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Boundary conditions at a gel-fluid interface
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Hydrogels consist of a polymer skeleton hydrated by an aqueous solvent, and their
hydrodynamics is often described by a coarse-grained poroelasticity model where the
boundary conditions between the hydrogel and a surrounding solvent require careful
consideration. Young et al. [Phys. Rev. Fluids 4, 063601 (2019)] used the energy dissi-
pation principle to derive a set of boundary conditions regarding the velocity jumps at the
interface. However, when applied to an external shear flow over a gel layer, these conditions
predict no entrained flow inside the gel, in contrast to the prediction of a previous model by
Minale [Phys. Fluids 26, 123102 (2014)]. We adapt the procedure of Young et al. to derive
an alternative set of boundary conditions that does allow an external shear flow to induce
shear inside the gel and compare the velocity profile to that of Minale. We also derive the
limiting form of the boundary conditions in a Darcy medium.

DOI: 10.1103/PhysRevFluids.5.124304

I. INTRODUCTION

Hydrogel consists of a deformable cross-linked polymer network permeated by an aqueous
solvent. As soft solids with low elastic moduli and yield stresses, hydrogels have found many
applications in emerging technologies, ranging from micromechatronics to organ-on-chip devices
[1,2]. The mechanics of hydrogels is dominated by the coupling between the solid skeleton and the
interstitial fluid. For example, the pore space expands when fluid is injected into the gel, whereas
compressing the skeleton will drive the fluid out as the pore space shrinks. This type of solid-fluid
interaction can be described by poroelastic theories that treat the solid and fluid as interpenetrating
continua [3,4]. Among recent studies, Cogan and Keener [5] developed a two-phase flow model
for gel-like biofilms. Strychalski et al. [6,7] used a similar model to compute cytoplasmic flow in
biological cells. MacMinn et al. [8] examined the coupling between the interstitial fluid flow and
large deformation of a nonlinear elastic skeleton. Mori et al. [9] incorporated the electrochemical
effect to develop a model for a polyelectrolytic gel.

As hydrogels are often employed in a liquid medium [10,11], the dynamics of the gel-fluid
interface becomes an interesting question [12]. When the gel is represented by continuum-based
two-phase model, the boundary conditions (BCs) between the gel and the surrounding fluid require
careful analyses. This is closely associated with the long-standing problem of posing BCs between
a fluid and a porous medium [13–17]. There are at least two open questions: whether there should
be a discontinuity in the fluid velocity, and how the traction from the pure fluid side is partitioned
into two parts to be sustained on the porous side by the interstitial fluid and the solid skeleton,
respectively. The total traction from the porous side, of course, has to balance that from the pure
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fluid side. But without the partition, the flow in the porous medium would be underdetermined.
Based on a systematic review of previous work, Minale [18–20] advocated velocity continuity and
a stress partition scheme based on the void fraction.

In more recent work, Young et al. [21] presented an independent framework that uses the
principle of energy dissipation to postulate BCs between a gel and a surrounding liquid. This led to
three scalar equations linking the various velocity jumps, among the exterior pure fluid velocity V,
the pore fluid velocity v f , and the solid skeletal velocity vs in the gel, to the viscous tractions on
the pure fluid side or the gel side or an imbalance between the two. No explicit stress partition was
needed. These conditions proved highly useful as Young et al. [21] demonstrated small-deformation
solutions of a gel sphere subject to simple shear and extensional flows of the pure fluid. Typically
the normal stress imbalance on the interface acts to “inject” the surrounding fluid into the porous
medium.

Curiously, when we apply the BCs of Young et al. [21] to a simple shear flow of the pure
fluid parallel to a horizontal porous layer, a canonical one-dimensional (1D) problem considered
by Minale [19], we find that the exterior shear flow cannot drive any flow in the porous medium.
Specifically, the BCs of Young et al. [21] stipulate that the pore velocity v f (actually the velocity
difference v f − vs, the skeletal velocity being zero in this case) be proportional to the viscous shear
stress in the porous medium. This ensures that the only solution is the trivial one with no flow in the
porous medium and the simple shear in the clear fluid. This contrasts the solution of Minale [19]
with a sinh velocity profile in the porous medium.

To understand this contrast, we have reexamined the derivation of Young et al. [21], which
formulates the energy-dissipation argument in terms of slip velocities V − vs and v f − vs, relative
to the skeletal component of the gel. If one bases the argument instead on slip velocities relative to
the pore velocity v f , different BCs result that are capable of driving a shear flow in the simple 1D
shear-flow geometry. Insofar as the energy-dissipation argument suggests sufficient but unnecessary
conditions to satisfy the second law of thermodynamics, both sets of BCs seem equally admissible.

The rest of the paper is organized as follows. In Sec. II we briefly review the two-phase flow
model of Young et al. [21] for a gel particle in a Stokes flow and derive the set of BCs on the
gel-fluid boundary. In Sec. III we demonstrate how the boundary conditions allow a exterior shear
flow to drive a shear flow inside a porous medium, and compare the solution with that of Minale
[19]. In Sec. IV we show that the two sets of boundary conditions reduce to nearly identical forms
in the Darcy limit. We then examine the one-phase limit of the boundary conditions and discuss how
the interfacial slip and permeability coefficients should vary with the volume fractions.

II. FORMULATION

A. Governing equations

We briefly summarize the two-phase flow model of Young et al. [21] before focusing on the BCs.
Consider a drop of poroelastic gel freely suspended in a Newtonian viscous fluid (Fig. 1) with the
velocity V and pressure P satisfying the incompressible Stokes equations:

μ∇2V − ∇P ≡ ∇ · (2μE) − ∇P = 0, (1)

∇ · V = 0, (2)

where μ is the viscosity of the exterior fluid and E ≡ [∇V + (∇V)T ]/2 is its strain rate tensor. The
gel contains a deformable elastic skeleton fully hydrated with the same viscous fluid as the outside.
The elastic skeleton and the interstitial fluid are coarse-grained into two interpenetrating continua
of volume fractions φs and φ f , with φ f + φs = 1. The two-phase flow of this mixture obeys the
following equations of motion:

∂φ f

∂t
+ ∇ · (φ f v f ) = 0, (3)

124304-2



BOUNDARY CONDITIONS AT A GEL-FLUID INTERFACE

FIG. 1. A schematic of a drop of poroelastic gel in a Newtonian viscous fluid. � is the fluid-gel interface.

∂φs

∂t
+ ∇ · (φsvs) = 0, (4)

∇ · [φ f (2μee f )] − φ f ∇p − ξφ f φs(v f − vs) = 0, (5)

∇ · (φsσs) − φs∇p + ξφ f φs(v f − vs) = 0, (6)

where v f is the fluid velocity, and vs = dus/dt is the skeleton velocity computed from the time
derivative of the skeleton displacement us. Note that both are “intrinsic phase averages” over a
control volume that contains only the fluid or solid material [18]. e f ≡ [∇v f + (∇v f )T ]/2, and μe

is the effective viscosity of the fluid phase. Two commonly used assumptions are μe = μ [21,22] and
μe = μ/φ f [16,19,23]. We will adopt the latter, although this choice does not affect the narrative of
this paper. The same pressure p is shared by both phases. ξ is a constant friction coefficient between
the two phases; it can be related to the permeability K in the usual form of the Brinkman equation
as ξ = μ/(φsK ). Finally, σs is the solid stress tensor that, assuming linear elasticity for simplicity,
can be related to the strain tensor ε ≡ [∇us + (∇us)T ]/2 by

σs = �tr(ε)I + (M − �)ε, (7)

with M being the p-wave modulus and � Lamé’s first parameter. We have taken the skeleton to be
purely elastic and ignored any viscous component in its mechanical response.

B. Boundary conditions

To pose BCs on the interface between the gel particle and the exterior fluid, we first note three
conditions dictated by the kinematics, continuity of fluid flow, and traction balance across the
interface �:

n · vs = v�, (8)

n · (V − vs) = φ f n · (v f − vs), (9)

n · (2μE − PI) = n · [φsσs + φ f (2μee f ) − pI], (10)

where n is the outward unit normal vector on the gel surface, and v� is the normal velocity of the
interface. These are the same as in Young et al. [21]. Note that we have neglected the gel-fluid
interfacial tension in the traction balance.
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To derive the additional BCs regarding the velocity jumps on the interface, Mori et al. [9] and
Young et al. [21] examined the energy dissipation of the whole system and posed BCs to ensure that
the interface dissipates energy from the system. Such an argument is rooted in the second law of
thermodynamics [24]. However, we stress that the argument gives a sufficient condition and does not
guarantee a unique set of boundary conditions. Following Young et al. [21], we multiply Eqs. (1),
(5), and (6) by V, v f , and vs, respectively, and sum up the three products. Then the requirement
that the free energy of the system decrease in time amounts to requiring that the following surface
integral be nonpositive:

I� =
∫

�

{−V · (2μE − PI) + v f · [φ f (2μee f ) − φ f pI] + vs · (φsσs − φs pI)} · n ds � 0. (11)

The minus sign in front of V is because n is the inward normal vector to the pure-fluid domain.
Defining velocity jumps V̄ ≡ V − vs and v̄ f ≡ v f − vs with respect to the solid velocity vs, Young
et al. [21] showed that one way to satisfy the above is to pose the following BCs for the velocity
jumps at the interface (called BC1 hereafter for brevity):

(V − vs) · n = η n · [(2μE − PI) − (2μee f − pI)] · n, (12)

(V − vs) · t = β n · (2μE) · t, (13)

φ f (v f − vs) · t = −β n · (2μee f ) · t, (14)

where η > 0 is an interfacial permeability and β > 0 is an interfacial slip coefficient. We have
inserted the factor of 2 on the right-hand sides of Eqs. (13) and (14) to be consistent with the form
of the viscous stress tensors. This slight alteration from the original notation of Young et al. [21]
does not affect the essence of the BCs. As shown in Sec. III, this set of BCs does not allow a simple
shear flow V to drive any flow v f in a porous medium.

To derive an alternative set of BCs, we deviate from Young et al. [21] by introducing relative
velocities not with respect to vs but with respect to v f :

Ṽ ≡ V − v f , ṽs ≡ φs(vs − v f ).

It is easy to see that Ṽ − ṽs = V − (φ f v f + φsvs) = V − q is the “slip velocity” between the pure
fluid and the composite velocity of the porous medium, and that (Ṽ − ṽs) · n = 0 according to
Eq. (9). Both properties are the same as possessed by V̄ and v̄ f in the original derivation of Young
et al. [21]. Now we focus on the two tilde jump velocities.

Using the tilde velocities, we rewrite the surface integrals as

I� =
∫

�

−Ṽ · (2μE − PI) · n ds +
∫

�

ṽs · [σs − pI] · n ds

+
∫

�

v f · [φ f (2μee f ) − φ f pI + φsσs − φs pI − 2μE + PI] · n ds

=
∫

�

−Ṽ · (2μE − PI) · n ds +
∫

�

ṽs · [σs − pI] · n ds, (15)

where the second line vanishes for the overall traction balance on the interface (10) as in Young et al.
[21]. Decomposing the tilde velocities into normal and tangential components (e.g., Ṽ⊥ = V · nn,
Ṽ‖ = V · tt), and noting Ṽ⊥ = ṽs⊥, we have

I� = −
∫

�

Ṽ⊥ · (2μE − PI − σs + pI) · n ds −
∫

�

Ṽ‖ · (2μE − PI) · n ds

+
∫

�

ṽs‖ · (σs − pI) · n ds. (16)
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FIG. 2. A schematic showing the shear-flow geometry considered by Minale [19]. A layer of gel lies atop
a rigid substrate, and a viscous fluid undergoes a simple shear above the gel parallel to the gel-fluid interface.

Similar to Young et al. [21], we postulate the following linear relationships to ensure positive energy
dissipation (called BC2 hereafter):

Ṽ⊥ ≡ (V − v f ) · nn = η̃ [n · (2μE − PI − σs + pI) · n] n, (17)

Ṽ‖ ≡ (V − v f ) · tt = β̃ [n · (2μE) · t] t, (18)

ṽs‖ ≡ φs(vs − v f ) · tt = −β̃ (n · σs · t) t, (19)

with positive constants η̃ > 0 and β̃ > 0. These BCs look similar to that of the original BCs of
Young et al. [21] [Eqs. (12)–(14], but with some distinct features:

(i) The normal velocity difference is Ṽ⊥ = ṽs⊥ = φs(vs − v f ) · nn. Thus, Eq. (17) implies that
the normal stress imbalance between the outer fluid and the solid skeleton injects the pore fluid into
the gel. In Eq. (12) the pore fluid is injected by the imbalance between the normal stresses of the
fluids on both sides of the boundary. Note the convention that the normal stress is negative when
compressive.

(ii) Equation (18) implies that the viscous shear stress of the outer fluid drives the tangential slip
velocity between the outer fluid and the pore fluid, as opposed to the slip velocity between the outer
fluid and the solid skeleton in Eq. (13).

(iii) Equation (19) gives us the slip velocity between the fluid and solid components on the gel
side of the interface and can be rewritten as

(v f − vs) · t = β̃

φs
(n · σs · t) = β̃

φ2
s

n · (2μE − φ f 2μee f ) · t (20)

by virtue of the overall balance in tangential stresses across the interface (10). The right-hand-side
of Eq. (20) consists in the imbalance in the viscous shear stress between the fluids on either side
of the interface. This imbalance may drive a tangential flow of the pore fluid if we apply the BC to
the 1D shear-flow geometry of Minale [19] (Fig. 2). This contrasts the original boundary condition
of Young et al. [21] (14), where the tangential flow is driven by the viscous shear stress in the pore
fluid alone.

The two derivations differ only in the definition of the velocity jumps (relative to the skeletal
velocity vs or the interstitial fluid velocity v f ). Yet the resulting BC1 and BC2 have materially
different implications for the flow field in the gel. Both differ from the BCs of Minale [19].
They obviate the need for partitioning the total traction from the exterior fluid into two parts to
be sustained by the skeleton and the interstitial fluid on the gel side. Besides, Minale [19] has
asserted V = q as a boundary condition [his Eq. (51)]. In BC1 and BC2, the normal component
of V − q = V − φ f v f − φsvs vanishes because of mass conservation of the fluid. Its tangential
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TABLE I. The two complete sets of boundary conditions.

Physical meaning BC1 BC2

Kinematics n · vs = v�

Fluid continuity n · (V − vs ) = φ f n · (v f − vs )

Total traction balance n · (2μE − PI) = n · [φsσs + φ f (2μee f ) − pI]

Normal velocity jump (V − vs ) · n = η n · [(2μE − PI)− (V − v f ) · n = η n · [(2μE − PI)−
(2μee f − pI)] · n (σs − pI)] · n

Tangential velocity jump (V − vs ) · t = β n · (2μE) · t (V − v f ) · t = β n · (2μE) · t

Interphasic velocity jump φ f (v f − vs ) · t = −β n · (2μee f ) · t φs(vs − v f ) · t = −β n · σs · t

component can be computed by subtracting Eq. (14) from (13) or subtracting Eq. (19) from (18):

(V − q) · t =
{
βn · (2μE + 2μee f ) · t (BC1)
βn · (2μE + σs) · t (BC2) . (21)

Both slip velocities are similar to that derived by Angot et al. [25] via a boundary layer asymptotic
analysis. Their tangential velocity jump is proportional to the mean of the tangential stresses on both
sides of the interface [Eq. (40) therein].

For later reference, we summarize the two sets of boundary conditions in Table I.

III. 1D SHEAR FLOW DRIVEN BY AN EXTERIOR FLOW

When a viscous fluid flows over a poroelastic gel layer (Fig. 2), one may expect an entrained
flow inside the porous medium. Such is the prediction of the BCs due to Minale [19]. Using BC1
of Young et al. [21], one can show that the steady solution has zero flow inside the porous medium
(v f = vs = 0) and a tangential slip Vi = βμ(dV/dy) above the interface (y = h+

2 ). We will show
that BC2 allows a tangential flow to be driven inside the gel, and the 1D steady-state solution will
have a linear velocity profile in the pure fluid and a sinh profile v(y) inside the gel, with tangential
velocities Vi and vi on either side of the interface. The solid skeleton sustains a shear stress and
deforms to a finite strain, with vs = 0 everywhere.

The slip velocity Vi − vi can be calculated from Eq. (18):

Vi − vi = βμ
V0 − Vi

h1
. (22)

Then Eq. (20) gives vi in terms of the viscous shear stress mismatch across the interface, after
assuming μe = μ/φ f :

vi = βμ

(1 − φ f )2

(
V0 − Vi

h1
− dv

dy

∣∣∣∣
y=h2

)
. (23)

The flow inside the gel of permeability K is governed by the Brinkman equation with zero pressure
gradient:

d2v

dy2
= φ f

K
v, (24)
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whose solution gives the following velocity profile inside the gel after applying the no-slip BC on
the substrate v(0) = 0:

v(y) = C sinh

(
y

√
φ f

K

)
. (25)

Although the Brinkman equation typically implies a “phase-averaged” velocity [19], which corre-
sponds to our v/φ f , the distinction is subsumed into the constant C. Substituting v and its gradient
at y = h2 into Eqs. (22) and (23) leads to two linear equations for the constants Vi and C:

Vi − C sinh

(
h2

√
φ f

K

)
= βμ

h1
(V0 − Vi ), (26)

C sinh

(
h2

√
φ f

K

)
= βμ

h1(1 − φ f )2

[
V0 − Vi − Ch1

√
φ f

K
cosh

(
h2

√
φ f

K

)]
. (27)

Introducing dimensionless parameters and shorthand notations: φ = φ f (constant porosity or void
fraction), α = βμ/h1 (ratio of slip length to macroscopic length), γ = h1

√
φ/K (ratio of macro-

scopic length to pore size), s = sinh (h2
√

φ/K ), and c = cosh (h2
√

φ/K ), we write the solution in
dimensionless form for the two scaled unknowns Vi/V0 and C/V0:

Vi

V0
= α

cαγ + s(2 − 2φ + φ2)

cα(1 + α)γ + s[α + (1 + α)(1 − φ)2]
, (28)

C

V0
= α

cα(1 + α)γ + s[α + (1 + α)(1 − φ)2]
. (29)

Now the interstitial fluid velocity in the gel is

v(y)

V0
= α

cα(1 + α)γ + s[α + (1 + α)(1 − φ)2]
sinh

(
y

√
φ

K

)
, (30)

with the interfacial velocity vi = v(h2) = Cs.
We have few data on fluid flow perfusing a hydrogel and it is not straightforward to estimate the

permeability K . For other types of porous media, sizable data exist in the literature, and Nishiyama
and Yokoyama [26] suggested K = 0.01φa2 for sandstones, where φ is the porosity and a is the
averaged pore radius. The typical pore sizes in mucin and other polymer gels range from 100 nm
to 500 nm [27–30]. The porosity of hydrogels varies according to the degree of hydration, from
0.5 to 0.93 [31–33]. Taking medium values of φ = 0.8 and a = 100 nm, we can estimate K = 8 ×
10−5 μm2. If we take the layer thicknesses to be h1 = h2 = 0.5 mm for a typical microfluidic device,
the layer-to-pore size ratio γ = h1

√
φ/K = 5 × 104 is very large and s/c = tanh(h2

√
φ/K ) ≈ 1.

For the slip length b = βμ, typical estimations fall in the range of 1–100 nm [34]. Then the ratio
α = βμ/h1 = 2 × 10−6 to 2 × 10−4 is very small. In this case vi/V0 ∼ α 	 1 and there is hardly
any flow in the gel layer, as can be intuitively anticipated. The gel layer is essentially impermeable:
Vi ≈ 0, vi ≈ 0, v(y) ≈ 0. This is approximately the same solution as produced by BC1 of Young
et al. [21]

If we consider a porous gel with very large pores (γ = 25) and large interfacial slip, and the same
φ = 0.8, we can plot the dimensionless interfacial velocities Vi/V0 and vi/V0, as well as the slip
velocity (Vi − vi )/V0 as functions of the dimensionless slip length α (Fig. 3). Whereas Vi increases
monotonically with α, differentiating Eq. (29) confirms that vi reaches a maximum at α = (1 −
φ)

√
s/(cγ ) ≈ 0.04 for the current parameters. This can be rationalized as follows. As vi initially

rises with α, so does the Brinkman shear stress on the gel side. Meanwhile, a rising Vi reduces
the shear rate and shear stress in the pure fluid. Thus, the jump in shear stress across the interface
decreases with α in Eq. (23), and this eventually leads to a decline in vi.
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FIG. 3. For a gel with porosity φ = 0.8 and a large pore size (γ = 25), the model predicts an interfacial
velocity Vi on the pure-fluid side that increases with the slip ratio α. Interestingly, the interfacial velocity vi on
the gel side exhibits a maximum at α ≈ 0.04. The interfacial slip Vi − vi also increases with α.

For α = 0.01, the fluid velocity profile is plotted in Fig. 4 as a function of the dimensionless
coordinate y

√
φ/K (solid black curves). It comprises two segments: the interstitial fluid velocity

v(y)/V0 inside the gel layer (y
√

φ/K < γ = 25) and the pure fluid velocity V (y)/V0 above it. The
inset shows a magnified view of the interfacial region. Notice first the discontinuity in the tangential
velocity across the interface; Eq. (22) requires a faster flow on the pure-fluid side than on the gel
side of the interface. Moreover, the shear rate is also greater on the pure-fluid side due to Eq. (23).

FIG. 4. Velocity profile in the 1D shear-flow solution for a gel layer with large pores (γ = 25), large
slip (α = 0.01) and moderate porosity φ = 0.8. The y axis is the dimensionless coordinate y

√
φ/K , with the

interface at y
√

φ/K = γ = 25 (dotted horizontal line). On the pure-fluid side, only a small portion of the linear
profile is plotted. The solid curves are the velocity profile for BC2 in this work, and the dash-dotted curves are
prediction of Minale’s model.
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The velocity profile can be compared with what the Minale model [19] predicts for the same
parameters. While we have used “intrinsic-phase-averaged” quantities exclusively, Minale [19] used
them alongside “phase-averaged” ones. Converting to our notations and again taking μe = μ/φ f ,
we can reduce his boundary conditions [Eqs. (51) and (56) in Minale [19]) to

φvi = Vi, (31)

dv

dy

∣∣∣∣
h2

= dV

dy

∣∣∣∣
h2

. (32)

With the general solution for the velocity profile v(y) = C sinh(y
√

φ/K ), these BCs lead to the
following solution:

C

V0
= 1

cγ + sφ
,

vi

V0
= s

cγ + sφ
,

Vi

V0
= sφ

cγ + sφ
,

v(y)

V0
= 1

cγ + sφ
sinh

(
y

√
φ

K

)
. (33)

The velocity profile (red dash-dotted curves) is compared with ours in Fig. 4.
Note first that the interfacial velocities vi and Vi of Eq. (33) are constants, independent of a slip

coefficient, as none exists in Minale’s model. The Minale vi is always slightly above ours for any
slip length; our vi peaks around α = 0.04, and that is when the two profiles are the closest. Second,
Eq. (31) implies vi > Vi, namely, a greater pore fluid velocity on the gel side than the velocity
on the pure-fluid side. This is opposite the jump predicted by our BC2, as illustrated in Fig. 4.
Finally, Eq. (32) comes from a stress partition that, interestingly, requires equal shear rates across
the interface in our notation. In our model, this would imply a larger Brinkman shear stress on the
gel side than the constant stress in the pure fluid. This difference stems from a slight discrepancy in
the momentum equations between the two models. For example, for the 1D shear flow of Fig. 2, the
shear-stress balance across the interface amounts to φsσs + φ2

f μ f (dv/dy) = μ(dV/dy) in Minale’s
model, whereas our model [Eq. (10)] has φ f instead of φ2

f in the second term.

IV. LIMITING CASES

A. The Darcy limit

When the viscous dissipation in the gel is dominated by the interphasic friction, the Brinkman
stress can be neglected to reduce the Brinkman equation to Darcy’s law. The vanishing of ∇2v f

means that fewer BCs are needed, and thus it is interesting to examine the limiting form of the
two sets of BCs. Note that even when a system of differential equations reduces to a limiting form,
its solution does not necessarily approach that of the reduced system. This has been demonstrated
recently in the Stokes limit of the Brinkman flow (ξ → 0) [35]. Here we do not concern ourselves
with the limiting behavior of the solutions.

First, the total traction balance (10) reduces to

n · (2μE − PI) = n · (φsσs − pI). (34)

Of the three velocity jumps in BC1 [Eqs. (12)–(14)], the interphasic slip condition (14) should be
omitted in the Darcy limit. The reason is that this condition stems from the viscous dissipation of
the Brinkman term. Now that this term vanishes from the momentum equation (5) and the surface
integral for energy dissipation (11), Eq. (14) would not have been postulated to begin with. Thus,
BC1 reduces to the following two conditions:

(V − vs) · n = η n · (2μE − PI + pI) · n = η φsn · σs · n, (35)

(V − vs) · t = β n · (2μE) · t = β φsn · σs · t, (36)

where the exterior viscous stresses can be replaced by the solid stresses by using the traction balance
of Eq. (34).

124304-9



JAMES J. FENG AND Y.-N. YOUNG

The Darcy limit of BC2 is not as straightforward. The adoption of relative velocities with respect
to v f still leads to the three dyads in the surface energy dissipation of Eq. (16), none of which drops
out by virtue of a vanishing Brinkman stress. Using the traction balance of Eq. (34), we can rewrite
Eq. (16) as

I� =
∫

�

Ṽ⊥ · φ f σs · n ds −
∫

�

Ṽ‖ · (2μE) · n ds +
∫

�

ṽs‖ · (
2φ−1

s μE
) · n ds

=
∫

�

Ṽ⊥ · φ f σs · n ds −
∫

�

(
Ṽ‖ − φ−1

s ṽs‖
) · (2μE) · n ds

=
∫

�

(V − v f ) · n(φ f n · σs · n) ds −
∫

�

(V − vs) · t [n · (2μE) · t] ds.

To ensure its nonpositiveness, we postulate the following two conditions as the Darcy limit of BC2:

(V − v f ) · n = −η φ f n · σs · n, (37)

(V − vs) · t = β n · 2μE · t. (38)

In view of the traction balance of Eq. (34), it is easy to see that Eq. (37) is the same as Eq. (17)
of the original BC2. Equation (38) can be recovered by taking the difference between Eq. (18) and
Eq. (19)/φs, and then redefining the slip coefficient β ≡ β̃(1 + 1/φ2

s ).
Note the similarity between BC1 and BC2 in the Darcy limit. Both relate the velocity jumps to the

normal and shear stress of the solid stress tensor σs, the shear stress being equal to that of the exterior
flow owing to Eq. (34). In particular, the “Navier slip condition” is identical between Eqs. (36) and
(38). The “permeability conditions,” i.e., the normal velocity jumps of Eqs. (35) and (37), seem to
differ more significantly. But a connection can be made in the special case of steady-state flows in
a Darcy medium. The steady-state shape of the interface and the continuity of fluid flow imply

vs · n = 0, V · n = φ f v f · n.

Then Eqs. (35) and (37) become essentially the same, subject to a differing η value.
This common limit in steady Darcy flows is intriguing for two reasons. First, BC1 and BC2 will

predict essentially the same equilibrium deformation of a Darcy drop under a steady extensional
or shear flow. Such steady solutions, as obtained analytically by Young et al. [21] in the small-
deformation limit, will not be a revealing test on the relative merit of BC1 and BC2. For that purpose,
therefore, one will need to compare solutions of nontrivial Brinkman flows or unsteady transients,
which are probably accessible only by numerical computation. Second, reconsider the disparate
predictions of BC1 and BC2 for the 1D shear problem of Sec. III. BC1 predicts zero flow inside the
gel while BC2 predicts a shear flow profile v(y) that varies in space, thereby inducing a Brinkman
stress. Now if one insists on a uniform Darcy flow inside the porous medium, naturally an external
shear flow will not be able to drive such a flow into arbitrary depth of the porous medium. Thus, the
predictions of BC2 converges to that of BC1 in the Darcy limit as expected.

B. The one-phase limits

In deriving BC1 and BC2, the positivity of interfacial dissipation requires only the interfacial slip
coefficient β and the interfacial permeability η to be positive. They are not required to be constants.
In fact, Young et al. [21] provided a scaling argument that required β → 0 as φs → 0. In this section
we consider the limits of φ f → 0 (the porous medium turning into impermeable elastic solid) and
φ f → 1 (the porous medium turning into pure liquid) to ensure that our boundary conditions are
physically consistent in these limits.

In the limit of φ f → 0, the boundary conditions of Table I reduce to those in Table II, where the
total traction balance has been used to simplify the normal velocity jump conditions. To approach
the no-penetration and no-slip conditions on a fluid-solid interface, BC1 requires β → 0 and η → 0
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TABLE II. The two sets of boundary conditions in the limit of φ f → 0.

Physical meaning BC1 BC2

Kinematics n · vs = v�

Fluid continuity n · (V − vs ) = 0
Total traction balance n · (2μE − PI) = n · (σs − pI)

Normal velocity jump (V − vs ) · n = η n · (σs − 2μee f ) · n (V − v f ) · n = 0
Tangential velocity jump (V − vs ) · t = β n · (2μE) · t (V − v f ) · t = β n · (2μE) · t
Interphasic velocity jump 0 = −β n · (2μee f ) · t (vs − v f ) · t = −β n · σs · t

in the limit of φ f → 0. For BC2, the interfacial permeability η drops out, and we need only require
β → 0. Thus the interphasic velocity jump vanishes: vs − v f → 0, and we recover the usual no-slip
boundary condition from the tangential velocity jump. The no-penetration condition is automatically
satisfied for BC2 by the traction balance.

In the opposite limit of φ f → 1, the boundary conditions reduce to those in Table III, with
a certain symmetry to Table II. For BC1, the requirement of β → 0 recovers the continuity of
normal and tangential velocities across the “interface” as the gel particle approaches a fluid drop
and the interface disappears. For BC2, β → 0 and η → 0 will ensure velocity continuity across
the “interface.” Note that the limit of σs is ambiguous in this case, but does not affect the above
argument.

To summarize, the two sets of boundary conditions will reach physically reasonable limits if the
interfacial slip and permeability coefficients obey the following:

(1) BC1: β → 0 and η → 0 as φ f → 0; β → 0 as φ f → 1,
(2) BC2: β → 0 and η → 0 as φ f → 1; β → 0 as φ f → 0.
Experimental data will be required if one wishes to model the functional dependence of β(φ f )

and η(φ f ).

V. CONCLUDING REMARKS

We have adapted the energy dissipation principle of Young et al. [21] to derive an alternative
set of boundary conditions (BCs) between a hydrogel and a surrounding solvent. The two sets of
boundary conditions, BC1 of Young et al. [21] and BC2 of the present work, appear similar in
postulating various velocity jumps at the interface that depend linearly on the stresses on either
side of the interface or their imbalance. However, they predict distinct flow patterns in a simple
1D shear flow of the solvent over a gel layer described by the poroelastic Brinkman flow. Whereas
BC1 predicts no entrained flow inside the gel, the BC2 predicts a shear flow profile. The latter is
comparable to predictions of the earlier model of Minale [19] but differs in important aspects.

TABLE III. The two sets of boundary conditions in the limit of φ f → 1.

Physical meaning BC1 BC2

Kinematics n · vs = v�

Fluid continuity n · (V − v f ) = 0
Total traction balance n · (2μE − PI) = n · (2μee f − pI)

Normal velocity jump (V − vs ) · n = 0 (V − v f ) · n = η n · (2μee f − σs ) · n
Tangential velocity jump (V − vs ) · t = β n · (2μE) · t (V − v f ) · t = β n · (2μE) · t
Interphasic velocity jump (v f − vs ) · t = −β n · (2μee f ) · t 0 = −β n · σs · t
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For both BC1 and BC2, we have explored their limiting forms when the Brinkman medium tends
to the Darcy limit and when the gel approaches the one-phase limits of impermeable solid and pure
fluid. For steady flows in the Darcy limit, BC1 and BC2 are essentially identical to each other. In
the one-phase limits, the slip coefficient β and the interface permeability η should vanish in order to
recover expected fluid-solid BCs or fluid-fluid continuity. This provides guides for modeling β and
η as functions of the void fraction in the gel.

An open question is which of the three sets of BCs (BC1, BC2, and that of Minale [19]) more
closely represents reality. Having compared their predictions in the simple 1D shear flow problem,
we realize that steady flows in the Darcy limit will not be a sensitive test to discriminate between
BC1 and BC2. Thus, the BCs should be tested in numerical computations of nontrivial and time-
dependent Brinkman flows, with the results compared with measurements in carefully designed
experiments. A promising experiment is the oscillatory shear flow of Hobbie et al. [12] of a liquid
over a gel layer. Although the focus of their study is the microrheology of the gel, the time-dependent
interfacial motion could serve as a test for our boundary conditions.
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