most cases,

after a few hundreds of seconds (physical time) and about 3 − 5 h of computing time on

a workstation equipped with an Intel i7 8-core processor and 64 GB of RAM. In problem

B, a box size of (H,L) = (20R, 30R) with Cn = 0.02 lead to ≃ 4 × 105 elements in the

mesh and close to 6 million degrees of freedom were solved after 4 − 9 h of computing

time. In addition, figure S1 hereafter shows typical meshes before and after a remeshing

event due to the Arbitrary Lagrangian Eulerian (ALE) moving mesh scheme used in the

simulations of problem A.
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Figure S1: Zoomed-in snapshots illustrating the Arbitrary Lagrangian Eulerian (ALE) moving

mesh scheme (A) and the remeshing feature (B) during a capillary interaction (problem

A). The mesh (gray lines), phase-field φ (color bar), and fluid interface (deformed solid line

representing φ = 0) are all superimposed on these images. The particle represents the left

cylinder in Fig. 1a (main text); it is translating to the right as indicated by the thick black

arrow. In (A), the elements in the vicinity of the particle are significantly deformed because

of its displacement. This is no longer the case after the remeshing in (B). To insure high-

quality meshes over time, several remeshing events take place in the course of an interaction.

The fluid interface is well-resolved at all times in finely meshed subdomains, as mentioned in

Sec. 3.3 (main text). Parameters: time t∗ = 1.4 × 104 (final time: 1.65 × 104), θ = 127◦,

µ∗ = 0.75, Cn = 0.04.
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2 Particles’ equations of motion

In this section, we provide some details about the equations of motion for the two inter-

acting particles of problem A (Fig. 1a). The cylinders are free to translate along the x

and y-directions and rotate around an axis perpendicular to the xy-plane, i.e. oriented

along the z-direction. Their translational (U = (Ux, Uy)) and angular (ω) velocities are

governed by

M
dU

dt
= Mg + F (1)

Ip
dω

dt
= Γz (2)

U|t=0 = 0 , ω|t=0= 0 , (3)

where M and Ip are the mass and moment of inertia (per unit length) of a cylinder. In

the above equations, the total force F (per unit length) exerted on the particles is given

by

F = Fv + Fc =

∮

Γp

T v · n̂ ds+ σ

∮

Γp

T c · n̂ ds , (4)

where T v = −pI + σv, and σv = µ(φ)
[
∇v + (∇v)T

]
is the viscous stress tensor with

µ(φ) = 1+φ
2 µ1 +

1−φ
2 µ2 the viscosity of the two-phase system, which is a function of the

phase-field variable φ [4]. n̂ is the outward unit normal vector on the line element ds

and T c is the capillary stress tensor whose expression can be derived using a variational

procedure, as shown in [4], yielding

T c = fmix I− λ∇φ∇φ , (5)

where fmix =
λ
2 |∇φ|2+ λ

4ϵ2 (φ
2− 1)2 is the mixing free energy density of the Cahn-Hilliard

model and λ the mixing energy density with a dimension of force [4, 5]. In Eq. (4), Fv is

the viscous force (per unit length) exerted on the cylinders due to stresses generated by

fluid motion, whereas Fc is the capillary force (per unit length) originating from interfacial

deformations.

Similarly, the total z-component of the torque, Γz , acting on the particles with respect
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to their centers of mass, is composed of viscous and capillary terms

Γz = Γvz + Γcz = ẑ ·
∮

Γp

(r− rp)× (T v · n̂) ds+ σẑ ·
∮

Γp

(r− rp)× (T c · n̂) ds , (6)

where rp = (xp, yp) denotes the location of the cylinder’s center of mass. As mentioned

in the main text, we found that the capillary torque Γcz is always zero in our calculations

and, therefore, can be discarded from Eq. (6).

OnceU and ω have been determined, the cylinders’ positions and angular displacement

(α) can be updated by solving the following kinematic equations:

drp
dt

= U (7)

dα

dt
= ω . (8)
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3 Interfacial profiles with and without particle rota-

tion

In the main text, we mentioned that the capillary interaction force (problem A) remains

essentially the same whether the cylinders rotate or not. This result suggests that the in-

terfacial profiles are not affected by the particle rotation, which is indeed clearly evidenced

in Fig. S2. This is consistent with the smallness of the capillary number (Ca ∼ 10−3)

within our operating conditions.

Figure S2: (Problem A) Computed interfacial profiles for rotating (light grey symbols) and

non-rotating (black symbols) interacting cylinders at a center-to-center distance d∗ = d/Lc =

2.1 . The void space between the curves corresponds to the location of the left cylinder

(Fig. 1a). The interfacial profiles are perfectly superimposed and, therefore, not sensitive to

the particles’ rotation within our operating conditions. Similar results are obtained for other

d∗. Parameters: box size (H,L) = (20R, 40R), µ∗ = 0.05, θ = 100◦, Cn = 0.04, see also

table 1 in the main text.

In Fig. S2, we also notice that the interfacial profile is quite asymmetric close to

contact. The height of the contact lines between the particles (right part of the graph) is

lower than that to the left and the interfacial profile flattens out as well. These effects lead

to a decrease of the vertical component of the capillary force, which makes the particles
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sink further upon approach. Actually, the degree of asymmetry is correlated with an

increase of the capillary interaction force. Such observations agree well with previous

dynamic 3D simulations of pair capillary interactions involving non-rotating spheres [6].
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4 Influence of the viscosity ratio

We here provide additional data for problem A obtained with a viscosity ratio µ∗ > 1

and compare the results with those gathered with µ∗ < 1. More precisely, as indicated

in the main text, we examine how the particles’ rotation and the capillary interaction

kinetics are affected by swapping the viscosities of the two phases. The simulation results

presented on Fig. S3 show that, (i) for µ∗ = 20, cylinder 1 now rotates counter-clockwise,

as expected from larger viscous stresses in the upper fluid in this case (Fig. S3b), and

(ii) the interaction speed is always accelerated with a rotating particle, whether it spins

clockwise (µ∗ < 1) or counter-clockwise (µ∗ > 1) (Fig. S3a). As explained in the main

text, this result originates from the fact that the translational drag force of a rotating

particle is always smaller than that of a non-rotating one.

In addition, note that, for both rotating and non-rotating particles, the interaction

speed is faster for µ∗ = 20 than for µ∗ = 0.05. It is a direct consequence of our particular

setup and the physical parameters we chose (cf. table 1 in the main text). With a slightly

denser particle than the surrounding fluids and θ = 100◦, the meniscus around the floating

particle is deformed downwards and the particle tends to sink more in the lower fluid than

the upper one, especially close to contact as we saw (Fig. S2). The particle is therefore

closer to the lower bounding wall than from the upper one. It follows that the strong

viscous lubrication forces in the gap between the particle and the lower wall are reduced

upon switching from µ∗ = 0.05 to µ∗ = 20, since the lower fluid is now less viscous than

the upper one. Thus, the resulting capillary interaction occurs faster.
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Figure S3: Comparison of the computed translational and rotational velocities for µ∗ = 0.05

and µ∗ = 20. Note that µ∗ = 20 = (0.05)−1, i.e. we swapped the viscosity values between the

upper and lower fluids, so that for µ∗ > 1, the upper fluid is more viscous than the lower one.

(A) Translational velocity (U∗
x) and (B) corresponding angular velocity (ω∗) as a function of

time (t∗). The interaction dynamics is faster for µ∗ = 20 and the particle now spins counter-

clockwise (CCR) instead of clockwise (CR) for µ∗ = 0.05. In (B), the numbers next to each

curve indicate the maximum angular displacement (α) reached at contact. NR: non-rotating;

R: rotating. Parameters: θ = 100◦, Cn = 0.04, see also table 1 in main text.
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5 Viscous torque versus angular velocity

In problem B, we have checked that the viscous torque (Γv) generated by the translational

motion of the non-rotating cylinder varies linearly with the angular velocity (ω) computed

in the rotating case, as expected in the Stokes regime (Re ≪ 1) for fluids with matched

viscosities (µ∗ = 1). Fig. S4 confirms this expectation for a range of contact angle values

(θ ∈ [45◦ − 135◦]). Note that ω < 0 (resp., ω > 0) for θ > 90◦ (resp., θ > 90◦. From the

slope, we extract a viscous torque coefficient (per unit length) equal to 3.97 × 10−6N.s.

We can compare this value with the one expected for a freely rotating cylinder of radius

R in an unbounded bulk fluid of viscosity µ in 2D. In this case, we have Γv = 4πµR2ω

(instead of Γv = 8πµR3ω in 3D) [7]. Putting in the typical values of table 1 (main text),

we get an unbounded bulk viscous coefficient equal to 1.26 × 10−6N.s. We see that our

value above is of the same order of magnitude as the unbounded one, although about three

times larger. The difference may be ascribed either to the finite size of our simulation box

or to the presence of interfacial deformations, or both.

Figure S4: Viscous torque (Γv) versus angular velocity (ω) for several contact angles θ ∈

[45◦ − 135◦] (problem B). ω < 0 (resp., ω > 0) for θ > 90◦ (resp., θ > 90◦. As expected in

the Stokes regime (Re ≪ 1) and with µ∗ = 1, the simulations confirm a linear relationship

between Γv and ω. The slope yields a viscous torque coefficient equal to 3.97× 10−6N.s (see

text). Parameters: µ∗ = 1, Cn = 0.02, see also table 1 in main text.
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